
BBBW

Research Memorandum 976 2006/01/12

Face-regular 3-valent two-faced
spheres and tori

Mathieu DUTOUR
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Abstract

Call two-faced map and, specifically, (p, q)-map a 3-valent map (on sphere or
torus) with only p- and q-gonal faces (at least one each), for given integers 3 ≤ p < q;
so, 3 ≤ p ≤ 5. Two-faced maps (especially, (5, 6)-polyhedra, called fullerenes) are
prominent molecular models in Chemistry.

We say that a (p, q)-map is pRi if any p-gon has the same number i of p-gonal
neighbors; it is qRj if each q-gon has the same number j of q-gonal neighbors. Call a
(p, q)-map strictly face-regular if it is both, pRi and qRj , for some i,j; call it weakly

face-regular, if it is only pRi or qRj .
All strictly face-regular (p, q)-polyhedra are ([BrDe99], [De02]) Prismm, Barrelm

(m ≥ 3) and 55 sporadic polyhedra. By Barrelm we denote 4m-vertex (5, m)-
polyhedron, consisting of two m-gons separated by two m-rings of 5-gons. All 23
parameter-sets (p, q; i, j) for strictly face-regular (p, q)-tori are found ([De02]); the
number of minimal tori is one for 7 of them and an infinity for 16 others.

Here we address the characterization of all weakly face-regular (p, q)-maps on
sphere or torus. Examples of obtained results are:

1. Any (3, q)-map, which is 3R0, has 4 ≤ q ≤ 12. It is strongly face-regular
for q = 4, 5 (Prism3 and Barrel3 only) and q = 11, 12 (only tori, unique for
q = 12). All such weakly face-regular maps are infinities of polyhedra and tori
for each 7 ≤ q ≤ 10 and (characterized) infinity of (3, 6)-polyhedra.

2. Weakly face-regular (5, q)-polyhedra 5Rj exist for j = 3, 6 ≤ q ≤ 10, and
j = 2, q ≥ 8.

3. The following general conjecture: the number of (p, q)-polyhedra, which are
qRj , is infinite if and only the corresponding torus exist.

4. If a (p, q)-polyhedron is qRj , then j ≤ 5. The number of (5, q)-polyhedra is
infinite if and only if q ≥ 12, 10, 8, 7, 7, 7 for j = 0, 1, 2, 3, 4, 5, respectively
(except some undecided cases for j = 0, 3, 5).

5. The number of (4, q)-polyhedra qRj is finite (all are classified) for j ≤ 3. For
j = 4, they are classified (and their number is infinite) if q = 8; we conjecture
infiniteness if and only if q ≥ 8.

6. For many classes qRj , the number of possibilities is very large. However, for
the critical value of q, starting at which an infinity of graphs occurs, we are
often able to describe the structure and obtain a complete classification.

We used large computations, variations of Euler formula, analysis of coronae of
faces, the decomposition of (p, q)-maps into elementary (p, 3)-polycycles and many
ad hoc arguments.
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1 Introduction

1.1 Main notions

Call a two-faced map and, specifically, (p, q)-map any 3-valent map (on sphere or torus)
with only p- and q-gonal faces for given integers 2 < p < q; we will also use terms
(p, q)-sphere (moreover, (p, q)-polyhedron if it is 3-connected) or (p, q)-torus, respectively.
In fact, the term map will be used only for sphere or torus. (5, 6)-polyhedra are called
fullerenes in Organic Chemistry; one of the purposes of this paper is possible application
in Chemistry, where fullerenes and other two-faced maps are prominent molecular models.

We say that a (p, q)-map is pRi, if any p-gon has the same number i of p-gonal
neighbors; we say that it is qRj, if each q-gon has the same number j of q-gonal neighbors.

Call a (p, q)-map strictly face-regular if it is both, pRi and qRj, for some i,j; call it
weakly face-regular, if it is only pRi or qRj. All 3-connected strictly face-regular (p, q)-
maps are known. On the sphere they are ([BrDe99], [De02]): Prismm (for all m ≥ 3,
except 4), Barrelm (for all m ≥ 3, except 5) and 55 sporadic simple polyhedra; on torus
([De02], in equivalent terms of plane partitions): 23 parameter-sets (p, q; i, j). By Barrelm
above we denote 4m-vertex (5,m)-polyhedron, consisting of two m-gons separated by two
m-rings of 5-gons.

In this paper we address the following problem: characterize all weakly face-regular
(p, q)-maps on sphere or torus. This problem for j = 2 on the sphere has been considered
in the papers [DGr02] and [DDS04].

Let us call gonality of a face the number of its vertices. Denote by v, e and f the
number of vertices, edges and faces, respectively, of a given map. Denote by fi the number
of its i-gonal faces and by ea−b (for fixed 3 ≤ a ≤ b) the number of (a−b)-edges, i.e., edges
separating a- and b-gonal faces. Call corona (of a face) the sequence of gonalities of all
its consecutive neighbors. Denote by Aut the automorphism group of a given (p, q)-map.

Call (p, q)-plane any 3-valent partition of Euclidean plane by p- and q-gons only, for
given 3 ≤ p < 6 < q. We have (Euler’s formula for (p, q)-torus) fp(6− p) = fq(q − 6), i.e.,
proportion of p-and q-gons in (p, q)-plane is 6−p : q−6. Call a (p, q)-plane decorated {63}
(or just decorated graphite), if it became the 3-valent partition of the plane by hexagons
after deletion of all (p − p)-edges and removal of vertices of degree 2. Call matching M
of a graph G a set of edges of G such that every vertex belongs to at most one edge from
M ; M is called perfect if every vertex belongs to exactly one edge from M .

The Goldberg-Coxeter construction takes a 3- or 4-valent orientable map G, two inte-
gers (i, j) 6= (0, 0) and returns a 3- or 4-valent map, denoted by GCi,j(G), see [Gold37],
[Cox71] and [DuDe03] for detailed description.

We used computer methods (by the consideration of all possibilities), when this ap-
proach worked, and theoretical, otherwise. The numerical approach cannot work in the
torus case, since, given a (p, q)-torus, which is qRj or pRi, one can obtain a (p, q)-torus
with the same property and arbitrary large number v of vertices.

However, for many subcases, the torus case is simpler, since the Euler formula takes
the form v − e + f = 0, instead of more complicated v − e + f = 2. To illustrate this

9



q 5 6 7 8 9 10
j
0 0 0 0 0 0 0

strictly 0 0 0 0 0 0
1 0 0 0 0 0 0

strictly 0 0 0 0 0 0
2 0 1 1 2 1 1

strictly Nr. 16 Nr. 19 0 0 0 0
3 0 0 3 5 5 6

Figures Fig. 45 Fig. 46 Fig. 47 Fig. 48
strictly Nr. 17 Nrs. 21,22 0 0 Nr. 35 0

4 0 0 3 ∞ 4(58) 8(56)
Figures Fig. 74 Fig. 55–66 Fig. 77 Fig. 79
strictly Nr. 18 Nrs. 20, Nrs. 27,28, Nrs. 32-34 Nr. 38 0

23-25 30,31
5 0 0 0(62)+ ≥ 3 2(56) 3(58) 2(56)

Figures Fig. 75 Fig. 76 Fig. 78 Fig. 80
strictly 0 Nr. 26 Nr. 29 0 Nrs. 36,37 0

Table 1: The number of (4, q)-spheres qRj, different from Cube and Prismq, with q ≤ 10
and j ≤ 5

point, a (5, 7)-sphere, which is 7R2, satisfies to x0 +x3 + f7 = 20, which allows to have an
upper bound on v and enumerate such spheres, while a (5, 7)-torus, which is 7R2, satisfies
to x0 + x3 + f7 = 0 and hence, does not exist at all.

The shape of the results is also interesting. If the qRj (p, q)-tori admit classification,
then, usually, there is more freedom for the qRj (p, q)-spheres (compare Theorems 6.2 and
6.3). However, if the pRi (p, q)-tori admit classification, then, usually, the possibilities for
pRi (p, q)-sphere are more restricted (see Theorem 5.19).

Tables 1 and 2 illustrate the present knowledge about the finiteness of the number of
face-regular (p, q)-spheres qRj with q ≤ 10 and j ≤ 5; in parenthesis are given the number
of vertices, until which the computations were done. The definite numbers there are given
boldface. The strictly face-regular (p, q)-polyhedra are indicated by their numbers in Table
3. We took j ≤ 5, because if a (p, q)-polyhedron is qRj, then j ≤ 5 (see Corollary 4.3
below).

Remarks on Table 1:
(i) All (4, q)-spheres qRj with j ≤ 3 are given in Theorems 4.10 and 9.1.
(ii) All strictly face-regular (4, q)-spheres (different from Cube and Prismq), which

are not given in Table 1, are Nrs. 39-43 (they have (q, j)=(11, 5), (11, 5), (12, 4), (13, 5),
(15, 5)).

(iii) For strictly face-regular (4, q)-spheres Nrs. 35-43, Table 1 in [De02] contained a
misprint: the properties pRi, qRj are denoted by tp = i and tq = j; the values, given there
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q 6 7 8 9 10
j
0 1 0 0 2 3

Figures Fig. 29 Fig. 30
strictly Nr. 45 0 Nr. 58 0 Nr. 60

1 2 3 4(74) 5(68) 10(80)
Figures Fig. 37 Fig. 38 Fig. 39 Fig. 40
strictly 0 Nr. 56 0 0 0

2 6 25[DDS] ∞ 11 + ∞ ∞
Figures Fig. 82 Fig. 85 Fig. 88

Fig.[DDS] Fig. 10,11 Fig. 12 Fig. 13 Fig. 14
strictly Nrs. 46,47 Nr. 57 Nr. 59 0 0

3 2 4(76)+≥ 2 4(74) 2(68)+∞ 3(80)+∞
Figures Fig. 81 Fig. 83 Fig. 86 Fig. 89
strictly Nrs. 48,49,51 0 0 0 0

4 1 2(76) + ∞ 3(74) + ∞ 0(68) 3(80)+∞
Figures Fig. 67 Fig. 84 Fig. 90
strictly Nrs. 50,52-54 0 0 0 0

5 0 1(278) 1(92)+∞ 1(68)+∞ 0(80)+∞
Figures Fig. 73 Fig. 72 Fig. 87
strictly Nr. 55 0 0 0 0

Table 2: The number of (5, q)-spheres qRj, different from Dodecahedron and Barrelq,
with q ≤ 10 and j ≤ 5

as tq, are, actually, q − tq and so, remark (v) there should be deleted.
Remarks on Table 2:
(i) All 16 strictly face-regular (5, q)-spheres, different from Dodecahedron and Barrelq,

are in Table 2.
(ii) The list of (5, q)-spheres qR0 is known for q ≤ 12 (see Figures 29, 30, 31, 32 for

q = 9, 10, 11, 12); it is, conjecturally, infinite if and only if q ≥ 12 (see known spheres for
13 ≤ q ≤ 16 on Figures 33, 34, 35, 36).

Here is a summary of the results and conjectures on finiteness of the number of (4, q)-
spheres:

• The number of (4, q)-spheres qRj is 0 for j ≥ q − 2 ≥ 6 (Theorem 12.2); it is finite
for j ≤ 3 (all such spheres are given in Theorem 4.10 for j ≤ 2 and in Theorem
9.1(ii) for j = 3); it is infinite for j = 4 (all such spheres with q = 8 are described
in Theorem 10.3 and we conjecture it for q ≥ 9);

• The number of (4, q)-spheres 4R0 is infinite for q = 6 and 7 only (see Theorems
5.1(i), 5.2 and 5.1)

11



• The number of (4, q)-spheres 4R1 is infinite for q = 6, 7, 8 and 9 (see Theorems 5.3,
5.4, 5.6 and 5.1).

• The number of (4, q)-spheres 4R2 (different from Prismq) is infinite for 6 ≤ q ≤ 13
and q = 15 and such spheres do not exist for other values of q (see Theorems 5.7(ii),
5.8, 5.9, 5.10, 5.11, 5.13, 5.15, 5.12 and 5.14).

• Remarks 13.1–13.4 treat (4, q)-spheres with 7 ≤ q ≤ 10 in detail, completing Table
1.

Here is a summary of results and conjectures on existence of (4, q)-tori:

• A (4, q)-torus qRj does not exist if j ≤ 3 (Theorems 4.10(ii) and 9.1(i)).

For j = 4, it exists if and only if q ≥ 8; moreover, it is 4R0 for q = 8 (Theorem 10.2
(i), (ii)) and characterized (Theorem 10.2 (iii), (iv)) for q = 9.

For j = 5, it exists if and only if q ≥ 7; moreover, it is 4R0 for q = 7 (Theorem
11.1).

For j = 6 and if the (4, q)-torus is 3-connected, it is also 4R2 (Theorem 12.1).

• A (4, q)-torus 4Ri can exist only for (i, q) = (0, 7), (1, 7), (1, 8), (1, 9), (2, 7 ≤
q ≤ 16), (2, 18) (Theorems 5.1(ii) and 5.7(i)). See Figure 18 for an example with
(i, q) = (1, 9).

Here is the summary of results and conjectures on finiteness of the number of (5, q)-
spheres:

• The number of (5, q)-spheres qR0 is finite if and only if 6 ≤ q ≤ 11 (Theorem 6.3
lists them for q ≤ 12 and proves it for q = 12; we conjecture it for q > 12).

• The number of (5, q)-spheres qR1 is finite if and only if 6 ≤ q ≤ 9 (Figure 37 lists
them for q = 7; Theorems 4.4(ii) and 7.2(i) prove it for q = 8 and q = 9, respectively;
we conjecture it for q > 9).

• The number of (5, q)-spheres qR2 is finite if and only if 6 ≤ q ≤ 7 (Theorem 8.3
proves it for q ≥ 8; for q = 6 and q = 7 all were listed in [DeGr01] and [DDS04],
respectively).

• The number of (5, q)-spheres qR3 is finite if and only if q = 6 (it is Conjecture 9.4;
Theorem 9.5 proves it for q = 9, 10, 12).

• The number of (5, q)-spheres qR4 is finite if and only if q = 6 (Theorems 10.4, 10.5,
10.7 prove it for q = 7, 8, 10, 13, 16).

• The number of (5, q)-spheres qR5 is finite if and only if q = 6 (Theorems 11.6, 11.7
prove it for q ≤ 21, except of undecided cases q = 7, 10, 13, 16, 19; we conjecture it
for all q and Figures 73, 72, 87 give examples for q = 7, 8, 9, respectively).
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• By Theorem 5.1, a (5, q)-sphere 5Ri can exist only for i = 2 (see [DGr02]) or i = 3.
A (5, q)-sphere 5R3 exists if and only if 6 ≤ q ≤ 10 (Theorem 5.19 lists them for
q = 7 and proves it for q ≤ 10, Theorem 5.24 gives an infinite series and seven
examples for q = 8, Theorem 5.26 gives unique case for q = 9, Theorem 5.27 gives
three examples for q = 10).

• Remarks 14.1–14.4 treat (5, q) with 7 ≤ q ≤ 10 in detail, complementing Table 2.

Here is a summary of the results and conjectures on existence of (5, q)-tori:

• (5, q)-torus qR0 exists if and only if q ≥ 12; for q = 12 it is qR0 if and only if it is
5R3 (Theorems 6.2 and 5.19(ii)).

• (5, q)-torus qR1 exists if and only if q ≥ 10; for q = 10 it corresponds to some perfect
matching of a 6-valent tessellation of the torus by triangles (Theorem 7.2(ii), 7.5
and 7.3).

• (5, q)-torus qR2 exists if and only if q ≥ 8; for q = 8 it is qR2 if and only if it is 5R2

(Theorems 8.1 and 8.2).

• (5, q)-torus qR3 exists if and only if q ≥ 7; for q = 7 it is qR3 if and only if it is 5R1

(Theorems 9.3 and 9.2).

• (5, q)-torus qR4 exists if and only if q ≥ 7 (Theorem 10.6).

• By Theorem 5.1, a (5, q)-torus 5Ri can exist only for i = 2 and i = 3. A (5, q)-torus
5R2 exists if and only if q = 7 or 8 (see Theorem 5.17). A (5, q)-torus 5R3 exists
if and only if q = 8, 10, 11, 12; moreover, it is qR12−q for q = 10, 11, 12 (Theorems
5.19, 5.26(ii), Lemma 5.22(ii) and Conjecture 5.28 for q = 10).

In view of above summaries for spheres and tori, we conjecture:

Conjecture 1.1 The number of (p, q)-spheres qRj is infinite if and only if a (p, q)-torus
qRj exists.

But the similar conjecture for pRi does not hold, for example, for (p, q; i) = (5, 11; 3)
(Lemma 5.21) or (5, 12; 3) (Lemma 5.20).

Given a torus, its universal cover is a periodic infinite map on the plane. By choosing
a finite index subgroup H of the group G of covering transformations and taking the
quotient, one can obtain bigger tori; those tori have a translation subgroup, which is
isomorphic to the quotient G/H. On the other hand, given a torus with non-trivial
translation group, there exist a unique minimal torus with the same universal cover and
trivial translation subgroup. Those minimal tori correspond, in a one-to-one way, to
periodic tilings of the plane.

It is shown in [Mo97] that a combinatorial map of arbitrary genus admits an unique
primal-dual circle representation on a Riemann surface of the same genus (i.e., sphere,
torus or surface with handle). More precisely, this means that the combinatorics of the
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map determines an unique complex analytic structure. This implies that every combina-
torial symmetry of the map correspond to an isometry of the Riemann surface (in the case
of sphere, this is Mani’s theorem [Ma71]). The finite groups of isometries of the sphere
have been determined a long time ago and are called point groups. They are described,
for example, in [D1] using the Schoenflies notation, which is used in this work (for the
Hermann-Maugin notation, see Chapter 3 of [KeHy96]).

The enumeration of (p, q)-spheres (respectively, tori) in this paper was done using
the programs CPF (respectively, CGF) by T.Harmuth (see [BFDH97] and [Ha]). The
enumeration of face-regular maps was done using the GAP computer algebra program
(see [GAP02]), the PlanGraph package ([Du02]). The drawings were done using CaGe
(see [BFDH97]) and TorusDraw (see [Du04], which uses the theory explained in [Mo97]).

For spheres, we presented all found plane graphs up to the capacity of CPF. Due to
the sheer number of existing tori and the uninterestness of most, we selected the ones,
which are presented. All (p, q)-tori are represented on the plane by their universal cover,
called (p, q)-planes. For each of them we give parameters (v, fp, fq) of their minimal tori.
The symmetry groups belong to one of 17 possibilities, which are explained, for example,
in Chapter 1 of [KeHy96].

Face-regular maps are of interest for Chemistry and Physics, because many of them
appear already there. For example, many of known polyhedral (energy) minimizers in
Thomson problem (for given number of particles on sphere) or Skyrme problem (for given
integer barionic number) are face-regular (5, 6)-polyhedra. Face-regular (5, 7)-planes are
related to a putative ”metallic carbon” deformation of the graphite lattice. Also, for
example, all known polyhedra P , such that their skeleton is an isometric subgraph of a
hypercube or a half-hypercube, have either P , or its dual P ∗ face-regular.

1.2 (p, 3)-polycycles

A (p, 3)-polycycle is a plane graph, such that all interior faces are p-gons, all interior
vertices are 3-valent and any vertex of the boundary (i.e., the exterior face) has valency
within {2, 3}.

This simple, yet powerful, notion allow us to prove some of the most interesting results
of this paper. However, in some cases, we must generalize this notion. This can be done
in two direction: by allowing several gonalities for interior faces and by allowing several
boundaries. If we allow different gonalities for interior faces, we will use the term 3-patch.
If we allow several boundaries, then we speak of generalized (p, 3)-polycycle. If we allow
both different gonalities of interior faces and several boundaries, then we just call it loosely
group of faces.

The boundary sequence of a (p, 3)-polycycle P is the sequence b(P ) enumerating, up
to a cyclic shift or reversal, the consecutive valencies of all vertices incident to the exte-
rior face. Call a sequence (p, 3)-fillable if there exists a (p, 3)-polycycle having it as the
boundary sequence.

Now we present the information on (p, 3)-polycycles, which will be extensively used in
many proofs below.
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Any (4, 3)-polycycle is either one of the following graphs S1, S2, S3:

b(S3) = 3333b(S1) = 232323 b(S2) = 233233

or belongs to the infinite series (P2k)k≥2, shown below for first values k = 2, 3, 4:

b(P4) = 2222 b(P6) = 223223 b(P8) = 22332233

Theorem 1.2 Given a (4, q)-map, which is not Prismq, we can decompose its set of
4-gons is decomposed into (4, 3)-polycycles.

Proof. We will get the result if we prove that the only generalized (4, 3)-polycycles are
(4, 3)-polycycles or Prismq.

Take an initial 4-gon and add 4-gons in any possible way. At first one obtains P6 and
Prism2, then P8, S1 and Prism3. The next steps are S2 and Cube. After that the only
possibilities are P2k and Prismk. 2

A (p, 3)-polycycle is called elementary if it cannot be separated into two other (p, 3)-
polycycles by splitting an edge. Call an edge open if both its ends have degree 2.

Theorem 1.3 ([DSt01], [DSt02] and [DDS1]) Every finite generalized (5, 3)-polycycle is
either Barreln for some n ≥ 3, or is formed by the agglomeration of elementary ones,
listed on Figure 1, along open edges.

Remark that for p > 5, the set of elementary (p, 3)-polycycles becomes uncountable.
The following proposition, which is a slight generalization of the one in [DDS04], is

very helpful in deriving classification results.

Proposition 1.4 Let P be a generalized (p, 3)-polycycle with t boundaries. Denote by v2

and v3 the number of vertices of degree 2, 3 on the boundary. Let x and fp be the number
of interior vertices and p-gonal interior faces. Then, one has:

{

pfp − 3x = v2 + 2v3

fp −
x
2

= (2 − t) + v3

2
.

If p 6= 6, then the system of equations has the solution:

{

fp = 1
p−6

{v2 − v3 − 6(2 − t)}

x = 1
p−6

{2v2 − (p − 4)v3 − 2p(2 − t)} .
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A1: 35 A2: (2333)2

A3: (233)3

A4: (23323)2

A5: (23)5

D: (2)5

B2: 223323233

B3: 22332323233

C1: (223333)2

C2: 223323322333
C3: (2233)3

E1: (223)3

E2: (23223)2 E3: 22332232323 E4: (232233)2

Figure 1: All finite elementary (5, 3)-polycycles and their boundary sequences (infinite
series En is illustrated by its first members with 1 ≤ n ≤ 4)
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Proof. We consider this set of 5-gonal faces as a plane graph with 5-gons and t other
faces.

By counting in two different ways the number e of edges, one obtains 2e = pfp + v2 +
v3 = 2v2 + 3v3 + 3x, which implies pfp − 3x = v2 + 2v3.

On the other hand, Euler formula v − e + f = 2 implies, by writing v = v2 + v3 + x
and f = t+ fp, the relation fp −

x
2

= (2− t)+ v3

2
. The solution come by solving the linear

system. 2

Theorem 1.5 If the set of 5-gonal faces of a (5, q)-sphere qRj contains at least two
(5, 3)-polycycles A2 or at least two (5, 3)-polycycles A3, then there exists an infinity of
(5, q)-spheres, which are qRj.

Proof. The polycycle A2 (see Figure 1) has a central edge; by removing it, one ob-
tains a generalized (5, 3)-polycycle, which is the union of two (5, 3)-polycycles E2. This
generalized (5, 3)-polycycle has two boundaries, which have the same boundary sequence
(233)2. Hence, both sides can be filled by the same structure, which again has at least
two (5, 3)-polycycles A2 and is again qRj. This construction can, obviously, be repeated
and one obtains an infinite series.

Take an elementary (5, 3)-polycycle A3 (see Figure 1) and remove its central vertex.
The result is a generalized (5, 3)-polycycle with two boundary sequences. It turns out,
that those boundary sequences are identical, namely, (322)3. Hence, we can fill both
those boundaries by the same structure, which is again qRj. So, one obtains a larger
(5, 8)-sphere, which is 8R5. This operation can, obviously, be repeated and one obtains
larger (5, q)-spheres, which are qRj. By creating a chain of such spheres, we get an infinity
of them. 2

2 The list of 3-valent strictly face-regular (p, q)-maps

2.1 (p, q)-polyhedra

See in Table 3 all 3-valent strictly face-regular (p, q)-polyhedra; they were enumerated in
[BrDe99] and [De02].
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Nr. p, q v i, j Aut Polyhedron
1 3,4 6 0,2 D3h Prism3

2 3,5 12 0,4 D3d Barrel3
3 3,6 12 0,3 Td Truncated Tetrahedron=GC1,1(Tetrahedron)
4 3,6 16 0,4 Td 4-truncated Cube=GC2,0(Tetrahedron)
5 3,6 16 0,4 D2h twisted Nr. 4
6 3,6 28 0,5 T 4-truncated Dodec.=G2,1(Tetrahedron)
7 3,7 20 0,4 D3d 6-truncated Cube
8 3,7 36 0,5 Th 8-truncated Dodecahedron
9 3,7 36 0,5 D3 twisted Nr. 8
10 3,8 24 0,4 Oh Truncated Cube
11 3,8 44 0,5 Th 12-truncated Dodecahedron
12 3,8 44 0,5 D3 twisted Nr. 11
13 3,9 52 0,5 T 16-truncated Dodecahedron
14 3,10 60 0,5 Ih Truncated Dodecahedron
15 4,q 2q 2,0 Dqd serie Prismq, q ≥ 5
16 4,5 12 1,2 D2d decorated Cube
17 4,5 14 0,3 D3h (q-cap Prism3)∗

18 4,5 16 0,4 D4d (q-cap APrism4)∗=Barrel4
19 4,6 14 2,2 D3h 4-triakon Nr. 1
20 4,6 20 2,4 D3d 4-triakon Nr. 2
21 4,6 20 1,3 D3 4-halved Nr. 17
22 4,6 24 0,3 Oh Truncated Octahedron=GC1,1(Cube)
23 4,6 26 1,4 D3h decorated Nr. 17
24 4,6 32 0,4 Oh GC2,0(Cube)
25 4,6 32 0,4 D3h twisted GC2,0(Cube)
26 4,6 56 0,5 O GC2,1(Cube)
27 4,7 44 1,4 Th 4-halved Nr. 24
28 4,7 44 1,4 D3 4-halved Nr. 25
29 4,7 44 2,5 T 4-triakon Nr. 6
30 4,7 80 0,4 Oh (q-cap Rhombicuboctahedron)∗

31 4,7 80 0,4 D4d (q-cap tw.Rhombicuboctahedron)∗

32 4,8 32 2,4 Td 4-triakon Nr. 4
33 4,8 32 2,4 D2h 4-triakon Nr. 5
34 4,8 80 1,4 D3 decorated Nr. 20
35 4,9 28 2,3 Td 4-triakon Nr. 3
36 4,9 68 2,5 Th 4-triakon Nr. 8
37 4,9 68 2,5 D3 4-triakon Nr. 9
38 4,10 44 2,4 D3d 4-triakon Nr. 7
39 4,11 92 2,5 Th 4-triakon Nr. 11
40 4,11 92 2,5 D3 4-triakon Nr. 12
41 4,12 56 2,4 Oh 4-triakon Nr. 10
42 4,13 116 2,5 T 4-triakon Nr. 13
43 4,15 140 2,5 Ih 4-triakon Nr. 14
44 5,q 4q 4,0 Dqd series Barrelq, q ≥ 6
45 5,6 28 3,0 Td (q-cap truncated Tetrahedron)∗

46 5,6 32 3,2 D3h decorated Nr. 23
47 5,6 38 2,2 C3v decorated Barrel6
48 5,6 44 2,3 T 5-triakon Nr. 45
49 5,6 52 1,3 T decorated Nr. 48
50 5,6 56 2,4 Td 5-triakon Nr. 22
51 5,6 60 0,3 Ih Truncated Icosahedron=GC1,1(Dodecahedron)
52 5,6 68 1,4 Td decorated Nr. 50
53 5,6 80 0,4 Ih (q-cap Icosidodecahedron)∗

54 5,6 80 0,4 D5h GC2,0(Dodecahedron)
55 5,6 140 0,5 I GC2,1(Dodecahedron)
56 5,7 44 3,1 D3h 6-halved Nr. 46
57 5,7 92 2,2 C3v decorated Nr. 47
58 5,8 56 3,0 Oh (q-cap Truncated Cube)∗

59 5,8 92 3,2 Td decorated Truncated Octahedron
60 5,10 140 3,0 Ih (q-cap Truncated Dodecahedron)∗

Table 3: All strictly face-regular (p, q)-polyhedra pRi and qRj
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Nr. 1 Nr. 2 Nr. 3

Nr. 4 Nr. 5 Nr. 6

Nr. 7 Nr. 8 Nr. 9

Nr. 10 Nr. 11 Nr. 12

Nr. 13 Nr. 14 Nr. 15
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Nr. 16
Nr. 17 Nr. 18

Nr. 19 Nr. 20 Nr. 21

Nr. 22
Nr. 23 Nr. 24

Nr. 25 Nr. 26 Nr. 27
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Nr. 28 Nr. 29 Nr. 30

Nr. 31 Nr. 32 Nr. 33

Nr. 34 Nr. 35 Nr. 36

Nr. 37 Nr. 38 Nr. 39

21



Nr. 40 Nr. 41 Nr. 42

Nr. 43
Nr. 44

Nr. 45

Nr. 46 Nr. 47 Nr. 48

Nr. 49
Nr. 50 Nr. 51
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Nr. 52 Nr. 53 Nr. 54

Nr. 55 Nr. 56 Nr. 57

Nr. 58 Nr. 59 Nr. 60

The list of only 2-connected, i.e., 2- but not 3-connected ones, is described below.
One can prove that a strictly face-regular (p, q)-map, which is 2-connected but not

3-connected has p = 2 or 3. All strictly face-regular (3, q)-maps, which are not 3R0 and
different from Tetrahedron, are (only) 2-connected (3, q)-maps 3R1 and qRj. Such maps
correspond (via removal of the edge of adjacency in each pair of adjacent triangles and
both vertices of this edge) to the (2, q1 = q+j

2
)-map 2R0 and q1Rj on the same surface

(sphere or torus). Furthermore, by removal of each 2-gon (and both its vertices), one
obtains the regular 3-valent map {p3} with p = q1 − (q − j) = 3j−q

2
; now, 2 ≤ p ≤ 5 for

sphere and p = 6 for torus. So, all strictly face-regular (3, q)-spheres 3R1 and qRj have
q = 3j − 2p for all 2 ≤ p ≤ 5 and all j > 3 with p + 1 ≤ j ≤ 2p. All strictly face-regular
(3, q)-tori 3R1 and qRj have q = 3(j − 4) for all 7 ≤ j ≤ 12.

The problem can then be expressed in the following terms: To every edge e of {p3},
one associate an integer parameter xe, which is the number of 2-gons (or pair of adjacent
triangles) on this edge. Then the equation are:
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∑

e∈F

xe = C =
q − j

2
.

for every face F of {p3}. This is an integer problem and some systematic methods for
finding all solutions exist, namely:

• It is known that the number of solutions is asymptotically equivalent to αCw with
w being the dimension of the following polytope

∑

e∈F

xe = 1 and xe ≥ 0

and α being proportional to its volume.

• The exact number of solutions is a polynomial, which can be, theoretically, found
by computing the Hilbert basis of a polyhedral cone.

• If one wants to find the number of solutions up to isomorphy, this is still possible.
One computes first the symmetry group G of the map {p3}, which ought to be well
known. Then, one compute all subgroups H of G. Then use previous method to
compute all solution of the problem with respect to the symmetry group H. The
number of solutions up to isomorphy is then found by using the subgroup lattice of
G and solving the corresponding linear system.

2.2 (p, q)-tori

The list of strictly face regular tilings of torus was obtained in [De02] (in terms of (p, q)-
planes) by the same technique as for polyhedra.

This list consists of 23 different cases. In some cases the number of possibilities is
infinite, while in others there is only one possibility.

While the list of parameter sets in [De02] is correct, some tilings were missed in
following cases:

(i) The number of all tilings should be infinite in the cases 1-5 and so, in cases 7-11.

(ii) The description in cases 13, 15 being incomplete, see full description in Theorems
2.2 and 2.1.

Tilings 6, 12, 14, 20–23 are unique; they are represented on Figure 2.
Cases 1–6, i.e., (3, q)-tori 3R0 , qR6 are obtained by taking a 3-valent tessellation of

the torus by 6-gons and a set Yq of vertices, such that every face is incident to exactly
q−6 vertices in Yq. By doing the truncation over such a set Yq, one obtains a (3, q)-torus,
which is 3R0 and qR0. Of course, by complementing a set Yq, one obtains a set Y18−q, thus
establishing a one-to-one mapping between the classes 1 and 5, as well as between the
classes 2 and 4. Of course, since Y6 is unique, the (3, 12)-plane 3R0, 12R0 is unique, but
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Case p, q i, j Quantity Tilings
1 3,7 0,6 ∞ 1

6
-truncated {63}

2 3,8 0,6 ∞ 1
3
-truncated {63}

3 3,9 0,6 ∞ 1
2
-truncated {63}

4 3,10 0,6 ∞ 2
3
-truncated {63}

5 3,11 0,6 ∞ 5
6
-truncated {63}

6 3,12 0,6 1 trunc.{63} = (3.122)
7 4,8 2,6 ∞ 4-triakon of case 1
8 4,10 2,6 ∞ 4-triakon of case 2
9 4,12 2,6 ∞ 4-triakon of case 3
10 4,14 2,6 ∞ 4-triakon of case 4
11 4,16 2,6 ∞ 4-triakon of case 5
12 4,18 2,6 1 4-triakon of case 6
13 4,7 0,5 ∞ 8-halved (4.82)
14 4,8 0,4 1 trunc.{44} = (4.82)
15 4,8 1,5 ∞ 4-halved case 13
16 4,10 1,4 ∞ 4-halved (4.82)
17 5,7 1,3 ∞ decorated {63}
18 5,7 2,4 1 + ∞ decorated {63}
19 5,8 2,2 ∞ decorated {63}
20 5,8 3,4 1 decorated {63}
21 5,10 3,2 1 decorated {63}
22 5,11 3,1 1 decorated {63}
23 5,12 3,0 1 decorated {63}

Table 4: All parameters for strictly face-regular (p, q)-planes pRi and qRj
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Case 6, (6, 2, 1), p6mm Case 12, (14, 6, 1), p6mm Case 14, (4, 1, 1), p4mm

Case 20, (12, 4, 2), c2mm Case 21, (10, 4, 1), p2mm Case 22, (24, 10, 2), c2mm

Case 23, (14, 6, 1), p6mm

Figure 2: The seven sporadic cases of strictly face-regular tori
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there is an infinity of sets Yq for 7 ≤ q ≤ 11 1. See Figures 3, 4 and 5 for some (3, q)-tori
3R0, qR6 with q = 7, 8, 9, respectively.

Cases 7–12, i.e., (4, q)-tori 4R2, qR6 are obtained from cases 1–6, respectively by
4-triakon, i.e., replacing each triangle by triple of adjacent squares.

Case 15, i.e., (4, 8)-tori 4R1, 8R5. Given a 6-valent tessellation of the torus by triangle,
a special perfect matching SPM is a set of edges, such that it holds:

1. every vertex is contained in exactly one edge of SPM,

2. every vertex is contained in exactly one triangle whose edge, opposite to the vertex,
belongs to SPM.

The flip of a map with a special perfect matching SPM consists of changing the edges
of the special perfect matching to their opposite according to the diagram below:

We obtain a new 6-valent tessellation of the torus by triangles with a special perfect
matching.

Given a (4, 8)-torus G, which is 4R1 and 8R5, consider the map skel(G), whose vertex-
set is the set of 8-gonal faces, with two 8-gonal faces being adjacent if they share an edge.
Then, given a (4, 3)-polycycle P6 of G, its central edge, incident to two squares, can be
considered as an edge of skel(G).

Theorem 2.1 (i) Given a (4, 8)-map G, which is 4R1 and 8R5, skel(G) is a 6-valent
tessellation of the torus by triangles with a special perfect matching.

(ii) Given a 6-valent triangulation of the torus with a special perfect matching, it is
skel(G) of an unique (4, 8)-torus G, which is 4R1 and 8R5.

(iii) The flipping of a map with a special perfect matching corresponds to the following
transformation:

Proof. (i) Given a (4, 8)-torus, which is 4R1, it is clear from the definition of skel(G),
that the map obtained is 6-valent and that it has a perfect matching. Clearly, the corona

1A representation of a set Y1 can be found in Ban Jelacić square in Zagreb
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(8, 1, 3), p31m (16, 2, 6), p2mg (16, 2, 6), p2

(24, 3, 9), cm (32, 4, 12), pm (32, 4, 12), p2gg

(32, 4, 12), p2gg (32, 4, 12), p2 (32, 4, 12), p2gg

(40, 5, 15), cm (40, 5, 15), cm (40, 5, 15), cm

Figure 3: Some (3, 7)-tori, which are 3R0 and 7R6 (Case 1)
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(10, 2, 3), c2mm (10, 2, 3), p31m (20, 4, 6), p2mg

(20, 4, 6), p1 (20, 4, 6), p2gg (20, 4, 6), p2

(20, 4, 6), p2 (30, 6, 9), p2

Figure 4: Some (3, 8)-tori, which are 3R0 and 8R6 (Case 2)
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(4, 1, 1), p3m1 (12, 3, 3), cm (16, 4, 4), pm

(16, 4, 4), p2gg (16, 4, 4), p3m1 (20, 5, 5), cm

(20, 5, 5), cm

Figure 5: Some (3, 9)-tori, which are 3R0 and 9R6 (Case 3)
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of a 8-gon is of the form 84484888 or 84488488. The pattern 848 means that the vertex
corresponding to this 8-gonal face is contained into a triangle, whose opposite edge belongs
to the perfect matching. Hence, the perfect matching is special.

(ii) If G is a 6-valent torus with a special perfect matching, then take the dual of it
and transform every edge, arising from the perfect matching, according to the following
scheme:

Clearly, the obtained torus is a (4, 8)-torus 4R1 and 8R5.
(iii) is obvious. 2

See on Figure 7 some examples of such tori.
Case 13, i.e., (4, 7)-tori 4R0, 7R5. Given a (4, 8)-torus G, which is 4R1 and 8R5, the

scraping of the central edge, separating the pair of adjacent squares, yields a (4, 7)-torus,
which is 4R0 and 7R5. Clearly, the flipping of G does not change the obtained (4, 7)-torus.

Take a (4, 7)-torus G, which is 4R0 and 7R5, and call an edge isolated if its 4 adjacent
edges are not included into 4-gonal faces. By a corona argument, i.e., scanning the possible
sequences of gonalities of faces, one sees easily that every 7-gon contains at most 2 isolated
edges. Hence, the possible structures for those isolated edges are triples of isolated edges,
paths and circuits.

If G contains a circuit of isolated edges, then this set of isolated edges form a zigzag,
i.e., every two but not three, consecutive edges are contained in a face. By using local
(i.e., corona) arguments, one sees easily that the structure can be completed in a unique
way. So, the corresponding (4, 7)-plane is:

(6, 1, 2), c2mm

which we denote by (4, 7)spec.
Given a torus G its squaring is another torus with 4 times as many edges, vertices

which is obtained by replacing a fundamental domain D on the plane by a domain 2D
(i.e., all 2x with x ∈ D; if the fundamental group is generated by v1 and v2, then another
possibility for the fundamental domain is D∪ v1 +D∪ v2 +D∪ v1 + v2 +D for the group
generated by 2v1 and 2v2).
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(12, 2, 4), p4gm (18, 3, 6), p2 (24, 4, 8), p2gg

(24, 4, 8), p4gm (30, 5, 10), p2 (30, 5, 10), p2

(30, 5, 10), p2 (36, 6, 12), p2 (36, 6, 12), p2

(36, 6, 12), p2gg (36, 6, 12), p2 (36, 6, 12), pg

Figure 6: Some (4, 7)-tori, which are 4R0 and 7R5 (Case 13)
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Theorem 2.2 (i) Take a (4, 7)-torus G; then G or its squaring is obtained by the scraping
of central edges of a (4, 8)-tori G′.

(ii) If G is different from (4, 7)spec, then G or its squaring are obtained by the scraping
of edges of exactly two (4, 8)-tori 4R1.

Proof. We can assume that G is distinct from (4, 7)spec. The first step consists in
associating to G another 4-valent map skel(G), whose vertex set consists of the set of
squares. Every 7-gonal face is adjacent to two 4-gons; hence, it defines an edge of skel(G)
and skel(G) is 4-regular. See below some representations of the local structure of G (in
straight lines) and skel(G) (in dashed lines):

Clearly, the faces of skel(G) can be triples of edges, paths of isolated edges, or 2-gonal
faces enclosing a single edge. Also, since G is different from (4, 7)spec, skel(G) is connected.

An examination of all possibilities for faces of skel(G) shows that, for every face, one
can find two sets of cutting lines of the 4-gons realizing it (one of them is shown on the
pictures above).

Now we indicate how one can find a coherent cutting set for G or its squaring. Given
a path v0, . . . , vm of adjacent vertices in skel(G), if the cutting line of v0 is chosen, then
this defines uniquely the choice of cutting lines of vi. Assume that there does not exist a
coherent cutting. Then there exists a closed path v0, . . . , vm = v0, such that the choice of
a cutting line on v0 led us in the end to a different cutting line on vm = v0. If such a path
exist, then we can assume that it does not self-intersect. Assume first that the path is
homologous to 0; then, if we lift it to the universal covering plane, it makes, topologically,
a closed circle, say, C.

Consider the set of interior faces of this circle. One can find an ordering F0, . . . , Fq,
such that, for any 0 ≤ i ≤ q, the graphs determined by F0, . . . , Fi, are enclosed by a path
Pi, without self-intersections. The face Fi does admit a coherent cutting of its squares.
Hence, by removing the face Fi, one obtains a path Pi−1, which does not admit a coherent
cutting. But, in the end, we reach a contradiction since P0 is a single face of skel(G) and
such faces admit coherent cutting sets.

The above argument can be easily generalized to the following result: if P and P ′ are
two closed paths of skel(G), which are homologous, then P admits a coherent cutting set
if and only if P ′ admits a coherent cutting set. The homology group H1(G) is isomorphic
to Z

2, i.e., there are two closed paths P1 and P2, such that any other closed path P is
homologous to n1P1 + n2P2.

Suppose now that P1 and P2 admit coherent cutting set. Then G admits a cutting
set. Assume that P1 or P2 do not admit coherent cutting set. If P1 is of the form

33



v0, . . . , vm, then the path P ′
1, that correspond to P1 in the squaring G′ of G, is of the form

v0, . . . , vm, . . . , v2m. Now, v2m = v0 and v0 6= vm. Since there are only two possibilities
for the cutting of v0, the cutting of v2m is coherent with the cutting of v0. The same
argument applies to P2 and so, the squaring G′ does admit a coherent cutting set. The
fact, that there are exactly two such cutting sets, is a consequence of the connectivity. 2

See on Figure 6 some examples.
Case 16, i.e., (4, 10)-tori 4R1, 10R4, is described by a continuum. In fact, take two

symbols u

and v

Then those tori correspond to words of the form (α0 . . . αn)∞ with αi being equal to u or
v. See below the first two examples:

(6, 2, 1), c2mm:
word (u)∞ or (v)∞

(12, 4, 2), p2mg:
word (uv)∞

Case 17, i.e., (5, 7)-tori 5R1, 7R3, is described by a continuum. In fact, take the
symbols u

and v
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(8, 2, 2), p2 (16, 4, 4), p2gg (24, 6, 6), p2

(24, 6, 6), p2 (32, 8, 8), p2gg (32, 8, 8), p2

(32, 8, 8), p2

Figure 7: Some (4, 8)-tori, which are 4R1 and 8R5 (Case 15)
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Then such tori correspond to words of the form (α0 . . . αn)∞ with αi being equal to u or
v. See below the first two examples:

(8, 2, 2), c2mm:
word (u)∞ or (v)∞

(16, 4, 4), p2gg:
word (uv)∞

Case 18, i.e., (5, 7)-tori 5R2, 7R4; the 5-gons are organized either as infinite lines, or
as triples of adjacent pentagons. See below the only possibility for the first case:

(8, 2, 2), p2mg

In the second case, a continuum of possibilities appear. Denote by u the following block:

and by v, the block:
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The tori correspond to words of the form (α0 . . . αn)∞ with αi being equal to u or v. See
below the first two examples:

(12, 3, 3), p31m:
word (u)∞ or (v)∞

(24, 6, 6), p2mg:
word (uv)∞

Case 19, i.e., (5, 8)-tori 5R2, 8R2; such a torus has its 5- and 8-gons organized in
infinite lines. Given a 5-gon, its corona is of the form 58588. Up to orientation of the
infinite line of 5-gons, this makes two possible choices, which we write as u or v.

u v

Hence, we can write the infinite word representing the torus in the form of a 5-word (p-
words are infinite words describing the orientation of the p-gon in one of the infinite chain
of p-gons) (α0 . . . αn)∞ with αi being u or v. Another viewpoint is possible by considering
the infinite sequence of 8-gons. Up to orientation of the infinite lines of 8-gons, this makes
three possible choices, which we write as L, S or R:

L S R

Hence, we can write the infinite word representing the torus in the form of a 8-word
(β0 . . . βn)∞ with βi being L, S or R.

Theorem 2.3 (i) A 5-word is realizable as the sequence of a (5, 8)-torus 5R2 and 8R2 if
and only if it is of the form

(γ0 . . . γn)∞

with γi being uv or vu.
(ii) A 8-word is realizable as the sequence of a (5, 8)-torus 5R2 and 8R2 if and only if

it is of the form
{(LSm0RSn0) . . . (LSmrRSnr)}∞

with mi, ni ≥ 0. The corresponding 5-word is {(vu)m0(uv)n0 . . . (vu)mr(uv)nr}∞.
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Proof. Let us first prove (ii). It suffices to show that no two L or R can appear in
a sequence, even with S between them. Suppose that the pattern LSmL appear in a
sequence. The corresponding infinite line of 8-gons has two adjacent infinite lines of 8-
gons. It is easy to see that one contains the pattern LSm−1L and the other contains the
pattern LSm+1L. By iterating this construction, one finds an infinite line that contains
LL. This is impossible, since one 8-gon contains the corona sequence 55555858.

It is easy to see that the 5-word corresponding to the above 8-word is {(vu)m0(uv)n0

. . . (vu)mr(uv)nr}∞. Clearly, any 5-word of the form (γ0 . . . γn)∞ with γi being uv or vu
can be realized in this form. 2

Note that there is still another description of those tori. Consider a step to be two
pentagons being put together; then put the steps together to form an infinite stairway
(the infinite line of 5-gons), which can go up or down. The infinite word (γ0 . . . γn)∞ with
γi being uv or vu corresponds to the stairway, for example by assigning uv to “up” and
vu to “down”.

See below the first two examples:

(12, 4, 2), p2mg:
5-word (uuvv)∞

8-word (LR)∞

(6, 2, 1), c2mm:
5-word (uv)∞

8-word (S)∞
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2, D3h

Bundle=GC1,0(Bundle)
6, D3h

GC1,1(Bundle)
8, D3h

GC2,0(Bundle)
14, D3

GC2,1(Bundle)

Figure 8: First examples of (2, 6)-spheres

3 Face-regular (p, 6)-spheres

3.1 Face-regular (2, 6)-spheres

Bundle is a 3-valent graph with 2 vertices, 3 edges and 3 2-gonal faces. See on Figure 8
the first examples of GCi,j(Bundle) (see notation GCi,j(G) in Section 1).

Any (2, 6)-sphere, which is not Bundle, is 2R0. If a (2, 6)-sphere is 6Rj, then (6−j)p6 =
2p2 = 6. So, the cases j = 1, 2 are impossible; the case j = 0 corresponds to the Bun-
dle. For j = 3, 4, 5, unique solution is GC1,1(Bundle), GC2,0(Bundle), GC2,1(Bundle),
respectively.

3.2 Face-regular (3, 6)-spheres

It is proved in [DeDu04] that all (3, 6)-spheres, which are only 2-connected, belong to the
infinite series, whose first members are shown below.

G1 G2 G3

Hence, a (3, 6)-sphere, which is not Tetrahedron, is either 3R1 and belongs to this infinite
series, or is 3R0.

A (3, 6)-sphere, which is 6Rj, satisfies to (6− j)p6 ≤ 3p3 = 12. Hence, it is one of the
following:

1. the first member G1 of the infinite series, which is 3R1 and 6R2,

2. the second member G2 of the infinite series, which is 3R1 and 6R4,

3. Nr. 3, i.e., GC1,1(Tetrahedron), which is 3R0 and 6R3,

4. Nr. 4, i.e., GC2,0(Tetrahedron), or Nr. 5 (twist of Nr. 4), which are 3R0 and 6R4,

5. Nr. 6, i.e., GC2,1(Tetrahedron), which is 3R0 and 6R5.
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3.3 Face-regular (4, 6)-spheres

There is an infinity of (4, 6)-spheres, which are 4R0; in fact, as the number of vertices
goes to infinity, the proportion of such spheres amongst all (4, 6)-spheres tends to 1.

Take a (4, 6)-sphere, which is 4R1. Insert on every edge, separating two 4-gons, a
digon. The resulting map is a (2, 6)-sphere with at most one 2-gon being adjacent to each
6-gon. Such spheres are described by the Goldberg-Coxeter construction from the Bundle.
Hence, there exists a v-vertex (4, 6)-sphere 4R1 if and only if v = 2(k2 + kl + l2)− 6, and
it has symmetry D3 or D3h.

Using decomposition into (4, 3)-polycycles, one can see easily that every (4, 6)-sphere,
which is 4R2, is either Prism6, or belongs to the infinite series, members of which are
formed by taking two triples of 4-gons and adding t 3-rings of hexagons between them.

The Cube is unique (4, 6)-sphere, which is 4R4. There is no (4, 6)-sphere, which is
4R3.

A (4, 6)-sphere, which is 6Rj, satisfies to (6 − j)p6 ≤ 4p4 = 24. Hence, it has at most
56 vertices. For j = 0, there is only Prism6. There is no such sphere for j = 1.

1. For j = 2, there is Nr. 19 and the following sphere:

2. For j = 3, there are Nr. 21 and Nr. 22.

3. For j = 4, there are Nr. 20, 23, 24, 25.

4. For j = 5, there is Nr. 26.

3.4 Face-regular (5, 6)-spheres (fullerenes)

There is an infinity of (5, 6)-spheres, which are 5R0; in fact, as the number of vertices
goes to infinity, the proportion of such spheres amongst all (5, 6)-spheres tends to 1.

The number of (5, 6)-spheres 5R1 is also infinite.
The (5, 6)-spheres, which are 5R2, are enumerated in [DDS04]; see Proposition 3.1

below.
The only (5, 6)-spheres, which are 5R3, are Nrs. 45 and 46. The Barrel6, i.e., the

smallest Nr. 44, is unique (5, 6)-sphere, which is 5R4.
The Dodecahedron is the unique fullerene, which is 5R5.
If P is a (5, 6)-sphere, which is 6Rj, then one has, clearly, (6 − j)p6 ≤ 5p5 = 60. For

j = 0, 1, 2, 3, 4, 5, this yields an upper bound (on the number of vertices v = 20 + 2p6) of
30, 32, 50, 60, 80, 140. The complete enumeration was done by computer for j ≤ 4. For
j = 5, such spheres are also 5R0 and so, the unique such sphere is Nr. 55.
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24, D6d (also 5R4, Nr. 44) 26, D3h 28, Td (also 5R3, Nr. 45)

Figure 9: All (5, 6)-spheres, which are 6R0 (all Frank-Kasper polyhedra, besides Dodeca-
hedron)

28, D2 32, D3

Figure 10: All (5, 6)-spheres, which are 6R1
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30, D5h 32, D2 32, D3d

32, D3h 36, D2d

38, C3v

(also 5R2, Nr. 47)

40, D2 40, D5h

Figure 11: All (5, 6)-spheres, which are 6R2
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36, D2 44, T (also 5R2, Nr. 48) 48, D3

52, T (also 5R1, Nr. 49) 60, Ih (also 5R0, Nr. 51)

Figure 12: All (5, 6)-spheres, which are 6R3

Proposition 3.1 All (5, 6)-spheres, which are 5R2, are:
(i) The sporadic ones on Figure 14.
(ii) An infinite series of (12t+24)-vertex (for any t > 0) and of symmetry D6d, if t is

even, D6h if t is odd, fullerenes with 5-gons organized into two 6-rings. They are obtained
from Barrel6 by inserting t more 6-rings of hexagons.

(iii) An infinite series of (symmetry D2, D2d, D2h, T or Td) v-vertex (for any v ≡ 0
(mod 4) with v ≥ 40) fullerenes with pentagons organized into four 3-rings. They are ob-
tained, by collapsing to the point of all four triangles, from any (3, 6)-sphere, such that no
hexagon is adjacent to more than one triangle (such (3, 6)-spheres are fully characterized
in [GrünMo63]; see also [DeDu04] and [FoCr97]). All such spheres with ≤ 50 vertices
are F40(Td), F44(T ) (also 6R3) and a F48(D2).

4 General (p, q)-maps

Definition 4.1 Given a (p, q)-map (i.e., sphere or torus) G, which is qRj, we associate
to it a map (on sphere or torus, respectively) q(G) formed by the q-gonal faces of G and
their adjacencies. It is an induced subgraph of the dual graph of G.

Note that the map q(G) can be non-connected. All (5, q)-maps, which are qR0 or qR1, are
such. All (5, q)-spheres qR2 with more than one cycle also have non-connected q(G). On
Figure 81, a (5, 7)-sphere 7R3, with 180 vertices and non-connected 7(G), is presented.
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40, D5d 56, Td (also 5R2, Nr. 50) 68, D3d

68, Td (also 5R1, Nr. 52) 72, D2d 80, D5h (also 5R0, Nr. 54)

80, Ih (also 5R0, Nr. 53)

Figure 13: All (5, 6)-spheres, which are 6R4
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36, D2d

Bonjour
38, C3v (also 6R2,

Nr. 47)
44, D3d

Bonjour
44, D2

Bonjour

48, D6d

Figure 14: All sporadic (5, 6)-spheres, which are 5R2

The infinite series given in Theorems 10.5 and 11.7 for j = 4 and j = 5 have non-connected
q(G) too.

By Theorem 1.2 the only (4, q)-map, which is qRj and with q(G) non-connected, is
Prismq.

Lemma 4.2 If M is a sphere (respectively, a torus) without 2-gonal faces and 2-valent
vertices, then there exist a vertex of degree at most 5 (respectively, 6).

Corollary 4.3 (i) If a (p, q)-polyhedron G is qRj then j ≤ 5.
(ii) If a 3-connected (p, q)-torus G is qRj then j ≤ 6.

Proof. (i) The sphere q(G) does not contain any 2-gon, since it would imply that G is
not 3-connected. Hence, one can apply above Lemma and obtain j ≤ 5.

(ii) in the torus case, the 3-connectedness implies that the gonalities of faces of q(G)
is at most 3. From above lemma, one gets j ≤ 6. 2

If one removes the hypothesis of 3-connectedness, then there is no upper bound on j.
For example, by Theorem 6.5, there exist a (5, 5q)-sphere, which is 5qRq for any q ≥ 2.

Remind that fq is the number of q-gonal faces of a map and denote by xi with i =
0, 1, 2, 3 the number of vertices contained exactly in i p-gonal faces.

Theorem 4.4 Let P be a (p, q)-map.
(i) If P is qR0, i.e., q-gons are isolated, then it holds:

{

(6 − p)x3 + (2(p − q) + (6 − p)q)fq = 4p on sphere,
(6 − p)x3 + (2(p − q) + (6 − p)q)fq = 0 on torus.
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(ii) If P is qR1, i.e., q-gons are organized in isolated pairs, then fq is even and it
holds:

{

(6 − p)x3 + (2(p − q) + (6 − p)(q − 1))fq = 4p on sphere,
(6 − p)x3 + (2(p − q) + (6 − p)(q − 1))fq = 0 on torus.

(iii) If P is qR2, i.e., q-gons are organized into disjoint simple rings, then it holds:

{

(6 − p)(x0 + x3) + (4 − (4 − p)(4 − q))fq = 4p on sphere,
(6 − p)(x0 + x3) + (4 − (4 − p)(4 − q))fq = 0 on torus.

Proof. Clearly, v = x0 + x1 + x2 + x3.
By counting the number e of edges in two different ways, one gets:

2e = 3v = qfq + pfp .

The Euler formula for a map of genus g is 2− 2g = v − e + fq + fp; it can be rewritten as

2 − 2g = −
v

2
+ fq + fp .

Eliminating fp in above two equations, we obtain:

(6 − p)v − 2(2 − 2g)p = 2(q − p)fq.

In case (i) one has x0 = x1 = 0 and x2 = qfq. Hence, the above relation takes the
form (6 − p)x3 − 2(2 − 2g)p = (2(q − p) − (6 − p)q)fq.

In case (ii) one has x0 = 0, x1 = fq and x2 = (q−2)fq. So, we get (6−p)x3−2(2−2g)p =
(2(q − p) − (6 − p)(q − 1))fq.

The case (iii) is more complicated: we need to distinguish between rings (of q-gons)
of length 3 (there are x0 of them) and rings of length greater than 3. One obtains
x1 = (q − 4)(fq − 3x0) + (q − 3)3x0 and x2 = 2(fq − 3x0) + 3x0, which yield the required
formula. 2

For qR0 the above formula yields on sphere:

pair (p, q) relation finiteness
(4, q) x3 + 4fq = 8 always
(5, q) x3 + (10 − q)fq = 20 q ≤ 9

For qR1 the above formula yields on sphere:

pair (p, q) relation finiteness
(4, q) 2x3 + 6fq = 16 always
(5, q) x3 + (9 − q)fq = 20 q ≤ 8

For qR2 the above formula yields on sphere:
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pair (p, q) relation finiteness
(4, q) x3 + 4fq = 8 always
(5, q) x3 + (8 − q)fq = 20 q ≤ 7

Clearly, in the case p = 5 the question is, whether or not finiteness holds for q > 9, 8
and 7, respectively. Infiniteness of (5, q)-spheres qR2 for q > 7 is proved in Theorem 8.3
(see also [MaSo04] for such spheres with only one cycle of q-gons).

For j = 0, the finiteness holds for q ≤ 11; infiniteness holds for q = 12 and, possibly,
for all q ≥ 13. See Section 6 for details.

The case j = 1 is more difficult. Finiteness is proved for spheres 9R1 in Theorem 7.2
and infiniteness is expected for q ≥ 10. Also the enumeration of those maps is especially
difficult computationally and is not done at present for q = 8 and q = 9.

Remark 4.5 The computer enumeration methods, which were used for (p, q)-spheres, are
the following:

(i) Use the program CPF for enumerating all (p, q)-spheres with a given number of
vertices. Then select, in the list of generated spheres, those, which are qRj. If we can find
an upper bound on the maximal possible number of vertices, which match the possibilities
of the computer, then we are done.

(ii) Take an initial group of p- and q-gonal faces, which could be a part of a (p, q)-sphere
qRj; then consider all possible ways to extend it to a (p, q)-sphere qRj.

(The initial group of faces is important for the success of the method. For every edge,
there is a certain set of possibilities of extension; we choose the edge with the minimal
number of such possibilities. Sometimes, we have an upper bound on the number of vertices
and so, we know that the program will eventually finish.)

Examples of success of (ii):

• Enumerating all (5, q)-spheres, which are qR0 for 8 ≤ q ≤ 12.

• Enumerating all (4, 7)-spheres, which are 7R4.

• Enumerating all (4, 8)-spheres, which are 8R3.

The program, which we used in (ii), is much slower and less optimized than the program
CPF. However, due to its specialized nature, i.e., the use of the geometry of the problem,
it can solve problems, which are out of the range of CPF.

The program CGF (similar to CPF) allows enumeration of (p, q)-tori, but, due to the
fact that the existence of a solution implies the existence of solution with arbitrarily large
v, this program can only give hints of what should be the results.

Lemma 4.6 (i) Any 3-connected (3, q)-map, except Tetrahedron, is 3R0 and (see Theo-
rem 5.1) has 4 ≤ q ≤ 12. It is strictly face-regular polyhedron (Nrs. 1, 2) for q = 4, 5 and
strictly face-regular torus (with parameter sets of Cases 5, 6 from [De02]) for q = 11, 12.
Unique (3, 6)-plane is the graphite {63} and all (infinity of) (3, 6)-spheres are characterized
(see Grünbaum-Motzkin [GrünMo63] or [DeDu04]).
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(ii) Any 3-connected (4, q)-map 4Ri, except Cube, has i ≤ 2.
Any (5, q)-map 5Ri, except Barrelq and Dodecahedron, has i ≤ 3.
(iii) Any (p, q)-map qRj, which is not Platonic, has j ≤ q−1 with equality only if pR0

holds.

Proof. (i) follows from Theorem 5.1 below.
(ii) If a map contains a 4-gon adjacent to three 4-gons, then it is not 3-connected. If

a (5, q)-map is 5R4, then it is easy to see that it is Barrelq.
(iii) The only possibilities to complete an q-gon, surrounded by q − 1 q-gons, to a

3-valent plane graph, are those three Platonic polyhedra or a map pR0. 2

Theorem 4.7 A 3-connected weakly face-regular (p, q)-map, which is qRj, satisfies to:
(i) If it is on torus, then:
either p = 4, 13 − q ≤ j ≤ q − 2 (so, q ≥ 8),
or p = 5, 31 − 4q ≤ j ≤ q − 2 (so, q ≥ 7).
(ii1) If it is on sphere and q = 6, then:
either unique 16-vertex (4, 6)-sphere, which is 6R2,
or one of 14 fullerenes with (v, Aut, j)=(26, D3h, 0), (28, D2, 1), (32, D3, 1), (30, D5h, 2),

(32, D2, 2), (32, D3d, 2), (36, D2d, 2), (40, D2, 2), (40, D5d, 2), (36, D2, 3), (48, D3, 3),
(40, D5d, 4), (68, D3d, 4), (72, D2d, 4) shown on Figures 9, 10, 11, 12 and 13.

(ii2) If it is on sphere and q > 6, then:
either it has parameters as in the case (i) above (on torus);
or (p, q)=(4, 7 ≤ q ≤ 11, 0 ≤ j ≤ 11 − q, fq ≤ 22

12−q−j
, or (p, q) = (5, 7), 0 ≤ j ≤ 1,

f7 ≤ 58/(2 − j) (2 finite cases);
or (p, q) = (4, 7 ≤ q ≤ 12), j = 12 − q, e4−4 = 12, or (p, q) = (5, 7), j = 2, e5−5 = 30.

Proof. First, p = 3 is impossible in our 3-connected case, because at least two p-gons
should be adjacent (otherwise, we have pR0, i.e., strict face-regularity), but Tetrahedron is
only 3-valent 3-connected (3, q)-map, which can be obtained by completion of 2 adjacent
3-gons.

Now, j = q implies fp = 0. If j = q − 1, then (by Lemma 4.6) we have pR0 also, i.e.,
strict face-regularity. If (p, q)-map satisfies to qRj, then:

ep−q = fq(q − j) = pfp − 2ep−p (1)

because the right-hand side gives the maximum possible number of such edges. Fur-
thermore, ep−p > 0, since at least two p-gons should be adjacent (otherwise, the map
is pR0 and so, strictly face-regular). Above equality (1), together with (1tor), gives
fq(q − 12 + j) = 2ep−p > 0 for p = 4 and fq(4q − 30 + j) = 2ep−p > 0 for p = 5,
which implies (i).

(ii), the case q = 6 on sphere, follows from Theorems 3, 5, 6 of [DeGr01]. Together
with (1sph), the equality (1) gives fq(q−12+j) = 2e4−4−24 for p = 4 and fq(4q−30+j) =
2e5−5−60 for p = 5, implying (ii2). Two finite cases happen, when coefficients of fq above
are positive; two special cases happen, when they are zero. 2

Both finite cases in (ii2) of above Theorem are enumerated below.
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1. All (5, 7)-spheres, which are 7R2, are enumerated in [DDS04].

2. Unique (4, 12)-sphere, which is 12R0, is Prism12.

3. There is no (4, 11)-sphere, which is 11R1.

4. Unique (4, 10)-sphere, which is 10R2, is given in Theorem 4.10.

5. All (4, 9)-spheres, which are 9R3, are enumerated in Theorem 9.1.

6. A classification of (4, 8)-spheres, which are 8R4, is given in Theorem 10.3. In par-
ticular, there is an infinity of such spheres.

7. Three examples of (4, 7)-spheres, which are 7R5, are known (see Figure 75) but
finiteness or infiniteness is undecided for such spheres.

Corollary 4.8 Let q < 8 and a weakly face-regular 3-connected (p, q)-map is given. Then:
(itor) If it is on torus and qRj, then:
(p, q)=(5, 7) and j = 3, 4 or 5 (excluding Cases 17, 18 from Table 4.)
(iitor) If it is on torus and pRi, then q = 7 and:
(i; p)=(0; 3), (0; 4), (1; 4), (2; 4) or (2; 5) (excluding Cases 1, 13, 17, 18 from Table 4.)
(isph) If it is on sphere and qRj, then (besides known case q = 6):
either (p, q)=(5, 7), or (p, q)=(4, 7), see Remarks 14.1, 13.1, respectively, below.
(iisph) If it is on sphere and pRi, then (besides known case q = 6) q = 7 and:

(i, p)=(0; 3), (0; 4), (1; 4), (2, 4), (2, 5) (excluding 9 strictly face-regular polyhedra Nrs.
7, 8, 9, 27-31, 57 from Table 3).

Remark 4.9 For a (p, q)-spheres qRj the following evenness properties hold:
(i) If p = 4 and fq is odd, then both, q and j, are even.
(In fact, (1sph) implies q ≡ 0 (mod 2) if fq is odd; moreover, (4) implies q ≡ j (mod 2)

if fq is odd.)
(ii) If p = 5 and fq is odd, then j is even (it is trivial for j = 1); it implies that v ≡ 0

(mod 4) for odd j.
In fact, (4) and (1sph) imply together (for p = 5): fq(30 − 4q − j) = 60 − 2e5−5; so,

oddness of fq implies evenness of j.
The only known cases of (5, q)-spheres with odd fq have (q, j; fq) = (14, 0; 3), (15, 0; 3),

(16, 0; 3) and (8, 2; 9), (8, 4; 3) (so, there is a case of odd q = 15).
Also, the only known cases of (p, q)-spheres qRj with odd fq > 3 are two (5, 8)-spheres

8R2 with fq = 9, given on Figure 82.

Theorem 4.10 ([DGr02] and [DDS04]; see also Table 1)
(i) All (4, q)-spheres, which are qRj with j ≤ 2, are Cube, Prismq and the spheres

qR2, which are classified in [DGr02] and [DDS04], namely, the infinite series M4(4, q)
(see Figure 15 in [DDS04]) for q ≥ 5 (only for q = 5 it is strictly face-regular Nr. 16),
unique M3(4, 6) (strictly face-regular Nr. 19) and unique M2(4, 8) (not 3-connected).

(ii) There are no (4, q)-tori, which are qRj, for j ≤ 2.
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Proof. (i) The case j = 0 is trivial.
Assume j = 1 and take two q-gonal faces, which are adjacent along an edge. Those

two q-gons are encircled by a circuit F1, . . . , Fm of 4-gons. Assume Fi is adjacent to
both q-gons, then Fi−1 and Fi+1 are adjacent and this implies that Fi−1 and Fi+1 are both
adjacent to another 4-gon, this 4-gon is adjacent to both q-gons, which is an impossibility,
since those q-gons can share only one edge.

For the case j = 2, see [DDS04].
(ii) The above analysis, which is local, proves that there is no (4, q)-torus, which is

qRj for j ≤ 2. Another, more direct proof can be obtained by using Theorem 4.4. 2

Now we consider the following operation on (5, q)-spheres, which will be used in Sec-
tions 6 and 7.

Given a (5, q)-sphere P , call its tripling, if it exists, any partition of its q-gons in triples,
connected by K1,3, i.e., 3 incident edges, which are orthogonal to respective q-gons of the
triple.

Denote by T (P ) the sphere, obtained from P , with fixed tripling, by replacing each
K1,3 by the elementary (5, 3)-polycycle E1 (i.e., 3-ring of pentagons). Clearly, we have
the following.

Lemma 4.11 Let P be a (5, q)-sphere (with fq q-gons; so, v = 2(q − 5)fq + 20 vertices),
which is qRj and admits a tripling. Then the corresponding T (P ) is an (5, q + 1)-sphere
(with fq (q + 1)-gons; so, v′ = 2(q − 4)fq + 20 vertices), which is (q + 1)Rj.

Examples of triplings:

1. For qR0:

(a) With fq = 6:

T(str. face-reg. Nr. 58, 8R0, Oh) is 68, 9R0, D3d

T(68, 9R0, D3d) is 80, 10R0, Td

T(80, 10R0, D2h) is 92, 11R0 D3d

T(92, 11R0 D3d) is 104, FK0, 12R0, Oh

T(116, 13R0, D3) is 128, 14R0, D3

is 128, 14R0, C2

T(128, 14R0, D3) is 140, 15R0, C2

T(128, 14R0, C2) is 140, 15R0, C2 (same as before)
T(128, 14R0, C2) is 140, 15R0, C2 (another one)
T(140, 15R0, C2) is 152, 16R0, C2

T(140, 15R0, C2) is 152, 16R0, C2 (same as before)
is 152, 16R0, D3

(b) With fq = 12:
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T(str.face-reg. 140, 10R0, Ih) is 164, 11R0, T
T(164, 11R0, T ) is 188, 12R0, D3

T(188, 12R0, D3) is 212, 13R0, D3

T(212, 13R0, D3) is 236, 14R0, T
T(236, 14R0, T ) is 260, 15R0, Ih

(c) With fq = 3:

T(74, 14R0, D3h) is 80, 15R0, C3v

T(80, 15R0, C3v) is 86, 16R0, D3h

2. For qR1 and fq = 6:

T(weak.face-reg. fullerene 32, 6R1, D3) is 44, 7R1, D3

T(str.face-reg. Nr. 56, 44, 7R1, D3h) is 56, 8R1, D3h

T(56, 8R1, D3) is 68, 9R1, D3

T(68, 9R1, D3) is 80, 10R1, D3

T(68, 9R1, D2) is 80, 10R1, C2

T(80, 10R1, D3) is 92, 11R1, D3

T(80, 10R1, C2) is 92, 11R1, C2

5 Maps pRi

We start with the following general result.

Theorem 5.1 Any 3-connected weakly face-regular (p, q)-map, which is pRi, is in one of
following cases (besides strictly face-regular ones Nrs. 1,2)

(i) q = 6, the map is on sphere only and:
either (i1) pR0 holds with p = 3 (i.e., all 3n, n > 4), p = 4 or p = 5 (so-called IPR

fullerenes);
or (i2) pR1 holds with p = 4 or p = 5.
or (i3) pR2 holds with p = 4 (one known infinity, see Proposition 2 in [DeGr01]) or

p = 5 (four maps M12(6, 5) and two known infinities, see (i) and (iv) of Theorem 4 of
[DeGr01]: with twelve 5-gons organized in four 3-rings or two 6-rings, respectively).

(ii) q > 6, map is on sphere or on torus, and:
either (ii1) pR0 holds with (p, q) = (3, 7 ≤ q ≤ 10) or (p, q) = (4, 7) (Theorem 5.2

gives infinity of such spheres);
or (ii2) pR1 holds with p = 4, 7 ≤ q ≤ 9 (Theorems 5.3 and 5.4 give infinity of such

(4, q)-spheres for q = 7 and 8, respectively; Proposition 5.5 gives lower bound v ≥ 108 for
the number of vertices in the case q = 9);

or (ii3) pR2 holds with p = 4 or p = 5 (i.e., p-gons organized into isolated rings,
3-rings permitted);

or (ii4) pR3 holds with p = 5 (see Section 5 for details).
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Proof. (i) If q ≤ 6, then (p, q)-map cannot be on torus by Euler’s formula. The remainder
of the case (i) follows from [DeGr01] with deleting of strictly face-regular (p, q)-maps,
found in [BrDe99], [De02].

(ii) From now, let q > 6. Then p = 3, 4 or 5 by Euler formula for (p, q)-maps:

fp(6 − p) − fq(q − 6) = 12 (on sphere), (1sph)

fp(6 − p) − fq(q − 6) = 0 (on torus). (1tor)

The relation (1sph) (or (1tor)), together with Euler relation v− 3v/2 + (fp + fq) = 2 or
0, implies:

v = 2(q − p)
fq

6 − p
+

4p

6 − p
(on sphere), (2sph)

v = 2(q − p)
fq

6 − p
(on torus). (2tor)

If our (p, q)-map is pRi, then i ≤ p − 2 by Lemma 4.6. So, besides the case 5R3, the
only possible cases of pRi are 9 cases p = 3, 4, 5 with i = 0, 1, 2. If pR0 holds, then the
number ep−q satisfies to:

ep−q = pfp < fqbq/2c, (30)

because the corona of any q-gon can not have p-gons on 2 neighboring edges. If pR1

holds, then:
ep−q = (p − 1)fp < fq2bq/3c, (31)

because the corona of any q-gon can not have p-gons on 3 consecutive edges of the
q-gon. (So, the maximum of p-gons in the corona is obtained by bq/3c disjoint pairs plus,
for q ≡ 2 (mod 3), one more p-gon.) In both above inequalities we excluded the case of
equality, because it corresponds to strict face-regularity.

From now on, we consider the property pR0 or pR1 with p = 3, 4, 5 for the cases of
sphere or torus; clearly, pR1 is possible only for p = 4 or 5, since a pair of adjacent
triangles implies non-3-connectedness.

For p = 3, (1sph) and (30) imply 12 = 3f3 − fq(q − 6) < fq(bq/2c − (q − 6)); so,
7 ≤ q ≤ 10 and fq > 6 for q = 7, 8, while fq > 12 for q = 9, 10. But (1sph) implies
that fq ≡ 0 (mod 3) for p = 3 and q = 7, 8, 10. So, fq ≥ 9, 9, 13, 15 for q = 7, 8, 9, 10,
respectively; it implies, by (3sph), v ≥ 28, 34, 56, 74, respectively. We should exclude 4
polyhedra (Nrs. 8, 9, 11, 12 from Table 3), which are strictly face-regular (3, q)-polyhedra
3R0. For p = 3, (1tor) and (30) imply again 7 ≤ q ≤ 10 (the values q = 11, 12 are possible
only in strictly face-regular case) and we should exclude strictly face-regular tilings with
parameter-sets of Cases 1 − 4 from Table 4.

For p = 4, (1sph) and (30) imply 12 = 2f4 − fq(q − 6) < fq(
1
2
bq/2c− (q − 6)); so, q = 7

and f7 > 24. But (1sph) implies that f7 is even for (p, q)=(4, 7); so, f7 ≥ 26, implying, by
(3sph), v ≥ 86. For p = 4, (1tor) and (30) imply also q = 7; we should exclude the strictly
face-regular tiling of Case 13.
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For p = 4, (1sph) and (31) imply 12 = 2f4−fb(q−6) < 4
3
fqbq/3c−fq(q−6); so, 7 ≤ q ≤ 9

and fq ≥ 8, 10, 13 for q = 7, 8, 9, respectively. In fact, f9 ≥ 14, since (1sph) implies that
fq is even for (p, q)=(4, 9). We get, by (2sph), v ≥ (q − 4)fq + 8, i.e., v ≥ 32, 48, 78 for
q = 7, 8, 9, respectively. We should exclude three strictly face-regular polyhedra Nrs. 27,
28, 34). For p = 4, (1tor) and (31) imply again 7 ≤ q ≤ 9. We should exclude strictly
face-regular tiling of Case 15.

For p = 5, (1sph) and (30) imply 12 = f5 − fq(q − 6) < 1
5
fqbq/2c − fq(q − 6), which is

impossible for q > 6. Such (5, q)-map 5R0 is impossible on torus also.
For p = 5, (1sph) and (31) imply 12 = f5 − fq(q − 6) < 1

2
fqbq/3c − fq(q − 6), which is

impossible for q > 6. Such (5, q)-map 5R1 is impossible on torus also (a (5, 7)-map, which
gives equality in above inequality, exists, but it is strictly face-regular). 2

5.1 Maps 4R0

Theorem 5.2 There exist at least two infinite series of (4, 7)-spheres, which are 4R0.
They have 140+42i vertices (see two examples on Figure 15). For i even, they are distinct,
one is of symmetry D7h, the other of symmetry D7d. For i odd, they are isomorphic and
of symmetry D7.

Proof. From the drawing on Figure 15, it is clear that such spheres exist. Now we will
show the existence of an infinity of them.

One has the following band structure of 4- and 7-gons:

The left and right hand side of this band can be closed, in order to obtain a structure
with 14 4-gons.

This structure can be inserted along one of the cutting lines, indicated below, and one
gets a (4, 7)-sphere, which is again 4R0 and has 42 more vertices.

Obviously, the above operation can be repeated as often as one wants. 2

Note that, instead of taking a graph with 7-fold symmetry, we could take, as original
graph, the strictly face-regular one with 4-fold symmetry; see below their drawing with
the cutting lines:
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140, D7d 140, D7h

Figure 15: First examples of two infinite series of (4, 7)-spheres, which are 4R0 (see
Theorem 5.2)

80, Oh 80, D4d

5.2 Maps 4R1

Theorem 5.3 There exist an infinity of (4, 7)-spheres, which are 4R1.

Proof. The proof consists of building the following initial example with 140 vertices and
symmetry D7d:

We will cut along the over-lined path and insert the following structure, which consists of
7 units.
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44, D2 44, D3d 56, C2

56, Cs 56, C2 56, D7

Figure 16: All weakly face-regular (4, 7)-spheres, which are 4R1 and have at most 62
vertices

Obviously, the obtained graph is again a (4, 7)-sphere, which is 4R1, and the construction
can be repeated. 2

Theorem 5.4 There is an infinity of (4, 8)-spheres, which are 4R1.

Proof. We construct the following example of a (4, 8)-sphere, which is 4R1 (it has 224
vertices):

The idea is to cut along the line, depicted in above drawing, and insert inside the
following band structure:
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48, D4d 56, D3

Figure 17: All weakly face-regular (4, 8)-spheres, which are 4R1 and have at most 56
vertices

Obviously, the above operation can be repeated. 2

Remark that there are many ways of constructing a (4, 8)-sphere, using variants of the
above construction:

• The first obvious way is to shift the position of the caps above; it gives two more
graphs.

• Some other periodic structures are possible, like the following:

and this leaves more freedom for the construction itself. This reflects the fact that
there is an infinity (a continuum) of strictly face-regular (4, 8)-tilings, which are 4R1

and 8R5.

• Another interesting fact is that the cutting lines, where one inserts the periodic
structure, are zigzags (see [DeDu04]). The zigzags form a double covering of the
set of edges of any 3-valent plane graph. It turns out that, for (4, 8)-spheres, those
zigzags have no self-intersections. Hence, any (4, 8)-sphere, which is 4R1 and has a
zigzag, which does not cut a pair of adjacent 4-gons, can be extended to a larger
(4, 8)-sphere, which is still 4R1, along this zigzag.

There exist (4, 9)-tori, which are 4R1, as exemplified by Figure 18 with (v, f4, f9) =
(20, 6, 4).

Theorem 5.5 (i) Any (4, 9)-sphere, which is 4R1, has at least 108 vertices.
(ii) Any (4, 10)-torus, which is 4R1 is also 10R4.

Proof. Such maps satisfy to Euler formula 6χ = 2f4 − (q − 6)fq with χ being equal to 2
for spheres and 0 for tori.
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Figure 18: A (4, 9)-torus, which is 4R1

One has f4 = 3χ + q−6
2

fq.
Every pair of adjacent 4-gons creates pair of adjacent 4-gons, which corresponds to

subsequence 9449 in the corona sequence of 9-gons, and pair of isolated 4-gons, which
corresponds to the subsequence 949 in corona sequence of 9-gons. So, there are f4 pat-
terns 9449 and f4 patterns 949 in the set of corona sequence of 9-gonal faces of the map
considered. A packing argument yields the inequality:

2f4 + 3f4 ≤ qfq,

which simplifies to 30χ ≤ (30 − 3q)fq. For (4, 9)-spheres 4R1, this yields f9 ≥ 20 and
hence, the lower bound. For (4, 10)-torus 4R1, this implies 0 ≤ 0. But this means that in
the corona sequence of 10-gons, the pattern 99 does not appear. So, their corona sequence
is of the form α1 . . . αr with αu being equal to 94 or 944. Denote by y2 and y3 the number
of αi being equal to 94, 944, respectively, for a given q-gonal face F . One has, clearly,
2y2 + 3y3 = 10, whose solutions are (y2, y3)=(5, 0) or (2, 2). So, for all solutions we get
y3 ≤ y2. But, on average over all 10-gonal faces, one has y3 = y2; this is possible only if
y2 = y3 for every 10-gonal faces. So, the map is 10R4. 2

Take a (4, 9)-map G, which is 4R1, and map every pair of adjacent 4-gons to a single
edge. The obtained reduced map, denoted by Red(G), is still 3-valent. The number of
sides of its faces is between 5 and 9. The set of pairs of adjacent 4-gons of G yields an
edge-set ES(G) in Red(G), which satisfies the following properties:

1. It is a matching, i.e., no vertex belong to two edges of ES(G).

2. For every face F of G, denote by h(F ) the number of edges in ES(G), which are
incident to a vertex of F (those edges contain either an edge, or just a vertex of G).
One has the equation h(F ) + l(F ) = 9 with l(F ) being the gonality of F .

If a set of faces of a graph satisfies the above conditions, then we call it a special (4, 9)-
matching.

Theorem 5.6 (i) If G is a v-vertex (4, 9)-sphere, which is 4R1, and G′ = Red(G) is its
associated graph, then v = 5

2
v′ + 18.

(ii) The smallest (4, 9)-sphere, which is 4R1, is the one with 128 vertices depicted on
Figure 19.

(iii) There is an infinity of (4, 9)-spheres, which are 4R1.
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128, D3 148, D2 148, T

Figure 19: Some (4, 9)-spheres, which are 4R1

Proof. (i) Take a (4, 9)-sphere, which is 4R1 and has v-vertices. One has the equations
3v = 4f4 + 9f9 and 2f4 − 3f9 = 12. The number of pairs of 4-gons is np = f4

2
. The sphere

Red(G) has v′ = v − 4np vertices. One obtains easily v′ = 2f9 − 4 and v = 8 + 5f9, from
which the result follows.

(ii) Take a (4, 9)-sphere, which is 4R1, and consider its reduced map Red(G). Red(G)
is a 3-valent map with faces of gonality between 5 and 9. We enumerate those maps up
to 44 vertices and for every one of those graphs, we search for special (4, 9)-matchings.
We found one graph with 44 vertices, which is a fullerene and has a unique special (4, 9)-
matching. It defines a (4, 9)-sphere, which is 4R1, and part (i) above proves that it is the
smallest one.

(iii) Consider the following (5, 6)-sphere with its special (4, 9)-matching:

The special (4, 9)-matching The cutting lines

This sphere is cutted along the cutting lines and in place is inserted the following structure:
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It is easy to see that the obtained structure is still a (5, 6)-sphere with a special (4, 9)-
matching. Furthermore, the operation can be repeated indefinitely. 2

Although the above proof is very easy to check, the way to obtain the example is
interesting. First, restrict oneself to fullerenes. Second, search for a cylindrical structures,
since almost all infinite series, so far, were of that form. Then one search among the ones
of symmetry D3, since it is the maximal possible symmetry. Then one search among the
ones of symmetry D3, since it is the maximal symmetry possible. The requirement of
special symmetry allow us to restrict ourself to equivariant special (4, 9)-matchings, i.e.,
special (4, 9)-matchings, which have the same symmetry group as the fullerene, so as to
prune the search tree. We obtained the fullerene with the special (4, 9)-matching drawn
above, we set a cutting line and consider the problem of finding an insertable structure
as a torus problem. We found 14 different possibilities and selected the one of maximal
symmetry. All this led us to think that there are many (4, 9)-spheres, which are 4R1.

If one searches for special (4, 9)-matchings in fullerenes, then this leads to (4, 9)-spheres
with special (4, 9)-matchings:

1. one with 128 vertices of symmetry D3,

2. two with 148 vertices ((1, D2) and (1, T )),

3. 10 with 168 vertices ((5, C2) and (5, D3)),

4. 23 with 188 vertices ((9, C1), (10, C2), (3, D2) and (1, D3)),

5. 66 with 208 vertices ((44, C1), (19, C2), (2, C3) and (1, Cs)).
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5.3 Maps 4R2

Theorem 5.7 (i) A (4, q)-torus 4R2 can exist only for q = 7 − 16, 18. For q = 14, 16,
18 such tori are strictly face-regular.

(ii) A (4, q)-sphere 4R2, which is not Prismq, can exist only for q = 6 − 13, 15. The
number of vertices of such spheres should be at least 20 (for q = 7), 32 (for q = 8), 28
(for q = 9), 44 (for q = 10), 92 (for q = 11), 56 (for q = 12), 116 (for q = 13), 140 (for
q = 15). If it has this minimal number of vertices, then it is strictly face-regular.

Proof. A cycle of 4-gons cannot exist neither in case (i), nor in case (ii), due to the
exclusion of Prismq. So, all 4-gons are part of triples of 4-gons S1. Denote by nt the
number of such triples. One has the relations f4 = 3nt. Furthermore, by a packing
argument, one obtains the inequality:

6nt = e4−q ≤ fq2b
q

3
c .

The Euler relation is 6χ = 2f4 − (q − 6)fq with χ being 2 for sphere and 0 for torus. So,
one obtains:

6χ = 2f4 − (q − 6)fq ≤ fqΨ(q) with Ψ(q) = 2b
q

3
c − (q − 6).

The function Ψ satisfies to:

• Ψ(q) > 0 for q ∈ {7, . . . , 13, 15};

• Ψ(q) = 0 for q = 14, 16, 18;

• Ψ(q) < 0 for q = 17 or q ≥ 19.

If Ψ(q) < 0, then it excludes the existence of a sphere or a torus. If Ψ(q) = 0, then χ = 0.
Also, all q-gonal faces should be adjacent to exactly 2b q

3
c 4-gons, i.e., the torus is strictly

face-regular.
If Ψ(q) > 0, then one has the condition fq ≥ 6χ

Ψ(q)
, which gives announced lower

bounds. 2

The S1-replacement of a map G by a set S of vertices consists of replacing every vertex
in S by a (4, 3)-polycycle S1.

Theorem 5.8 (i) Every (4, 7)-map is obtained from a (5, 7)-map by selecting a set S,
such that every 5-gon is incident to exactly one vertex of this sets and S1-replacing this
set.

(ii) The list of (4, 7)-spheres 4R2 with n ≤ 134 is obtained from the known (5, 7)-
spheres (up to 80 vertices).

(iii) There exists a (4, 7)-torus 4R2.
(iv) Given a n-vertex (4, 7)-sphere 4R2, one can obtain a n + 36-vertices (4, 7)-sphere

4R2, by replacing the central vertex of this triple by the following structure:
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(v) There is an infinity of (4, 7)-spheres, which are 4R2.

Proof. (i) Take a (4, 7)-map and replace every (4, 3)-polycycle S1, appearing in it, by
a vertex. One gets a map with 3-, 5- and 7-gons. We need to prove that 3-gons cannot
appear. If there is a 3-gon, then, in the original map, a 7-gonal face was incident to two
(4, 3)-polycycles S1. So, one of adjacent 7-gons is also incident to those two S1. This
implies that those two 7-gons are adjacent to two common 7-gonal faces, say, F1 and F2.
Those two faces are incident to one (4, 3)-polycycle S1. One gets the contradiction by
seeing that those faces, F1 and F2, are adjacent to a 2-gonal face.

(ii) The proof is obtained by computation.
(iii) There exists a (5, 7)-torus 7R4 with 5-gons organized in triples (see Subsection

2.2, Case 18). So, one can apply the operation, given in (i), and get the torus.
(iv) is obvious and (v) follows by repeated applications of (iv). 2

Theorem 5.9 (i) There is an infinity of (4, 8)-spheres 4R2.
(ii) There are at least eight (4, 8)-spheres 4R2, shown on Figure 22, with 128 vertices.

Proof. (i) Take a (4, 3)-polycycle S1 and add 2t rings of three hexagons around it. Then
make the three vertices of degree 2 adjacent to one other vertex (this form another (4, 3)-
polycycle S1). One obtains a 3-valent plane graph G, which contains two triples of 4-gons.
In order to obtain a (4, 8)-sphere 4R2, one should find a subset S of the set of vertices,
such that:

• every 4-gon is incident to two vertices of S and

• every 6-gon is incident to one vertex of S.

For the elements of S, we take first the vertices of G, which are incident to just one 4-gon
of G. Then one needs to find vertices, which are incident to three 6-gons and cover the
remaining 6-gons. It is easy to see that this is, indeed, possible. See below first example
of the series.

56, D3d 80, C2h
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44, T 80, D3 116, C1

116, C1
116, C2 116, C2

116, C2 116, C2 116, C2

116, C2

116, C2

116, C2

Figure 20: All weakly face-regular (4, 7)-spheres, which are 4R2, have at most 134 vertices
and are not obtained by operation (iv) of Theorem 5.8 (first part)
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116, D2 116, D2 116, D2

116, D3 116, D3d

Figure 21: All weakly face-regular (4, 7)-spheres, which are 4R2, have at most 134 vertices
and are not obtained by operation (iv) of Theorem 5.8 (second part)

(ii) The (4, 8)-spheres, which are shown on Figure 22, are constructed according to
the same principle of taking a (4, 6)-sphere and choosing a convenient set S. Take the
graph GC2,1(Cube); then, for every 4-gon, there are two diagonals and so, two choices.
This makes a total of 64 choices. Reduction by isomorphism yields the result. 2

Theorem 5.10 (i) There is an infinity of (4, 9)-spheres 4R2.
(ii) There exists a (4, 9)-torus 4R2.

Proof. (i) Take the following graph,

cut it along the overlined edges and insert the following structure

63



128, C1 128, D2 128, D2

128, D2 128, C2 128, D3

128, D3 128, T

Figure 22: Some 128-vertex (4, 8)-spheres, which are 4R2
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48, D3d 108, D3d

Figure 23: Some weakly face-regular (4, 9)-spheres, which are 4R2 (including unique such
sphere with at most 58 vertices)

with the encircled vertices being S1-replaced. The operation can, clearly, be repeated and
one gets an infinite series.

(ii) The above drawing in (i) is, clearly, a part of a plane tiling of such structures. Its
quotient is the required torus. 2

Theorem 5.11 There is an infinity of (4, 10)-spheres, which are 4R2.

Proof. Take the following (4, 10)-sphere, which is 4R2,

and insert, along the overlined edges, the following structure

with the encircled vertices being S1-replaced. The operation can be repeated and one
obtain an infinite sequence of required spheres. 2

Theorem 5.12 There exist an infinity of (4, 11)-spheres, which are 4R2

Proof. The proof consists of using the infinite families of (5, 7)-spheres, which are 7R4,
constructed in Theorem 10.5. The 5-gons of those polycycles are organized in two polycy-
cles A3 and bands (of length 6) of pentagons. Define a S1-replacement set S by assigning
the S1-vertices in the following way:
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176, D11d

Figure 24: A (4, 11)-sphere, which is 4R2

So, every 5-, 7-gon is incident to three, two, respectively, vertices in S. This means that,
by doing the S1-replacement, we obtain a (4, 11)-sphere 4R2. Since the series of Theorem
10.5 is infinite, we have an infinite series. 2

Theorem 5.13 (i) There is an infinity of (4, 12)-spheres, which are 4R2.
(ii) There is a (4, 12)-sphere 4R2, which has symmetry O.

Proof. (i) Take the following (4, 12)-sphere, which is 4R2,

and insert along the overlined edges the following structure
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with the encircled vertices being S1-replaced. The operation can be repeated and one
obtains an infinite series of required spheres.

(ii) Take GC2,1(Cube) and triple it along the set of vertices, which are incident to a
4-gon or to a 3-fold axis of symmetry. 2

Theorem 5.14 There exist an infinity of (4, 13)-spheres, which are 4R2.

Proof. The proof consists of using the infinite families of (5, 7)-spheres, which are 7R4

constructed in Theorem 10.5. As in Theorem 5.12, we will define a set S, which defines
the S1-replacement. Every 5-gonal face should be incident to 4 elements of S and every 7-
gonal face should be incident to 3 elements of S. Hence, it is easier to use the complement
S = {1, . . . , v} − S with v being the number of vertices of the plane graph.

The 5-gons of those graphs are organized in two polycycles A3 and bands, of length 6,
of pentagons. The 7-gons are organized in a series of two parallel rings of length 3. There
exist a simple zigzag that separate those two rings. We assign all those vertices to S. For
the 5-gons we assign vertices in the following way:

So, every 5-, 7-gon is incident to one, four vertices in S. This means that by doing the
S1-replacement on S, we obtain a (4, 13)-sphere 4R2. Since the series of Theorem 10.5 is
infinite, we have an infinite series. 2

Theorem 5.15 (i) Given a (5, 7)-map, which is 7R4 and such that 7-gons have the corona
777555, one can obtain a (4, 15)-map, which is 4R2, by S1-replacement of the set of vertices
incident to 5-gonal faces.

(ii) There exists a (4, 15)-torus, which is 4R2.
(iii) There exists an infinity of (4, 15)-spheres, which are 4R2.

Proof. (i) is obtained by considering the local structure.
(ii) Take the unique (5, 7)-torus, which is 5R2 and 7R4, and use (i).
(iii) The (5, 7)-spheres, constructed in Theorem 10.5, give, using (i), an infinite series.

2

Both, Theorem 5.12 and 5.14, were obtained by computer enumeration. More precisely
the work was done along the following lines:

Proposition 5.16 (i) If G is a (4, 11)-sphere, which is 4R2 and different from Prism11,
then it is obtained by the S1-replacement of a set S in a 3-valent plane graph G′. G′ has
−4 + 12x vertices, G has 8 + 42x vertices and S has 2 + 5x vertices, for some x ≥ 1.
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(ii) If G is a (4, 13)-sphere, which is 4R2 and different from Prism13, then it is obtained
by the S1-replacement in a set S of a 3-valent plane graph G′. G′ has −4 + 12x vertices,
G has 8 + 54x vertices and S has 2 + 7x vertices, for some x ≥ 1.

Proof. We prove only (i), since the proof of (ii) is very similar. Denote by n1 the number
of vertices of G′, which are not tripled and n2 the number of vertices of G′, which are
tripled. Then one has f4 = 3n2 and −5f11 +2f4 = 12. Denote by v the number of vertices
of G. One has v = n1 +7n2 and 3v = 11f11 +4f4. Eliminating the unknown f11, v and f4,
we obtain the relation n1 = 7n2−44

5
. So, one can write n2 in the form 2 + 5x with x ∈ Z.

This yield n1 = 7x − 6, v = 8 + 42x and n1 + n2 = −4 + 12x. 2

The above proposition give us a strategy for finding some (4, 11)-spheres, which are
4R2:

1. Take a 3-valent graph with faces of gonality 5, 7, 8, 9 and 11.

2. Do an exhaustive search for S1-replacement sets S such that every 5-, 7-, 9- and
11-gonal face is incident to 3, 2, 1 and 0 vertices in S respectively.

If one consider all 3-valent graphs G′ up to −4 + 12N vertices, and manage to do the
exhaustive search, then one can get the complete list of (4, 11)-spheres up to 8 + 42N
vertices.

The same applies for (5, 13)-spheres. But in that case, more than half of the vertices
are in the S1-replacement set S. Hence, it is better, from the computational viewpoint,
to do an exhaustive enumeration of their complement.

The 3-valent plane graphs with faces of gonality 5, 7, 9 or 11 can be enumerated up to
56 vertices. By applying the exhaustive enumeration procedure, we obtained 87 spheres.
This means that the enumeration of (4, 11)-spheres 4R2 has been completed up to 218
vertices. Besides two strictly face-regular ones, the remaining spheres have 176 vertices.
The repartition by symmetry is the following: (38, C1), (31, C2), (4, C2h), (1, C3), (10, Ci),
(2, Cs) and (1, D11d). If we limit ourselves to (5, 7)-spheres, then one can extend the
enumeration up to 68 vertices. Using the exhaustive enumeration technique, we found
27276 graphs, whose repartition by symmetry is the following: (26299, C1), (895, C2),
(3, C2h), (1, C2v), (9, C3), (16, Ci), (28, Cs), (16, D2), (8, D3) and (1, S4).

The 3-valent plane graphs with faces of gonality 5, 7, 9, 11 or 13 can be enumerated
up to 56 vertices. By applying the exhaustive enumeration procedure, we obtain 12
spheres. This means that the enumeration of (4, 13)-spheres 4R2 has been completed up
to 278 vertices. Besides two strictly face-regular ones, the remaining spheres have 224
vertices. The repartition by symmetry is the following: (3, C1), (4, C2), (2, Ci), (2, D3)
and (1, S6). If we limit ourselves to (5, 7)-spheres, then we can extend the enumeration up
to 68 vertices. Using the exhaustive enumeration technique, we found 805 graphs, whose
repartition by symmetry is the following: (707, C1), (86, C2), (4, C3), (1, Cs), (3, D2) and
(4, D3).
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5.4 Maps 5R2

Theorem 5.17 (i) A (5, q)-sphere, which is 5R2, has q = 7.
(ii) A (5, q)-torus, which is 5R2, has q = 7 or 8.

Proof. Euler formula in Theorem 4.4(iii) implies the relation:

(6 − q)(x0 + x3) + (8 − q)f5 = 4qχ

with χ being 2 and 0 for sphere and torus, respectively.
If q > 8, one gets an impossibility. If q = 8, then −2(x0 + x3) = 2χ, which implies

χ = 0 (i.e., a torus) and x0 = x3 = 0. 2

Note that an infinity of (5, 7)-spheres 5R2 is constructed in [HaSo04]. It will be proved,
that a (5, 8)-torus is 5R2 if and only it is 8R2, in Theorem 8.1 below.

Any (5, 7)-plane with isolated pairs of adjacent pentagons, is decorated graphite, but
this is not the case if pentagons are organized into isolated triples of adjacent ones.

Theorem 5.18 Any (5, 7)-torus, which is decorated graphite and such that the pentagons
are organized into isolated triples (so, 5R2), is 7R4. Moreover, corresponding (5, 7)-plane
belongs to Case 18 from Table 4 but it is not the sporadic tiling, where 5-gons are organized
as infinite bands.

Proof. We have e5−5 = f5, i.e., 3 for each isolated triple of pentagons. So, e5−7 =
5f5 − 2f5 = 3f7. Again, no 7-gon is adjacent to 3 pentagons in a row and so, any 7-gon
is adjacent to at most 4 pentagons. Only two coronae of a 7-gon, 5575577 and 5575757,
give adjacency to exactly 4 pentagons. The first corona is impossible, since deleting
all (5 − 5)-edges will transform the 7-gon into a 5-gon, which contradicts the decorated
graphite property. The second corona is also impossible, because in this case a 7-gon,
which is adjacent to such 7-gon, will have the first corona. So, any 7-gon is adjacent to at
most three pentagons. In order to get e5−7 = 3f7, counting by 7-gons, we need that each
7-gon is adjacent to exactly three pentagons, i.e., we have 7R4. Moreover, only coronae
5575777 and 5577577 are possible. The remainder of Theorem is clear from Figure 10 in
[DFSV00] and description of the continuum of Case 18. 2

See on Figure 25 some (5, 7)-tori, which are 5R2. See on Figure 68 some (5, 7)-tori,
which are 7R4.

5.5 Maps 5R3

Theorem 5.19 Let G be a (5, q)-torus, which is 5R3; then it holds:
(i) q ≤ 12.
(ii) If q = 12, then it is also 12R0.
(iii) If q = 11, then it is also 11R1.
Let G be a (5, q)-sphere, which is 5R3; then it holds:
(i) q ≤ 10.
(ii) If q = 7, then there are exactly two spheres (the first being strictly face-regular Nr.

56), shown on Figure 26.

69



(16, 4, 4), p2mg (24, 6, 6), p2 (24, 6, 6), p31m

(24, 6, 6), p2 (40, 10, 10), p2 (48, 12, 12), pg

(48, 12, 12), cm (48, 12, 12), pg (48, 12, 12), p31m

Figure 25: Some (5, 7)-tori, which are 5R2
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The proof is a combination of three lemmata below:

Lemma 5.20 The set of 5-gonal faces of a (5, q)-map, which is 5R3, is partitioned into
polycycles E1 and E2.

(i) There is no (5, q)-torus, which is 5R3, for q > 12; for q = 12, such torus is also
12R0.

(ii) There is no (5, q)-sphere, which is 5R3, for q ≥ 12.

Proof. Take a (5, q)-map 5R3 and a pentagon of this map. This pentagon is adjacent
to pentagons on either three consecutive edges, or two consecutive edges and one isolated
edge. Easy to see, that the set of 5-gons is partitioned into (5, 3)-polycycles E1 and E2.
Denote by n1 and n2 their respective numbers. We will first treat the simpler toric case.
First, one has the relation f5 = 3n1 + 4n2. By Euler formula, one also has f5 = (q − 6)fq,
which implies the relation:

e = 3(q − 5)fq = 3
q − 5

q − 6
f5 .

By direct counting, one has:

e5−5 = (3 +
3

2
)n1 + 6n2 and e5−q = 6n1 + 8n2 .

We then obtain the relation:

eq−q = 3 q−5
q−6

(3n1 + 4n2) − {(3 + 3
2
)n1 + 6n2} − {6n1 + 8n2}

= {9(q−5)
q−6

− (9 + 3
2
)}n1 + {12(q−5)

q−6
− 14}n2

=
18− 3

2
q

q−6
n1 + 24−2q

q−6
n2

= 12−q
q−6

{3
2
n1 + 2n2} .

If q > 12, then eq−q = n2 = n1 = 0, which is impossible. If q = 12, then e12−12 = 0, i.e.,
the torus is 12R0.

The computation for (5, q)-spheres is, essentially, a remake, with some additional
constant, of the toric case. One obtains first f5 = 12 + (q − 6)fq, then:

e = 3(10 + (q − 5)
f5 − 12

q − 6
) and v = 2(10 + (q − 5)

f5 − 12

q − 6
)

and, finally:

eq−q = {30 − 36
q − 5

q − 6
} +

12 − q

q − 6
{
3

2
n1 + 2n2} .

If q ≥ 12, then eq−q becomes negative, which is impossible. 2

Lemma 5.21 (i) A (5, 11)-torus, which is 5R3, is also 11R1.
(ii) There is no (5, 11)-sphere, which is 5R3.
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Proof. Given an 11-gonal face, which is incident to a (5, 3)-polycycle E1, it is clear, that
on every side it is incident also to an E1 or E2, and that this can terminate only with a
(5, 3)-polycycle E2. Hence, we decompose the set of 11-gonal faces into the following 6
types:

E1 E2

E1 E2

E1 11−gon

Type 0

E1 E2

E1

E2

11−gon

11−gon
11−gon

Type 1

E1 E2

E2 11−gon

11−gon
11−gon 11−gon

11−gon

Type 2

E2
E2

E2 E2

11−gon
11−gon

11−gon

Type 3

E2E2

11−gon

11−gon
11−gon 11−gon

11−gon

11−gon

11−gon

Type 4

11−gon

11−gon
11−gon 11−gon

11−gon

11−gon

11−gon

11−gon
11−gon 11−gon

11−gon

Type 5

Denote by f11,i with 0 ≤ i ≤ 5 the number of 11-gonal faces of type i.
Consider the number xi of vertices, which are contained in exactly i q-gonal faces.

One has, clearly:

x0 = n1 + 2n2, x1 = 6n1 + 6n2 and x2 = 2n2 .

Let us consider first the toric case. The number of vertices of our torus is equal to
2 q−5

q−6
(3n1 + 4n2). From this we get:

x3 = 26
5
(3n1 + 4n2) − (n1 + 2n2) − (6n1 + 6n2) − (2n2)

= {36
5
− 7}n1 + {86

5
− 10}n2

= 1
5
n1 −

2
5
n2 .

By direct counting, one gets also:







3x3 = 2f11,1 + 4f11,2 + f11,3 + 6f11,4 + 11f11,5

3n1 = 3f11,0 + 2f11,1 + f11,2

4n2 = 2f11,0 + 2f11,1 + 2f11,2 + 4f11,3 + 2f11,4.

Using the preceding equation, one obtains:







x3 = 2
3
f11,1 + 4

3
f11,2 + 1

3
f11,3 + 2f11,4 + 11

3
f11,5

1
5
n1 −

2
5
n2 = {−1

5
+ 1

5
}f11,0 + {−1

5
+ 1

5
2
3
}f11,1 + {−1

5
+ 1

5
1
3
}f11,2 + {−2

5
}f11,3 + {−1

5
}f11,4

= − 1
15

f11,1 −
2
15

f11,2 −
2
5
f11,3 −

1
5
f11,4,
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which, clearly, implies f11,1 = f11,2 = f11,3 = f11,4 = f11,5 = 0. Hence, (i) is true.
Furthermore, for spheres one has:

x3 = 2(10 + 6 f5−12
5

) − x0 − x1 − x2

= −22
5

+ 1
5
n1 −

2
5
n2 .

Using the same expression of x3, n1 and n2 in terms of f11,i, we obtain the equality:

x3 =
−22

5
−

1

15
f11,1 −

2

15
f11,2 −

2

5
f11,3 −

1

5
f11,4,

i.e., x3 is negative, an impossibility. 2

Lemma 5.22 (i) A (5, 7)-sphere, which is 5R3, is one of two spheres (the first being
strictly face-regular Nr. 56), shown on Figure 26.

(ii) There is no (5, 7)-torus, which is 5R3.

Proof. By analogy with the above lemma, one can split the set of 7-gonal faces into the
following types:

1E

E 2

E 2

7−gon

Type 0

E2 E2

7−gon

7−gon 7−gon

Type 1

7−gon

7−gon7−gon

7−gon 7−gon

7−gon 7−gon

Type 2

Suppose that a sphere contains a face of type 0; then this face is necessarily adjacent
to another face of type 0. Those two faces are bordered by four (5, 3)-polycycles: two
E1 and two E2. Each of two (5, 3)-polycycles E1 has two vertices of degree 2. Since the
polycycle E1 is adjacent only to 7-gons of type 0, we have only one way of filling the
structure: by adding faces of type 0. Hence, the obtained sphere is strictly face-regular.

Assume now that there is no face of type 0; then n1 = 0. Hence, the only appearing
(5, 3)-polycycles are E2. Those polycycles are adjacent by pairs; so, they make cycles in
the sphere. Since this is a (5, 7)-sphere, there exist at least one (7, 3)-polycycle, say P7,
bordered by a ring of (5, 3)-polycycles E2.

From the structure of the polycycle E2, we know that P7 has boundary sequence (323)h

for some h. If one removes the exterior 7-gons on the boundary, then one obtains the
boundary sequence 2h, i.e., a simple h-gon. Hence, h = 7. On the other side of the
structure, we do the same analysis and obtain the second (5, 7)-sphere, which is 5R3.

On the other hand, the above proof shows that there is no (5, 7)-torus, which is 5R3.
2

We consider now, for q = 8, 9, 10, (5, q)-maps, which are 5R3 and require additional
analysis. The set of 5-gonal faces of such maps admits a partition into (5, 3)-polycycles
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44, D3h (also 7R1) 84, D7h

Figure 26: All (5, 7)-spheres, which are 5R3

E1 and E2. E1 has two open edges and E2 has three open edges. If one considers the
graph formed by all those polycycles, then it has 2- and 3-valent vertices. This graph
is not necessarily connected. The connected components of q(G) (i.e. the generalized
(q, 3)-polycycles formed by the q-gonal faces) are bounded by 5-gons on one or several
boundaries. We will be able to obtain some classification results of those generalized
(q, 3)-polycycles, when they have only one boundary. This will allow us to obtain some
examples of (5, 8)-maps 5R3 and (5, 10)-maps 5R3. Also, we will be able to completely
classify the (5, 9)-maps 5R3.

It is known (see [DDS04]) that the boundary sequence of a (q, 3)-polycycle does not
characterize the polycycle; however, given a boundary sequence all (q, 3)-polycycles having
this sequence can be enumerated.

Take such a (q, 3)-polycycle; it is bounded by elementary (5, 3)-polycycles E1 and E2,
which we represent, in a symbolic way, by E1E

n1

2 . . . E1E
nu

2 . This symbolic sequence of E1

and E2 corresponds to the boundary sequence:

b(n1, . . . , nu) = 22(2232)n1 . . . 22(2232)nu .

Lemma 5.23 (the (8, 3)-case)
(i) Consider the symbolic sequence (n1, . . . , nu).

• If ni = 0, 1 or 2 for some i, then b(n1, . . . , nu) is (8, 3)-fillable if and only if
(n1, . . . , nu) is equal to (0, 0, 0, 0), (1, 1, 1) or (2, 2, 2), respectively.

• If ni ≥ 3 for all i, then the boundary sequence b(n1, . . . , nu) is (8, 3)-fillable if and
only if the boundary sequence

22(23)x1 . . . 22(23)xu with xi = ni − 3

is (8, 3)-fillable.

(ii) For any given u, there is a finite number of symbolic sequences (n1, . . . , nu), such
that b(n1, . . . , nu) is (8, 3)-fillable. Up to isomorphism, the list consists, for t ≤ 11, of:
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u symbolic sequences f8

3 (1, 1, 1) and (2, 2, 2) 3 and 6
4 (0, 0, 0, 0) and (3, 3, 3, 3) 1 and 13
6 (3, 4, 3, 4, 3, 4) 24
8 (3, 4, 3, 5, 3, 4, 3, 5) 35
9 (3, 4, 4, 3, 4, 4, 3, 4, 4) 39
10 (3, 4, 3, 5, 3, 5, 3, 4, 3, 6) 46
11 (3, 4, 3, 5, 4, 3, 4, 4, 3, 4, 5) 50

(iii) The boundary sequence b(n1, . . . , nu) is (8, 3)-fillable if and only if the boundary
sequence b(3, 4n1 , . . . , 3, 4nu) is (8, 3)-fillable.

(iv) There is an infinity of boundary sequences of the form b(n1, . . . , nu), which are
(8, 3)-fillable.

Proof. (i) Clearly, if some ni = 0, then the only way to close the structure, is by obtaining
an isolated 8-gon and its symbolic sequence is (0, 0, 0, 0).

So, assume ni ≥ 1. If ni = 1 for some i, then there is an unique way of closing the
structure and one obtains a triple of 8-gons associated to the symbolic sequence (1, 1, 1).
Hence, assume ni ≥ 2. If ni = 2 for some i, then there is an unique way of closing the
structure and one obtains six 8-gons associated to the symbolic sequence (2, 2, 2). Hence,
assume ni ≥ 3. Clearly, the set of edges of the boundary, which are incident to an 8-gonal
face of a possible (8, 3)-filling, is a path or the empty set, i.e., the face cannot be incident to
two different segments of the boundary. So, the boundary sequence b(n1, . . . , nu) admits
an (8, 3)-filling if and only if the boundary sequence, which is obtained by filling all faces
incident to the boundary, i.e., 22(23)x122(23)x2 . . . 22(23)xu with xi = ni − 3, also admits
a (8, 3)-filling.

(ii) By using Proposition 1.4, one can see that the numbers f8 and x (of 8-gonal faces
and, respectively, of interior vertices of an possible (8, 3)-filling) are:

{

f8 = u − 3
x = 2u − 8 −

∑u
i=1 xi.

So, for a fixed u one has xi ≤ 2u − 8 and there is a finite number of possible boundary
sequences and so, a finite number of possible (8, 3)-fillings. The enumeration is then done
by computer.

(iii) By taking the initial boundary sequence b(3, 4n1 , 3, 4n2 , . . . , 3, 4nu) and apply-
ing the transformation of the second item of (i), one obtains the boundary sequence
b(n1, . . . , nu).

(iv) By using the transformation in (iii), one can, from a given boundary sequence
b(n1, . . . , nu), obtain another one. So, we get an infinity of such boundary sequences. 2

From the above analysis, it seems likely that, for any u ≥ 4, there exists at least one
boundary sequence b(n1, . . . , nu), which is (8, 3)-fillable.

Theorem 5.24 (i) There exists a (5, 8)-torus, which is 5R3 and not 8R4.
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(ii) There exists a sequence (Fi)i≥0 of (5, 8)-spheres 5R3 with 1640 + 1152i vertices.
Their symmetry is Oh if i = 0 and D4h, otherwise.

(iii) The following (5, 8)-spheres 5R3 exist:

1. A sphere with 56 vertices and symmetry Oh (also 8R0).

2. A sphere with 92 vertices and symmetry Td (also 8R2).

3. A sphere with 164 vertices and symmetry Td.

4. A sphere with 488 vertices and symmetry Oh.

5. A sphere with 3944 vertices and symmetry C2v.

6. A sphere with 4196 vertices and symmetry Td.

7. A sphere with 6248 vertices and symmetry D4h.

Proof. (i) The (5, 8)-torus 5R3 is obtained by taking the (8, 3)-polycycles, whose symbolic
sequence is (3, 3, 3, 3) and (3, 4, 3, 5, 3, 4, 3, 5), and gluing them together according to the
drawing below:

5

5 5 5

555

5

value 3 assigned to overlined, other non-notated edges are assigned the value 4.

Clearly, one gets the needed torus from this structure.
(ii) An infinity of (5, 8)-spheres 5R3 is obtained by a variation of (i). This time one

takes the symbolic sequences (3, 3, 3, 3), (3, 4, 3, 4, 3, 4) and (3, 4, 3, 5, 3, 4, 3, 5). For i = 0,
we form truncated Octahedron, which has symmetry Oh. For i = 1, 2, we form the
structure according to the following drawings.

5 5

55 5

5 5

5 5

5

55

Overlined edges have value 3, non-notated edges have value 4.
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6

5 5

5

5 5

5
6

(3944), C2v (4196), Td

5 6 5

5 5

5

5
5

5
6 6

6

(6248), D4h

Figure 27: Some 3-valent spheres, which we used as skeletons of (5, 8)-spheres 5R3; the
overlined edges are assigned the value 3, while non-notated edges are assigned the value 4

For i ≥ 3, we have an obvious generalization.
(iii) The relative wealth of above examples of (8, 3)-polycycles, allow us to build a

variety of examples of (5, 8)-spheres, which are 5R3. They are described by the assignment
of values to edges of a 3-valent plane graph such that every circuit (n1, . . . , nt) appearing
on a face is (9, 3)-fillable. Namely, one gets:

1. Take (0, 0, 0, 0) and form Cube from it. It will be unique strictly face-regular (5, 8)-
sphere 5R3, 8R0 of symmetry Oh with 56 vertices.

2. Take (1, 1, 1) and form Tetrahedron from it. It will be unique strictly face-regular
(5, 8)-sphere 5R3, 8R2 of symmetry Td with 92 vertices.

3. Take (2, 2, 2) and form Tetrahedron from it. It will be a (5, 8)-sphere 5R3 of sym-
metry Td with 164 vertices.

4. Take (3, 3, 3, 3) and form Cube from it. It will be a (5, 8)-sphere 5R3 of symmetry
Oh with 488 vertices.

5. Take three graphs on Figure 27 and assign values to their edges accordingly. One
gets three (5, 8)-spheres with 3944, 4196 and 6248 vertices.

See on Figure 69 some example of (5, 8)-tori, which are 8R4 but not 5R3.

Lemma 5.25 (the (9, 3)-case)
(i) Consider the symbolic sequence (n1, . . . , nu).

• If ni = 0 for some i, then the boundary sequence b(n1, . . . , nu) is (9, 3)-fillable if and
only if (n1, . . . , nu) = (0, 1, 0, 1).

• If ni ≥ 1 for all i, then the boundary sequence b(n1, . . . , nu) is (9, 3)-fillable if and
only if the boundary sequence

2(233)x1 . . . 2(233)xu with xi = ni − 3
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486, D9h

Figure 28: The only (5, 9)-sphere, which is 5R3

is (9, 3)-fillable.

(ii) For any given u, there is a finite number of symbolic sequences (n1, . . . , nu), such
that b(n1, . . . , nu) is (9, 3)-fillable. Up to isomorphism, the list consists, for u ≤ 30, of
two following sequences:

u symbolic sequences f9

4 (0, 1, 0, 1) 2
9 (1, 1, 1, 1, 1, 1, 1, 1, 1) 10

Proof. (i) If ni = 0, then the boundary sequence contains at least 7 consecutive 2. In
order to be fillable, it should contain exactly 7 consecutive 2. The only possibility then
is, clearly, (n1, . . . , nu) = (0, 1, 0, 1).

If ni ≥ 1, then, as for the case of (8, 3)-polycycles, one can see that a face, which
is incident to the boundary, is incident on only one segment of edges. Hence, there is
an unique way of adding 9-gons on the boundary, so as to form a ring. The boundary
sequence of this filling is:

2(233)x12(233)x2 . . . 2(233)xu with xi = ni − 1.

(ii) By using Euler formula (see 1.4), one gets that the numbers f9 and x (of 9-gonal
faces and interior vertices of an possible (9, 3)-filling) are:

{

f9 = 1
3
(u − 6 −

∑

i xi)
x = 2

3
(u − 9 − 4

∑

i xi).

So, for a fixed u, one has xi ≤ u−9
4

and there is a finite number of possible boundary
sequences, i.e., a finite number of possible (9, 3)-fillings. The enumeration is then done
by computer. 2

It seems likely that the only symbolic sequences (n1, . . . , nu), such that b(n1, . . . , nu)
is (9, 3)-fillable, are: (0, 1, 0, 1) and (1, 1, 1, 1, 1, 1, 1, 1, 1).
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Given a closed orientable map G, one assign an orientation on any one of its edges and
form a Z-module C1(G) having this set of oriented edges as basis. The Z-module Z1(G)
is the submodule of C1(G) generated by the set of closed cycles of G. Given any face
of G, one associate to it the set of incident edges in clockwise orientation; the generated
Z-module is called B1(G). Easy to see that B1(G) is a subset of Z1(G).

The homology group H1(G) is the quotient of Z1(G) by its subgroup B1(G). One can
prove that H1(G) is isomorphic to Z

2g with g being the genus of the map G.

Theorem 5.26 (i) The only (5, 9)-sphere, which is 5R3, is the one with 486 vertices and
symmetry D9h; it is obtained by taking Prism9 and assigning the values 1 to the edges,
which are incident to the 9-gons, and 0, otherwise (see Figure 28).

(ii) There is no (5, 9)-torus, which is 5R3.

Proof. If the (9, 3)-polycycle with boundary sequence b(0, 1, 0, 1) appear in the decom-
position of the set of 9-gonal faces, then we are done. This is so, since an edge of value 0
can belong only to a (9, 3)-polycycle with boundary sequence b(0, 1, 0, 1). Hence, a path of
such faces appear. By considering the adjacent 9-gons, one sees that the structure should
close and obtains the announced graph.

(i) Take such a sphere G and consider the graph E1(G), whose vertex-set consists
of the (5, 3)-polycycles E1 of G with two vertices being adjacent if they are linked by a
sequence of (5, 3)-polycycles E2. The graph E1(G) can be considered as a sphere, except
that it is not necessarily connected, i.e., some “faces” of E1(G) are bounded by several
cycles. Denote by C1, . . . , Ct the connected components of E1(G), which are plane graphs
in the original sense, and by F1, . . . , Fl the faces of E1(G), which have several cycles.
Denote by Conn(G) the graph, whose vertex-set consists of both, Ci and Fj, and whose
edge Ci − Fj corresponds to a cycle of Ci belonging to Fj. The sphericity condition then
implies that Conn(G) is a tree. Hence, it has at least one vertex of degree at most 1.

If the vertex has degree 0, this means that E1(G) is connected. Denote by pi the
number of faces of gonality i of E1(G). By Lemma 5.25 and Euler formula, only p4, p9 or
pi with i ≥ 30 can be non-zero. So, Euler formula:

2p4 − 3p9 −
∑

i≥30

(i − 6)pi = 12

implies p4 > 0 and the conclusion.
Assume that the vertex, say Ci, has degree 1. The connected component Ci is incident

to the face Fj along a cycle of length h. Consider now the plane graph formed by Ci only.
So, its faces are only 4-, 9- and i-gons with i ≥ 30 and the h-gon. Euler formula then
reads:

(6 − h) + 2p4 − 3p9 −
∑

i≥30

(i − 6)pi = 12.

This implies p4 > 0 and the conclusion.
(ii) The proof for torus uses the same principle, as for spheres with additional compli-

cations. First, we cannot exclude, from the beginning, that several boundary sequences
can be filled by the same map, which contains a hole, as shown below.
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boundary
hole

But if this happen, then one can consider the graph Conn(G), whose vertex-set consists
of connected components C1, . . . , Ct of E1(G) and of “faces” F1, . . . , Fs having several
cycles. The graph Conn(G) is a tree, since its homology is captured by the boundaries
filled by 9-gons with a hole. So, the proof for spheres works just as well and one obtains
that it cannot be a torus.

Suppose now, that one of the maps E1(G) is a torus. Then the graph Conn(G) is a
tree and the proof for spheres applies. So, this is impossible.

From now on, all connected components of the map E1(G) are plane graphs and the
set of 9-gons is partitioned into generalized (9, 3)-polycycles with one or more boundaries.
The graph Conn(G) is no longer a tree and the fact, that it is a torus, is encapsulated in
the cycles of Conn(G).

Denote by DE(G) the set of directed edges of Conn(G). Denote by V (G) the vector
space with canonical basis ed and d ∈ DE(G). For every cycle c of Conn(G), choose
an orientation of it and denote by f(c) its representation in V (G). Denote by H(G) the
vector space of V (G), generated by all cycles c of Conn(G). It is easy to see that the
dimension of the homology group H1(G) of our map G is equal to 2dim(H(G)). Since our
map is a torus, we should have dim(H(G)) = 1. So, there is a single cycle in Conn(G).

Suppose that Conn(G) contains a vertex of degree 3 (either a component Ci, or a face
Fj), then there is a vertex of degree 1, which should be a component Ci′ and so, we reach
a contradiction by the same method as in the proof for spheres. So, vertices of Conn(G)
are of degree 2. This means that Conn(G) is of the form:

· · · − C1 − F1 − C2 − · · · − Ct − Ft − C1 − . . .

for some t.
Every connected component Ci is incident to two faces Fi and Fi+1 (mod t) along cycles

of length li and ki (they are the number of (5, 3)-polycycles E1 present on those cycles).
The Euler formula for the plane graph Ci reads:

(6 − li) + (6 − ki) + 2p4 − 3p9 −
∑

i≥30

(i − 6)pi = 12,

or, in other terms:

2p4 = li + ki + 3p9 +
∑

i≥30

(i − 6)pi.

If p4 > 0, then we have the pattern (0, 1, 0, 1) and a contradiction is reached. So, p4 = 0.
This implies li = ki = 0 and also pi = 0. It means that Ci are just rings of (5, 3)-polycycles
E2.

Now consider the generalized (9, 3)-polycycles Fi with two boundary sequences of the
form (2223)hi and (2223)gi . As for the case of (9, 3)-polycycles, there is an unique way
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of filling the faces on the boundaries. But the presence of two boundaries creates several
complications, which were not present in the case of (9, 3)-polycycles.

We use the same strategy, as for (9, 3)-polycycles, whose boundary is of the form b(. . . ):
we fill all faces, which are not incident. The first case is when the added 9-gonal faces do
not share an edge in common. In that case the generalized (9, 3)-obtained, obtained by
filling previous boundaries, has two boundaries of the form (323)hi and (323)gi . Denote
by f9 the number of interior 9-gons and by x the number of interior vertices. Application
of proposition 1.4 yields:

{

f9 = v2−v3

3
= −hi+ki

3
,

x = 2v2−5v3

3
= −8

3
(hi + ki),

which are both strictly negative, an impossibility.
The other case is when the added 9-gons share some edges in common. The possibilities

are, locally, the following:

3
2

3

2

23
3 2

2
3

2

3
2

3
3

2

2
2 3 3

2
2

3
2

2

2 3

3
2

3

3
3

Let p be the number of appearances of such common sequence of edges. This means that
the problem of filling the generalized (9, 3)-polycycles with two boundaries is splitted into
the problem of filling p (9, 3)-polycycles given by their boundary sequences.

Those boundary sequences are of the form (323)hiα(323)kiβ with α,β being equal to
223, 322 or 32223. By applying again Proposition 1.4, one obtains:

{

f9 = v2−v3

3
− 2,

x = 2v2−5v3

3
− 6.

Those formulae give:

x = −
8

3
(hi + ki) + uα + uβ − 6

with uα, uβ being equal to −1
3

or −4
3

, according to the value of α or β. In any case, x < 0
and this is impossible. So, there is no (5, 9)-torus, which is 5R3. 2

In the case q = 10, the only known symbolic sequences (n1, . . . , nt), such that b(n1, . . . , nt)
is (10, 3)-fillable, are, up to isomorphism:

t symbolic sequences f10

5 (0, 0, 0, 0, 0) 1
6 (0, 1, 0, 1, 0, 1) 3
9 (0, 1, 1, 0, 1, 1, 0, 1, 1) 6

Theorem 5.27 The following (5, 10)-spheres 5R3 exist:

1. A sphere with 140 vertices and symmetry Ih (also 10R0).
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2. A sphere with 740 vertices and symmetry Ih.

3. A sphere with 7940 vertices and symmetry Ih.

Proof. The first example can be seen on Figure 30. The second example is constructed
using truncated Icosahedron (the smallest (5, 6)-sphere with isolated pentagons): its set
of edges is partitioned into two classes: edges 5 − 6 (pentagon-hexagon) and edges 6 − 6
(hexagon-hexagon). By assigning the value 0 to the first kind of edges and the value 1 to
the second class, all pentagons have type (05) and all hexagons have type (0, 1, 0, 1, 0, 1);
so, one obtains a sphere of symmetry Ih and 740 vertices.

The third example is obtained by taking the following 3-patch:

Overlined edges are assigned the value 0, while other edges are assigned the value 1
(this graph is an isometric subgraph of truncated Icosahedron). If one takes Icosahedron
and substitute every 5-valent vertex with the above patch and glue along the open edges
of value 0, then one obtains a graph with 5-, 6- and 9-gonal faces. The symbolic sequence
of the 9-gonal faces is (1, 0, 1)3. So, the structure can be filled. 2

Conjecture 5.28 A (5, 10)-torus, which is 5R3, is also 10R2.

See on Figures 43 and 44 some examples of (5, 10)-tori, which are 10R2 but not 5R3.
See below an example of a (5, 11)-torus, which is 11R1 but not 5R3:

(48, 20, 4), p2
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52, Td 68, D3d

Figure 29: All weakly face-regular (5, 9)-spheres, which are 9R0 (2nd is a tripling of
strictly face-regular Nr. 58)

40, D2h 80, D2h 80, Td

140, Ih (also 5R3)

Figure 30: All three weakly face-regular (5, 10)-spheres, which are 10R0, and the strictly
face-regular 140-vertex (5, 10)-sphere 10R0 (3rd is a tripling of 2nd on above Figure)
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68, D2d 92, D3d 164, T

Figure 31: All weakly face-regular (5, 11)-spheres, which are 11R0 (last two are triplings
of, respectively, 2nd and 4th on above Figure)

6 Frank-Kasper spheres and tori

We call Frank-Kasper-(5, q)-map any (5, q)-map, which is qR0 (in Chemistry and Crys-
tallography Frank-Kasper polyhedra are just four polyhedra, dual to all four (5, 6)-
polyhedra), which are 6R0.

A (5, 3)-polycycle is called 0-elementary if it is elementary and if its boundary sequence
is of the form 223q1 . . . 223qm . By inspection of the list of finite elementary (5, 3)-polycycles
(see Figure 1), one obtains that there are exactly three 0-elementary polycycles: E1, C1

and C3.
The classification of all Frank-Kasper (5, q)-spheres can be done using following no-

tions.
Fix a q-gonal face F ; an edge e is said to be pending to F if it shares exactly one

vertex with F . A bridge is an edge, which is pending to exactly two q-gonal faces.

Lemma 6.1 Take a Frank-Kasper (5, q)-map, which is not Barrelq. Then the set of all
bridges, together with edges incident to q-gonal faces, establish a partition of the set of
5-gonal faces into 0-elementary (5, 3)-polycycles.

Proof. Suppose that a q-gonal face is not pending to any bridge. It means that this
q-gonal face is bounded by two concentric rings of pentagonal faces, i.e., that the map is
Barrelq. So, the generalized (5, 3)-polycycles, appearing from the partition by bridges,
are (5, 3)-polycycles. Those (5, 3)-polycycles are necessarily 0-elementary. 2

Now, given a Frank-Kasper map, consider the map, defined by taking, as vertices, all
0-elementary (5, 3)-polycycles forming it. The q-gonal faces and bridges of the Frank-
Kasper map correspond to faces and, respectively, edges, of this map. Then one removes
vertices of degree 2 and obtain a 3-valent map, which will be called major skeleton.

Theorem 6.2 (i) There exist (5, q)-tori, which are qR0, if and only if q ≥ 12.
(ii) (5, 12)-tori, which are 12R0, are also 5R3.
(iii) (5, 13)-tori, which are 13R0, are in one-to-one correspondence with (3, 7)-tori,

which are 3R0 and 7R6.
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188, D3 188, Th 216, D2d

104, Oh, FK0 160, D4d, FK1

216, D4h, FK2 272, D4d, FK3

Figure 32: All weakly face-regular (5, 12)-spheres, which are 12R0: 3 sporadic cases and
the series FKi, illustrated here for 0 ≤ i ≤ 3 (1st and 4th are triplings of, respectively,
3rd and 2nd on above Figure)
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116, D3

148, D2d

212, D3

Figure 33: All two weakly face-regular (5, 13)-spheres, which are 13R0 and have at most
148 vertices, and the one arising by tripling of 1st on above Figure

74, D3h 92, D2d

128, C2

128, D3 236, T

Figure 34: Both weakly face-regular (5, 14)-spheres, which are 14R0 and have at most 100
vertices, and those arising by tripling (two triplings of 1st and a tripling of 3rd on above
Figure)
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60, D3h
80, C3v

140, C2

140, C2
260, Ih

Figure 35: Both two weakly face-regular (5, 15)-spheres, which are 15R0 and have at most
100 vertices, and those arising by tripling of last three on above Figure

86, D3h
152, C2

152, D3

Figure 36: Three weakly face-regular (5, 16)-spheres, which are 16R0 (1st is unique with
at most 100 vertices); they are triplings of, respectively, 2nd, 3rd and 4th on above Figure
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Proof. In order to prove the existence of (5, q)-tori, which are qR0, for q ≥ 12, it suffices
to give example of periodic (5, q)-planes, which are qR0.

Our basic example is the graphite lattice sheet, i.e., the 3-valent tiling {63} of the
plane by hexagons. At every vertex of this tiling, one can substitute a 0-elementary
(5, 3)-polycycles, either E1 or C3. If one substitutes only E1, we obtain a (5, 12)-plane,
which is 12R0. In order to obtain a (5, 13)-plane, one needs to substitute a part of the
E1, by some C3, such that every hexagon is incident to exactly one C3. It is easy to see
that this is, indeed, possible; see below an example of such a choice.

Furthermore, one can partition the set of vertices of the graphite lattice {63} into 6
orbits Oi, such that every hexagon contains exactly one vertex in the orbit Oi. So, by
putting C3 into vertices of orbits O1,. . . ,Oi, one obtains (5, 12+ i)-plane, which is 12+ iR0

and again has a graphite-like structure.
If one inserts the (5, 3)-polycycle C1 into edges of the graphite lattice according to the

drawing below,

then from a (5, q)-plane obtained by the above procedure, one obtains a (5, q + 5)-
plane, which is still (q + 5)R0 and still have this graphite-like structure. This procedure
can, obviously, be repeated; so, one gets the existence result for q ≥ 12.

Assume q ≤ 11. Given a (5, q)-plane, the gonality of a face in the major skeleton is
equal to the number of (5, 3)-polycycles E1 and C3, to which it is incident. Clearly, there
are at most 5 such incidences for each face. Since the major skeleton is 3-valent, we reach
a contradiction by Euler formula and (i) holds.

(ii) If M is a (5, 12)-plane, which is 12R0, and if F is a 12-gonal face, then F is incident
to 0-elementary (5, 3)-polycycles. Clearly, the gonality of F in the major skeleton is equal
to the number of 0-elementary (5, 3)-polycycles E1 and C3, in which it is contained. So,
this gonality is at most 6. But a tiling of the plane by faces, whose gonality is at most 6,
is possible only if all faces have gonality 6, i.e., if all 12-gonal faces are adjacent only to
polycycles E1. Such a structure is unique and it is 5R3.
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(iii) If M is a (5, 12)-torus, which is 13R0, and if F is a 12-gonal face, then F is incident
to 0-elementary (5, 3)-polycycles. Clearly, the gonality of F in the major skeleton is equal
to the number of 0-elementary (5, 3)-polycycles E1 and C3, in which it is contained. So,
this gonality is at most 6 and this corresponds to a face, which is incident to five polycycles
E1 and one polycycle C3. Since a 3-valent torus with faces of gonality at most 6 is made of
faces of gonality exactly 6; this means that all 13-gonal faces are adjacent to five polycycles
E1 and one polycycle C3. So, the torus is described by the graphite lattice, together with
a set S of marked vertices, where every hexagon is incident to exactly one vertex in S.

On the other hand, if one take a strictly face-regular (3, 7)-torus 3R0 and 7R6 and
change the triangles to vertices, then one obtains exactly the same combinatorial object.
2

For q = 14, the major skeleton can have some faces of gonality 7 and 5; so, the above
reduction is not possible.

Theorem 6.3 (i) For q ≤ 11, the number of Frank-Kasper (5, q)-polyhedra is finite; they
are:

• For q = 6, four classical ones,

• For q = 7, Dodecahedron and Barrel7,

• For q = 8, Dodecahedron, Barrel8 and strictly face-regular Nr. 58,

• For q = 9, 10 and 11, Dodecahedron, Barrelq and ones indicated on Figures 29, 30
and 31, respectively.

(ii) For q = 12 (besides Dodecahedron and Barrel12), three sporadic spheres and one
infinite series (FKi)i≥0 with 104 + 56i vertices (the symmetry is Oh if i = 0, D4d if i is
odd and D4h, otherwise), indicated on Figure 32.

Proof. Take a (5, q)-sphere G for q ≤ 11. Then every face of the major skeleton is
incident to at most 5 vertices corresponding to E1 or C3. So, the major skeleton is a
3-valent sphere with faces of gonality at most 5. There is a finite number of possibilities,
which can be dealt with by computer and hence, we have (i).

If q = 12, then, by the same reasoning, the gonality of faces of the major skeleton is at
most 6. Since it is a plane graph, this means that there exists a face of gonality at most
5. Such a face is incident to a vertex v, corresponding to a (5, 3)-polycycle C3 or C1. So,
the original (5, 12)-sphere contains the pattern below.
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We then run the enumeration procedure by taking the above patch as starting point.
This enumeration procedure, after creating three spheres, indicated above, goes into a
infinite loop, which creates the infinite sequence of maps; hence, (ii) follows. 2

Remark 6.4 Given a (5, 6)-polyhedron (i.e., a fullerene), one can generate a (5, 12)-
sphere in the following way:

Take a set S of vertices of G, such that no 6-gonal face is incident to an element of
S and every pentagon is incident to exactly two vertices of S. Then the map, obtained by
substituting to elements of S a (5, 3)-polycycle C3 and to other vertices a (5, 3)-polycycle
E1, is a Frank-Kasper (5, 12)-sphere.

Only two fullerenes admit such sets S:

1. Dodecahedron admits two such sets S, up to isomorphism; they yield the polyhedra
188, D3 and 188, Th.

2. Barrel6 admits only one such set, which yields the polyhedron 216, D2d.

Theorem 6.5 All (5, q)-spheres with fq = 2 have 4q vertices.
Besides Barrelq, all such spheres have q ≡ 0 (mod 5); they are:
(i) A sphere formed by splitting q/5 Dodecahedra with one edge splitted into two edges

and gluing them together; it is qR0 and has symmetry Dq/5h.
(ii) A sphere formed by splitting q/5 Dodecahedra with one edge splitted into two half-

edges and gluing them; it is qRq/5 and has symmetry Dq/5h.

7 (5, q)-spheres and tori, which are qR1

Take a (5, q)-map, which is qR1; then one can define, in the same way as for maps qR0,
the notion of bridge.

A (5, 3)-polycycle is called 1-elementary if it is elementary and if its boundary sequence
is of the form 2n13m1 . . . 2nt3mt , where each ni is 1 or 2 and, moreover, if ni = 1, then
ni−1 = ni+1 = 2. So, every 0-elementary (5, 3)-polycycle is also 1-elementary. We obtain
that the list of 1-elementary (5, 3)-polycycles, which are not 0-elementary, consists of C2,
D and any E2n with n ≥ 1.

Theorem 7.1 Given a (5, q)-map, which is qR1, then the set of all bridges, together
with edges, incident to q-gonal faces, establish a partition of the set of 5-gonal faces into
1-elementary (5, 3)-polycycles.

Proof. Suppose that a pair of adjacent q-gonal faces is not pending to any bridge. This
means that those q-gons are bounded by two concentric rings of pentagonal faces, but,
clearly, such a structure do not exist.

Hence, the decomposition of the set of 5-gonal faces by bridges creates only (5, 3)-
polycycles and no 3-patches with embedded pairs of q-gons inside. In order to prove that
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the elementary (5, 3)-polycycles, which can appear, are only the 1-elementary ones, we
will examine the list of elementary (5, 3)-polycycles.

An admissible (5, 3)-polycycle need to have the pattern 22 in its boundary sequence,
since, otherwise, it would be bounded by a ring of q-gons, which are adjacent to at least
two q-gons. This eliminate Ai, 1 ≤ i ≤ 5.

A pattern 3h123h223h3 with hi ≥ 1 corresponds to a q-gon with q = 2 + h2; we will
prove that this is not possible. Clearly, the pattern 3h123h223h323h4 with hi ≥ 1 cannot
appear, since it would imply that one of the q-gons of the pair has a vertex of degree 2,
which cannot be matched by a polycycle. This eliminates B3.

The (5, 3)-polycycle B2 is not possible, since the closure of the two vertices of degree
2 in 32323, would yield a q-gon with q = 3 and such structure do not exist.

Now consider the case of (5, 3)-polycycle E2n−1; the closure of the two isolated vertices
of degree 2, would yield a (n + 1)-gon. But opposite side of the (5, 3)-polycycle E2n−1

has the sequence 23n2; so, after uniting with other (5, 3)-polycycle, it would yield a q-gon
with q > n + 1, which is impossible. The only remaining admissible (5, 3)-polycycles are
the 1-elementary ones. 2

All 1-elementary (5, 3)-polycycles appear in decompositions of (5, q)-maps, which are
qR1.

See below an example of such a decomposition:

bridges of the
decomposition

E1

E1

E1

E1

E4

E4

DD

D
D

1-elementary (5, 3)-polycycles of the
decomposition

Theorem 7.2 (i) The number of (5, 9)-spheres, which are 9R1, is finite.
(ii) There are no (5, q)-tori, which are qR1, for q ≤ 9.

Proof. By Theorem 4.4, one obtains x3 = 20, where x3 is the number of vertices contained
in 3 pentagons. Since the gonality of faces is at most 9, the 1-elementary (5, 3)-polycycles,
forming its decomposition, are D, C1, C2, C3, E1, E2, E4, E6, E8, E10, E12. Denote by
fD, fC1

, . . . , the number of those polycycles. By counting the number of interior vertices,
one obtains:

20 = 10fC1
+ 7fC2

+ 4fC3
+ fE1

+
6
∑

i=1

2ifE2i
.
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36, D2 44, D3 52, D2d

Figure 37: All weakly face-regular (5, 7)-spheres 7R1 (2nd is a tripling of weakly face-
regular (5, 6)-sphere 32, D3, which is 6R1)

44, D2 56, D3 56, D3h

68, D2

Figure 38: All weakly face-regular (5, 8)-spheres, which are 8R1 and have at most 74
vertices (3rd is a tripling of strictly face-regular Nr. 56)
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52, D2 52, D2 68, D2

68, D3 68, D3

Figure 39: All weakly face-regular (5, 9)-spheres, which are 9R1 and have at most 68
vertices (4th is a tripling of 2nd on above Figure)

On the other hand, one has the equations:
{

e9−9 = 1
2
f9 = 1

2
fD + 1

2
fC2

+
∑6

i=1 fE2i
,

e5−9 = 8f9 = 3fD + 10fC1
+ 10fC2

+ 9fC3
+ 6fE1

+
∑6

i=1(6 + 2i)fE2i
.

The two above inequalities imply:

e5−9 − 6e9−9 = 5f9 = 7fC1
+ 10fC2

+ 9fC3
+ 6fE1

+
6
∑

i=1

2ifE2i
.

It is clear, that the linear programming problem:

maximize
∑

i aixi

subject to
∑

i bixi = b,
xi ≥ 0 with ai, bi > 0

has the solution b maxi
ai

bi
. Hence, one obtains f9 ≤ 206

5
= 24. So, n ≤ 212 and (i) is true.

Let us consider (ii). First, one obtains by Theorem 4.4 x3 = 0, then fC1
= fC2

=
fE1

= fE2i
= 0. Subsequently, one obtains the relations:

e9−9 =
1

2
f9 =

1

2
fD, and e5−9 = 8f9 = 3fD;

so, f9 = fD = 0. Hence, there are no (5, 9)-tori, which are 9R1. If q ≤ 8, then the proof
comes directly from application of Theorem 4.4(ii). 2
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60, C2 60, C2 60, C2

60, D2 60, D2h 80, C1

80, C2 80, C2 80, D3

80, D3

Figure 40: All weakly face-regular (5, 10)-spheres, which are 10R1 and have at most 80
vertices (8th and 10th are triplings of, respectively, 3rd and 4th on above Figure)
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92, C2 92, C2

Figure 41: All weakly face-regular (5, 11)-spheres, which are 11R1 and arising by tripling
from (5, 10)-spheres on above Figure

Recall that a special perfect matching of a 6-valent tessellation by triangles is a perfect
matching such that every vertex is contained in exactly one vertex whose face opposite
to it belongs to the perfect matching.

Theorem 7.3 (i) The elementary (5, 3)-polycycles, appearing in the decomposition of a
(5, 10)-torus, which is 10R1, are D and E1.

(ii) Every (5, 10)-torus, which is 10R1, corresponds, in a following way, to a 6-valent
tessellation of the torus by triangles, together with a special perfect matching:

• 10-gonal faces correspond to vertices,

• (5, 3)-polycycles D and E1 correspond to triangular faces,

• bridges between (5, 3)-polycycles make one part of the edge-set, while edges between
two 10-gons make the perfect matching part.

Proof. A priori, the (5, 3)-polycycles, appearing in the decomposition of such a (5, 10)-
torus are D, C1, C2, C3, E1 and E2i with 1 ≤ i ≤ 7. We use the same notation as in
the preceding theorem. By Theorem 4.4, one has x3 = f10; so, in the same way as in the
above theorem, one obtains:







f10 = x3 = 10fC1
+ 7fC2

+ 4fC3
+ fE1

+
∑7

i=1 2ifE2i
,

e10−10 = 1
2
f10 = 1

2
fD + 1

2
fC2

+
∑7

i=1 fE2i
,

e5−10 = 9f10 = 3fD + 10fC1
+ 10fC2

+ 9fC3
+ 6fE1

+
∑7

i=1(6 + 2i)fE2i
.

Subtracting those equations, one obtains successively:

{

e5−10 − 6e10−10 = 6f10 = 10fC1
+ 7fC2

+ 9fC3
+ 6fE1

+
∑7

i=1 2ifE2i
,

e5−10 − 6e10−10 − 6x3 = 0 = −50fC1
− 35fC2

− 15fC3
−
∑7

i=1 10ifE2i
.

The second equation implies fC1
= fC2

= fC3
= fE2i

= 0; hence, (i) follows.
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The above equalities yield f10 = x3 = fE1
= fD. We say that a (5, 3)-polycycle is

incident to a 10-gonal face if it shares a sequence of edges with it. A (5, 3)-polycycle D
or E1 is incident to exactly three 10-gonal faces. Hence, every 10-gonal face is incident to
exactly three polycycles D and three polycycles E1. Consider now the toric map, whose
vertices are 10-gonal faces and faces are (5, 3)-polycycles D or E1. Its edges are bridges,
which are common to two adjacent elementary (5, 3)-polycycles, or the edges linking two
polycycles D and separating two 10-gonal faces.

Clearly, this torus is 6-valent and the set of edges between two adjacent 10-gons define
a special perfect matching. From this special perfect matching, one can get the position
of polycycles D and E1 and get the original (5, 10)-torus. So, (ii) follows. 2

Remark 7.4 In fact, there is a huge number of possibilities for perfect matchings. See
on picture below two such possibilities.

Remark also that Theorem 7.3 combined with Theorem 2.1 implies that there exist a one-
to-one correspondence between (5, 10)-torus 10R1 and (4, 8)-torus 4R1 and 8R5.

Theorem 7.5 For any q ≥ 10, there exist a (5, q)-torus, which is qR1.

Proof. Such tori can be obtained as quotients of a (5, q)-plane. We will get again such a
plane from the graphite lattice with added structure on it. On any vertex of the structure
below, which is incident to an overlined edge, we put a (5, 3)-polycycle D, while on other
vertices we put a (5, 3)-polycycle E1. The obtained (5, q)-plane is 10R1.

Remark that the (5, 3)-polycycles D are adjacent between themselves by pairs; every
pair of (5, 3)-polycycles D can be substituted by a (5, 3)-polycycle E2n with n ≥ 1. It is
easy to see that the structure is a (5, 10 + n)-plane, which is (10 + n)R1. 2

Note also that there are many other possibilities for creating maps qR1 (for example,
substituting E1 by C3 or inserting (5, 3)-polycycles C1).

Conjecture 7.6 For any q ≥ 10, there exist an infinity of (5, q)-spheres, which are qR1.
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8 Maps qR2

Remind that those maps were considered in [DDS04] on the sphere. However, the weakly
face-regular case for plane tilings and tori was not considered there; all strictly face-regular
(p, q)-planes were given in [De02].

Theorem 8.1 A (5, 8)-torus is 8R2 if and only if it is 5R2.

Proof. Take a (5, 8)-torus and assume that it is 8R2. One obtains, by Theorem 4.4(iii),
the relation x0 + x3 = 0, i.e., x0 = x3 = 0.

Also, by Euler formula, one obtains f5 = 2f8. The total number of edges is equal to:

1

2
(5f5 + 8f8) = 9f8 .

Moreover, the property 8R2 implies e8−8 = f8, e5−8 = 6f8 and e5−5 = 2f8.
Denote by f5,i the number of 5-gonal faces, which are adjacent to exactly i 5-gonal

faces. By direct counting, it follows:

f5 =
∑

i≥0

f5,i and 2f8 =
1

2

∑

i≥0

if5,i .

Subtracting those two equations, one obtains 0 =
∑

i≥0(
i
2
− 1)f5,i. Suppose that f5,i 6= 0

for i > 2. Then at least one vertex contained into exactly three 5-gonal faces, which is
impossible. So, the equation reduces to:

0 = −f5,0 −
1

2
f5,1 .

This implies f5,i = 0 for i < 2. So, our (5, 8)-torus is strictly face-regular 5Ri with i = 2.
If the map is 5R2, then again Theorem 4.4(iii) implies x0 + x3 = 0, i.e., x0 = x3 = 0.
Also, by the same computation, one gets e8−8 = f8, e5−8 = 6f8 and e5−5 = 2f8.
Take an 8-gonal face F ; since x0 = x3 = 0, the corona sequence of F does not contains

the pattern 88. Assume that F contains the pattern 858; by 5R2 property, the 5-gonal
faces should have the corona 88855. This implies that x0 + x3 > 0.

So, the corona 858 is impossible and this implies that 8-gonal faces are adjacent to at
most two 8-gonal faces. Since, on average, 8-gonal faces are adjacent to two 8-gonal faces,
this implies property 8R2. 2

Theorem 8.2 A (5, q)-torus qR2 exists if and only if q ≥ 8.

Proof. Consider the graphite lattice and put a pentagon in every vertex of it. The
obtained structure is, clearly, a (5, 8)-plane, which is 8R2. In order to obtain (5, q)-planes
with q ≥ 8, one needs to modify the structure. The pentagons can be organized into
pairs of adjacent ones. Every such pair, which is highlighted in the diagram below, can
be changed into a (5, 3)-polycycle E2n with n ≥ 1.
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(16, 6, 2), p2mg (24, 9, 3), p31m (24, 9, 3), p1

Figure 42: Some (5, 9)-tori, which are 9R2

One obtains a (5, 8 + n)-plane, which is (8 + n)R2. All above planes are periodic;
hence, by taking the quotient (by a translation subgroup of their automorphism group),
one obtains (5, q)-tori, which are qR2.

In order to prove the non-existence of (5, q)-torus with q ≤ 7, it is sufficient to use
Theorem 4.4(iii); it yields fq = 0, which is impossible. 2

Theorem 8.3 For any q ≥ 8, there exist an infinity of (5, q)-spheres, which are qR2.

Proof. Take two Dodecahedra and remove one vertex from each of them. By merging
the three pending edges, one obtains a 8R2 (5, 8)-sphere with three 8-gonal faces and 18
5-gonal faces partitioned into two (5, 3)-polycycles A3. Conclusion follows from Theorem
1.5.

In order to prove the result for q > 8, one needs to find an initial graph, which is qR2.
For any n ≥ 0, take three (5, 3)-polycycles E2n (the polycycle “E0” is the gluing of two
(5, 3)-polycycles D) and glue them along their open edges. The resulting graph has two
boundary sequences of the form (232+n)3; each could be filled by three (6 + n)-gons by
adding one vertex. Those two vertices can be truncated and replaced by (5, 3)-polycycle
A3. The resulting (5, 9 + n)-sphere is (9 + n)R2 and one can apply Theorem 1.5, in order
to get infiniteness. 2

See on Figure 42 some (5, 9)-tori, which are 9R2. See on Figures 43 and 44 some
(5, 10)-tori, which are 10R2.
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(20, 8, 2), p2mm (30, 12, 3), p2 (30, 12, 3), p2

(30, 12, 3), p2 (30, 12, 3), p3 (40, 16, 4), cm

(40, 16, 4), p2mg (40, 16, 4), pm (40, 16, 4), p2

(40, 16, 4), p2 (40, 16, 4), cm (40, 16, 4), pm

Figure 43: Some (5, 10)-tori, which are 10R2 (first part)
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(40, 16, 4), p1 (40, 16, 4), p2 (40, 16, 4), p2

(40, 16, 4), p2 (40, 16, 4), p2 (40, 16, 4), p1

(40, 16, 4), p2mg

Figure 44: Some (5, 10)-tori, which are 10R2 (second part)
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9 Maps qR3

9.1 Classification of (4, q)-maps qR3

Theorem 9.1 (i) There is no (4, q)-torus, which is qR3, for any q.
(ii) The list of (4, q)-spheres, which are qR3, consists of:

• Strictly face-regular Nr. 35 and the following 2-connected (4, 12)-sphere.

24, D3h

• Unique sphere Fq, having two (4, 3)-polycycles S2 and two (4, 3)-polycycles P2(q−6),
if q ≥ 8. It is of symmetry D2h if q = 8 and D2 if q > 8.

• Unique sphere Gq, having two (4, 3)-polycycles S1 and three (4, 3)-polycycles P2(q−5),
if q ≥ 7. It is of symmetry D3h if q = 7 and D3 if q > 7.

• Unique sphere Hq, having two points incident to three q-gons and three (4, 3)-
polycycles P2(q−3), if q ≥ 5. It is of symmetry D3h if q = 5 and D3 if q > 5.

• A family of spheres Kq,b, for 1 ≤ b ≤ q − 5, with two (4, 3)-polycycles P2(q−4), two
polycycles P2(b+1) and two polycycles P2(q−3−b). If b = 1, then the symmetry is Oh

if q = 6 and D4, otherwise. If b > 1, then the symmetry is D2d if b = q−4
2

and D2,
otherwise.

Proof. (i) The set of 4-gonal faces of such a (4, q)-map qR3 is splitted into (4, 3)-
polycycles, S1, S2, P2k for 2 ≤ k ≤ 7. Consider the graph q(G). Since the original
map is qR3, this graph is 3-valent.

Every vertex, which is incident to three q-gonal faces, corresponds to a 3-gonal face of
q(G). Every (4, 3)-polycycle S1 also corresponds to a 3-gonal face. Every (4, 3)-polycycle
S2 corresponds to a digon, (i.e., 2-gonal face). On the other hand, all P2k correspond to
4-gonal faces. A 3-valent graph, whose faces have gonality at most 4, does not exist on
torus and, clearly, has at most 8-vertices on the sphere.

(ii) Take a (4, q)-sphere G, consider its associated map G′ = q(G) and assume q ≥ 11.
G′ is a 3-valent plane graph with faces of gonality at most 4.

There are exactly five such maps: Tetrahedron, Bundle (i.e., 3-valent 2-vertex graph
with three 2-gonal faces), Prism2, Prism3 and Cube.
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If G′ is Tetrahedron, then its faces are all 3-gonal; hence, they all correspond to (4, 3)-
polycycles S1 or to vertices. Clearly, in order for the face to be q-gonal, they should be
all S1 or all vertices. This correspond to strictly face-regular Nr. 35 or to Tetrahedron.

If G′ is Bundle, then, clearly, the graph is the one, indicated above.
If G′ is Prism2, then its face-set consists of two digons and two 4-gons. Hence, the map

G is formed of two (4, 3)-polycycles S2, one (4, 3)-polycycle P2k and one (4, 3)-polycycle
P2k′ . Given a polycycle P2k, which is adjacent to the q-gonal faces F1, F2, F3 and F4, the
sequence of k − 1 4-gons can be adjacent either to F1 and F3, or to F2 and F4. Hence, we
need to fix the orientations of the (4, 3)-polycycles P2k.

On every 4-gon, there are two possibilities for orienting the polycycles P2k. So, one
has a total of four possibilities and, after reducing by isomorphism, two possibilities. One
possibility corresponds to a q-gonal faces having corona 4q4q444q, which is impossible.
So, the orientation of 4-gonal faces should be done in such a way, that the coronae are of
the form 4q−7q4q444q; hence, k = k′ and we obtain the sphere Fq.

If G′ is Prism3, then two 3-gonal faces of G′ correspond, in the sphere G, to S1 or
vertices, incident only to q-gonal faces. Three 4-gonal faces correspond to the (4, 3)-
polycycles P2ki

with 1 ≤ i ≤ 3. We must find the values of ki and the orientations of
those polycycles.

Denote by (Fj)1≤j≤3 and (F ′
j)1≤i≤3, two cycles of faces of length 3. Let us consider

the faces Fi. Their boundary sequences are of the form, either qαq4q4, or qαq4ki−1q4, or
qαq4ki−1q4ki′−1. Here α is void, if the faces Fi are incident to a common vertex, and α=44,
if the faces Fi are adjacent to a common (4, 3)-polycycle S1. Clearly, the first pattern, i.e.,
qαq4q4, is impossible, since it implies gonality 5 or 7. So, the pattern qαq4ki−1q4ki′−1 is
also impossible and the faces Fi have their boundary of the form qαq4ki−1q4. This implies
k1 = k2 = k3.

For faces F ′
i , one obtains, by the same argument, that their boundary is of the form

qα′q4ki−1q4 with α′ being void for a vertex and equal to 44 for a polycycle S1. So, one has
α = α′, i.e., either we have two vertices, or we have two (4, 3)-polycycles S1. We obtain
the series Gq and Hq.

Let us assume now that G′ is Cube. By the previous analysis, all 4-gonal faces are
organized in (4, 3)-polycycles P2k. We need to fix the orientation on every 4-gonal face.
Since there are two choices for every one of the six faces, this makes a total of 64 choices.
Every q-gonal face should be incident to at least one sequence of 4-gons. This reduces to
22 cases. Under symmetry, this reduces to just 3 cases. The first case is depicted below.
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a

e

b

c

d

f

The letters correspond to the length of the (4, 3)-polycycles in the following way: a
corresponds to P2(a+1). Every vertex is incident to three 4-gonal faces. So, three dotted
paths appear. If two of those paths are incident to the vertex, i.e., if the corresponding
(4, 3)-polycycle is incident to an isolated 4-gon to the q-gonal face, then the length of
the last dotted path is set. It gives b = e = f = c = q − 4. Consider now the case
of vertex being incident to just one dotted path. By previous assignment, one gets the
length a = d = 1. This map is Kq,1.

The second case is depicted below.

a

b

c

e

d

f

By the same argument, one gets a = d = q−5. This reasoning for other vertices yields
the equations:

c + e = c + b = b + f = e + f = q − 4.

It yields e = f , c = f and c = q − 4 − b. The corresponding map is Kq,b.
The third case is depicted below.
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26, D3, (H7) 26, D3h, (G7) 32, D4, (K7,1)

Figure 45: All weakly face-regular (4, 7)-spheres, which are 7R3

a

b

ce

d

f

We obtain a = b = c = d = e = f = q − 5. Two remaining vertices, which are not
incident to any dotted path, yield the equation 3(q − 5) = q − 3, i.e., q = 6, which is
already covered. 2

See on Figures 45, 46, 47 and 48 the lists of weakly face-regular (4, q)-spheres, which
are qR3 for q=7, 8, 9 and 10, respectively.

9.2 (5, q)-maps qR3

Theorem 9.2 (i) A (5, 7)-torus is 7R3 if and only if it is 5R1.
Moreover, corresponding (5, 7)-plane, which is 5R1, belongs to the Case 17 from Table

4.
(ii) A (5, 7)-sphere, which is 7R3, satisfies to x0 + x3 = 20, where xi denotes the

number of vertices incident to i 5-gonal faces.

Proof. Assume first that the torus is 7R3. One has the standard relations:

f5 = f7 and e = 6f7 .

Furthermore, the property 7R3 yields:

e7−7 =
3

2
f7, e5−7 = 4f7 and e5−5 =

1

2
f7 .
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24, D2h, (F8) 32, D3, (G8) 32, D3, (H8)

40, D2d, (K8,1) 40, D4, (K8,2)

Figure 46: All weakly face-regular (4, 8)-spheres, which are 8R3

28, D2, (F9) 38, D3, (G9) 38, D3, (H9)

48, D2, (K9,2) 48, D4, (K9,1)

Figure 47: All weakly face-regular (4, 9)-spheres, which are 9R3
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32, D2, (F10) 44, D3, (H10) 44, D3, (G10)

56, D2, (K10,2) 56, D2d, (K10,3) 56, D4, (K10,1)

Figure 48: All weakly face-regular (4, 10)-spheres, which are 10R3

Then, by expressing above numbers in terms of xi, one obtains:

2e7−7 = 3x0 + x1, e5−7 = x1 + x2 and 2e5−5 = x2 + 3x3 .

By combining above equalities, we get the equality:

0 = 3f7 + f7 − 4f7 = 2e7−7 − e5−7 + 2e5−5 = 3x0 + 3x3,

which yields x0 = x3 = 0 and so, x1 = 3f7, x2 = f7. Denote by f5,k the number of 5-gonal
faces, which are adjacent to exactly k 5-gonal faces. Again, by easy counting, one obtains:

x1 = 5f5,0 + 3f5,1 + f5,2 and 2x2 = 2f5,1 + 4f5,2 .

Since x2 = f7 = f5 = f5,1 + f5,2, we get f5,2 = 0, which imply f5,0 = 0 and so, our torus is
5R1.

On the other hand, if the torus is 5R1, then it holds, by the same computation,
x0 = x3 = 0, x1 = 3f7 and x2 = f7.

Now, denoting by f7,k the number of 7-gonal faces, which are adjacent to exactly k
7-gonal faces, one obtains:

x2 = 7f7,0 + 5f7,1 + 3f7,2 + f7,3 and 2x1 = 2f7,1 + 4f7,2 + 6f7,3 .

Hence, we get:

0 = 6f7 − 2x1

= 6(f7,0 + f7,1 + f7,2 + f7,3) − (2f7,1 + 4f7,2 + 6f7,3)
= 6f7,0 + 4f7,1 + 2f7,2 .
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Therefore, f7,0 = f7,1 = f7,2 = 0 and the torus is 7R3.
In the case of spheres, the proof is very similar; we only indicate the different formulae:

f5 = 12 + f7, and e = 30 + 6f7 ,

which yields 3x0 + 3x3 = 2e7−7 − e5−7 + 2e5−5 = 60. 2

Moreover, the corona argument, as on Figure 2 in [DFSV00], excludes corona 5575577
and a variation of 5575757 (only three variations of last corona are possible). The remain-
ing of the above theorem is proved in [DFSV00].

Theorem 9.3 For any q ≥ 7, there exist a (5, q)-torus, which is qR3.

Proof. Take the following picture of a (5, 7)-torus, 5R1

and replace every one of the pair of adjacent pentagons by an elementary (5, 3)-polycycle
E2n. The obtained (5, 7 + n)-torus is (7 + n)R3. See below the result for q = 8, 9 and 10.
2

Conjecture 9.4 For any q ≥ 7, there exist an infinity of (5, q)-spheres, which are qR3.

Theorem 9.5 There exist an infinity of (5, q)-spheres, which are qR3, for q = 9, 10 and
12.

Proof. Theorem 1.5 can be applied to the first sphere on Figure 86. By truncating the
two opposite vertices of the 3-fold axis of the second sphere of Figure 86 and filling those
truncations by (5, 3)-polycycles A3, one obtains a (5, 12)-sphere, which is 12R3 and for
which Theorem 1.5 can be applied.

Theorem 1.5 can be applied also to the first sphere on Figure 89. 2

See on Figures 49, 50 and 51 some (5, 8)-tori, which are 8R3. See on Figures 52, 53
and 54 some (5, q)-tori, which are qR3 for q = 9 or 10.
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(12, 4, 2), c2mm (24, 8, 4), p2 (24, 8, 4), p2

(24, 8, 4), p2 (24, 8, 4), p2 (36, 12, 6), p2

(36, 12, 6), p2 (36, 12, 6), p2 (36, 12, 6), p2

(36, 12, 6), p2 (36, 12, 6), p2 (36, 12, 6), p2

Figure 49: Some (5, 8)-tori, which are 8R3 (first part)
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(36, 12, 6), p31m (36, 12, 6), p2 (36, 12, 6), p2

(36, 12, 6), p2 (48, 16, 8), p2 (48, 16, 8), p2

(48, 16, 8), p1 (48, 16, 8), p2 (48, 16, 8), p2mg

(48, 16, 8), p2 (48, 16, 8), p2 (48, 16, 8), p2

Figure 50: Some (5, 8)-tori, which are 8R3 (second part)
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(48, 16, 8), p2 (48, 16, 8), p2 (48, 16, 8), p1

(48, 16, 8), p1 (48, 16, 8), p2 (48, 16, 8), p2

(48, 16, 8), p2 (48, 16, 8), p2

Figure 51: Some (5, 8)-tori, which are 8R3 (third part)
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(16, 6, 2), p2 (32, 12, 4), p2 (32, 12, 4), p2

(32, 12, 4), p2 (32, 12, 4), p2 (32, 12, 4), p2gg

Figure 52: Some (5, 9)-tori, which are 9R3

10 Maps qR4

Lemma 10.1 Let G be a (4, q)-map, which is qR4. Denote by xi the number of vertices,
which are contained into i 4-gonal faces. Then one has:

{

x0 + x3 = 8 on sphere,
x0 + x3 = 0 on torus.

Proof. Denote by G′ = q(G) the map formed by q-gonal faces; it is a 4-valent map. The
set of 4-gonal faces of G is partitioned into (4, 3)-polycycles S1, S2 and P2k with k ≥ 2.
Denote by fS1

, . . . the corresponding number of such polycycles.
Those polycycles correspond, respectively, to 3-, 2- and 4-gonal faces of the map G′.

The other faces of G′ are 3-gonal ones, corresponding to vertices of G, which are incident
to three q-gonal faces.

Hence, the map G′ is a 4-valent one, whose faces are 2-, 3- or 4-gonal. The Euler
formula for those maps is 4χ = 2p2 + p3 with pi being the number of i-gonal faces and
χ = 2 for spheres and 0 for torus. One has p2 = fS2

and p3 = fS1
+ x0. So, it holds:

χ = 2fS2
+ fS1

+ x0.

It turns out, that x3 = 2fS2
+ fS1

. 2
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(20, 8, 2), p2 (20, 8, 2), cm (40, 16, 4), p1

(40, 16, 4), p1 (40, 16, 4), p2 (40, 16, 4), p2mm

(40, 16, 4), p1 (40, 16, 4), p2 (40, 16, 4), p2

(40, 16, 4), p1 (40, 16, 4), p2mg (40, 16, 4), p2

Figure 53: Some (5, 10)-tori, which are 10R3 (first part)
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(40, 16, 4), p2 (40, 16, 4), cm (40, 16, 4), p2

Figure 54: Some (5, 10)-tori, which are 10R3 (second part)

The above theorem also admits a more standard proof, which does not make use of
the classification of (4, 3)-polycycles. It is very useful for classifying the corresponding
maps, in both, theoretical and computational, levels.

Theorem 10.2 (i) (4, q)-tori, which are qR4, exist if and only if q ≥ 8.
(ii) A (4, 8)-torus is 8R4 if and only if it is 4R0.
(iii) Any (4, q)-torus, which is qR4, has no (4, 3)-polycycles Si and has no vertices

incident only to q-gons. Such a torus is described by orienting the (4, 3)-polycycles P2k in
a 4-valent tessellation of the torus.

(iv) Any (4, 9)-torus, which is 9R4, is described in terms of a perfect matching on a
4-valent tessellation of the torus by 4-gons.

Proof. (i) By standard argument, one obtains successively:

f4 =
q − 6

2
fq and e4−4 =

q − 8

2
fq.

This implies that a (4, q)-torus, which is qR4, exist if and only if q ≥ 8. On the other
hand, there exists an unique (4, 8)-plane, which is 8R4; we need to modify it, so as to
obtain a (4, q)-plane. In order to do this, we use the following drawing

and transform every square with two bold edges into a (4, 3)-polycycle P2(q−6).
(ii) If q = 8, then e4−4 = 0, i.e., all 4-gons are isolated. On the other hand, if a

(4, 8)-torus is 4R0, then each 8-gon is adjacent to at most four 4-gons and one concludes
easily.
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(iii) For any (4, q)-torus, which is qR4, one obtains, by Lemma 10.1, the equality
x0 + x3 = 0. Therefore, x0 = x3 = 0, then it holds fSi

= 0. So, all (4, 3)-polycycles are
of the form P2k. On the other hand, the map q(G) is, clearly, a 4-valent tessellation of
the torus. Each vertex corresponds to a q-gonal face and each 4-gon corresponds to a
(4, 3)-polycycle P2k. We just need to fix the orientation of this polycycle and the value of
k, in order to define the map.

(iv) If q = 9, then each (4, 3)-polycycle is of the form P4 or P6 and each q-gonal face
is adjacent to exactly one polycycle P6 on one of its two sequences of two 4-gons.

Every polycycle P6 is adjacent to two q-gonal faces on their sequence of two 4-gons.
This defines a matching in the graph q(G). It is a perfect matching. 2

Theorem 10.3 All (4, 8)-spheres, which are 8R4, belong to the following list:

1. Two infinite series with v = 32 + 8i, which contain the (4, 3)-polycycle S2. If i is
odd, they are isomorphic of symmetry C2, otherwise; if i > 0 is even, they are not
isomorphic and one is of symmetry C2h, the other of symmetry C2v. If i = 0, the
sphere of symmetry C2h gains higher symmetry D2h (see Figure 62).

2. Two infinite series with v = 32 + 16i, which contain four (4, 3)-polycycles S1. One
of the series is of symmetry D2d, while the other is of symmetry D2h. If i = 0, the
sphere of symmetry D2d gains the additional symmetry Td (see Figure 63).

3. Four infinite series with v = 80 + 24i, which contain two (4, 3)-polycycles S1 and
six (4, 3)-polycycle P6. Two series are of symmetry C2, one of symmetry C2v, one
of symmetry C2h (see Figure 64).

4. Two infinite series with v = 144 + 16i of symmetry D2, which contain twelve (4, 3)-
polycycles P6 (see Figure 65).

5. Three infinite series with v = 128 + 32i of symmetry D2, D2d and D2h, respectively,
which contain twelve (4, 3)-polycycles P6 (see Figure 66).

6. A list of sporadic examples, given on Figures 55—61.

Proof. The enumeration was done by computer. It was done using two relations (see
Theorems 4.7 and 10.1):

e4−4 = 12, x0 + x3 = 8,

i.e., if, in the enumeration, we found some partial graph with e4−4 > 12 or x0 + x3 > 8,
then we can discard it.

The set of 4-gonal faces is partitioned into (4, 3)-polycycles. Clearly, the only possible
polycycles are S1, S2, P4, P6, P8 and P10.

The enumeration consisted of a progressive set of steps. Very often, we run into infinite
loops. But those infinite loops present a periodic structure for their boundary and one
period just add another ring of faces. This reflects the fact that all infinite series are of
“cylindrical” form.
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Also, the property of being face-regular is local, i.e., only the neighbors are involved.
This means that, if one period appear in the enumeration, then this period will reappear
thereafter.

The first step takes, as initial group of faces, the (4, 3)-polycycle P10, circumscribed
by 8-gons, and ends up in a cycle, with no graph appearing. This proves that P10 never
appears in a (4, 8)-sphere 8R4.

The second step takes, as initial group of faces, the (4, 3)-polycycle S2, circumscribed
by 8-gons, and first creates a sporadic graph and then an infinite sequence of graphs. This
proves that all (4, 8)-spheres 8R4, having a polycycle S2, are either the sporadic ones, or
belong to one of the two such infinite series. In the following, we can assume that the
graph has no S2.

The third step takes, as initial group of faces, the (4, 3)-polycycle S1, circumscribed
by 8-gons, and creates some sporadic spheres and six infinite series. In the following, we
can assume x3 = 0.

The fourth step takes, as initial group of faces, the (4, 3)-polycycle P8, circumscribed
by 8-gons, creates some sporadic graphs and ends up in a cycle with no more graphs
created.

The fifth step takes, as initial, the (4, 3)-polycycle P6, circumscribed by 8-gons. It
creates some sporadic graphs and five infinite series. 2

Theorem 10.4 There exist an infinite series of (5, 8)-spheres, which are 8R4.

Proof. Take an edge of Dodecahedron and add a 4-gon in the middle of the edge. Inside
of this 4-gon it is possible to put another Dodecahedron, by cutting an edge of it in the
middle and gluing it inside the 4-gon. This construction can be generalized, by cutting
opposite edge of Dodecahedra. See the first example on Figure 84. 2

In above procedure, cutting opposite edges of Dodecahedra is just one of several pos-
sibilities. In fact, given one edge of Dodecahedron, there are five other edges, which can
be cut, in order to obtain (5, 8)-spheres 8R4.

Theorem 10.5 A (5, 7)-sphere, which is 7R4 and contains, in its set of 5-gonal faces, a
(5, 3)-polycycle with boundary sequence containing at most three 2, belongs to an infinite
series of such spheres, having v = 20 + 24t vertices with t ≥ 1 and symmetry D3d.

Proof. Denoting by v3, v2 the number of vertices of degree 3, 2 on the boundary, one
obtains v3 ≤ 2v2 and v2 ≤ 3.

The formula f5 = 6 − v2 + v3, expressing the number of 5-gonal faces in a (5, 3)-
polycycle, yields f5 ≤ 9. An exhaustive enumeration amongst all (5, 3)-polycycles with
9-pentagons yields the elementary (5, 3)-polycycle A3 as the only possibility.

So, now we extend this polycycle by adding a ring of 7-gons around it. Since every
7-gon is adjacent to four 7-gons, we need to add another ring of 7-gons around them.
Every 7-gonal face in those rings is adjacent to four 7-gonal faces. So, we are forced to
add another ring of 5-gons. If we add another pentagon, then there is only one possibility
for filling the structure and one adds two more pentagons, i.e., obtains a sphere.
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48, D2h 56, C2
56, C3v

56, D3
56, D3d 56, Td

56, Th 64, Cs 64, C2

64, D2d 64, C4h 72, Cs

Figure 55: Sporadic (4, 8)-spheres, which are 8R4 (first part)
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80, C2 80, C2 80, C2

80, C2h 80, D2 80, D2

80, D3 80, D3 80, D3 (also 4R1)

88, C2 88, C2 96, C2

Figure 56: Sporadic (4, 8)-spheres, which are 8R4 (second part)
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96, C2
96, C2 96, D2

96, D2 96, S4 96, D2d

96, D2h
104, C2 104, C2

104, C2 104, C2 104, C4

Figure 57: Sporadic (4, 8)-spheres, which are 8R4 (third part)
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104, D2 104, D4
104, D3d

104, O 112, C2 112, C2

112, D2 112, D2 112, D2

112, D2 112, D4
120, C2

Figure 58: Sporadic (4, 8)-spheres, which are 8R4 (fourth part)
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128, C1 128, C1 128, C2

128, C2 128, C2 128, C2

128, C2 128, D2 128, D2

128, D2 128, D2
128, D3

Figure 59: Sporadic (4, 8)-spheres, which are 8R4 (fifth part)
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128, D3 128, D3 128, T

136, D4 144, C2 152, D3

160, C2
160, C2h 160, D2

160, S4 176, C2 176, D4

Figure 60: Sporadic (4, 8)-spheres, which are 8R4 (sixth part)
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176, D2 192, D2
200, D3

200, Oh
224, D2d 240, D4

Figure 61: Sporadic (4, 8)-spheres, which are 8R4 (seventh part)
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32, D2h 32, C2v 40, C2

48, C2h 48, C2v 56, C2

Figure 62: First members of infinite series of (4, 8)-spheres, which are 8R4 and contain
two (4, 3)-polycycles S2
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32, D2h (also 4R2) 32, Td (also 4R2) 48, D2d

48, D2h 64, D2d 64, D2h

80, D2d 80, D2h

Figure 63: First members of infinite series of (4, 8)-spheres, which are 8R4 and contain
four (4, 3)-polycycles S1
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80, C2 80, C2
80, C2h

80, C2v
104, C2 104, C2

104, C2h
104, C2v 128, C2

128, C2
128, C2h 128, C2v

Figure 64: First members of infinite series of (4, 8)-spheres, which are 8R4 and contain
two (4, 3)-polycycles S1
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144, D2 144, D2 160, D2

160, D2 176, D2 176, D2

192, D2 192, D2 208, D2

208, D2 224, D2 224, D2

Figure 65: First members of infinite series of (4, 8)-spheres, which are 8R4, contain twelve
(4, 3)-polycycles P6 and have symmetry D2
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128, D2 128, D2d 128, D2h

160, D2 160, D2d 160, D2h

192, D2 192, D2d 192, D2h

224, D2 224, D2d 224, D2h

Figure 66: First members of infinite series of (4, 8)-spheres, which are 8R4, contain twelve
(4, 3)-polycycles P6 and have symmetry D2, D2d or D2h
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44, D3d
68, D3d

Figure 67: All weakly face-regular (5, 7)-spheres, which are 7R4 and have at most 76
vertices; they belong to an infinite series of those having 20 + 24t vertices (on Figure are
given cases t = 1, 2; see Theorem 10.5)

If not, then we add a ring of 7-gons and the argument can be repeated. Since the
graph is finite, eventually, one will obtain a sphere belonging to the infinite series. 2

(5, 7)-spheres, which are 7R4 and which are not obtained by the above Theorem 10.5,
probably, exist since there is a lot of (5, 7)-tori, which are 7R4.

See below some examples of (5, q)-spheres with relatively high number of vertices.

440, Ih

(5, 12)-sphere 12R4

560, Ih

(5, 14)-sphere 14R4

Theorem 10.6 For any q ≥ 7, there exists a (5, q)-torus, which is qR4.

Proof. The proof consists of taking the following initial (5, 7)-plane 7R4, which is also
5R2:
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In order to obtain a (5, q)-torus, which is qR4, we need to modify the structure of the
pentagons. The pentagons D can be paired to form the “polycycle E0” in the following
way:

Every one of those pairs of pentagons, can be replaced by an E2n with n ≥ 1. We
obtain a (5, 7+n)-plane, which is (7+n)R4. Then needed torus is obtained as its quotient.
2

Theorem 10.7 There is an infinity of (5, q)-spheres, which are qR4, for q = 10, 13, 16.

Proof. If one takes Cube, truncates some of its vertices and replace them by polycycles
A3, such that every 4-gon is incident to exactly t truncated vertices, then it is easy to
see that the obtained graph is a (5, 4 + 3t)-sphere, which is (4 + 3t)R4. Clearly, for any
1 ≤ t ≤ 4, such sets of vertices exist. The conclusion follows from Theorem 1.5. 2

See on Figures 68, 69, 70, 71 some examples of (5, q)-tori, which are qR4, for q = 7, 8,
9 and 10.

11 Maps qR5

Theorem 11.1 (i) A (4, q)-torus, which is qR5, exists if and only if q ≥ 7.
(ii) Any (4, 7)-torus, which is 7R5, is also 4R0.

Proof. In order to prove (i), we take the following strictly face-regular (4, 7)-plane 7R5.

Replacing the isolated squares by (4, 3)-polycycles P2(2+n), one obtains (4, 7+n)-torus,
which is (7 + n)R5. So, (i) is true.

For (4, 7)-tori, which are 7R5, one gets, by direct counting, the equality e4−4 = 0;
hence, the conclusion. 2

Note that there exist a (4, 7)-torus, which is 4R0 but not 7R5.
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(24, 6, 6), c2mm (24, 6, 6), p2 (32, 8, 8), p2

(32, 8, 8), p2 (40, 10, 10), p2 (40, 10, 10), p2mg

(48, 12, 12), p2 (48, 12, 12), p1

Figure 68: Some (5, 7)-tori, which are 7R4
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(18, 6, 3), p31m (30, 10, 5), p1 (36, 12, 6), p2

(36, 12, 6), p1 (42, 14, 7), p2 (42, 14, 7), p2

(48, 16, 8), p2 (48, 16, 8), p2 (48, 16, 8), p2

(48, 16, 8), pg (48, 16, 8), p2mg

Figure 69: Some (5, 8)-tori, which are 8R4
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(32, 12, 4), p2

Figure 70: A (5, 9)-torus, which is 9R4

(30, 12, 3), p3 (40, 16, 4), p2 (40, 16, 4), p2

(40, 16, 4), c2mm (40, 16, 4), p2mg (40, 16, 4), p1

Figure 71: Some (5, 10)-tori, which are 10R4
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Lemma 11.2 Take a map G, such that its set F of faces is partitioned into two classes,
F1 and F2, so that any face F in F1 is 6-gonal and adjacent to exactly five other faces of
F1. Then it holds:

(i) A face F ∈ F2 is adjacent only to faces in F1.
(ii) There exists a 3-valent map G′, such that G = GC2,1(G

′) (cf. Goldberg-Coxeter
construction in Section 1).

Proof. (i) follows from direct analysis of possible coronae of faces. Given a face F ∈ F2,
denote by N(F ) the neighborhood of F in F1 (i.e., the set of all faces from F1, which are
adjacent to F ). Clearly, the set F1 is partitioned into N(F1), . . . , N(Fk). Suppose that
two sets N(Fi) and N(Fj) have an adjacency. Then the following two cases are possible:

F

F

i

j

F

F

i

j

Both of those cases correspond to the local configuration arising in the Goldberg-Coxeter
construction (see [Gold37], [Cox71], and [DuDe03]). Moreover, the choice of a local config-
uration determines the whole structure completely, i.e., there is only one choice globally.

Now, define the map G′ with faces corresponding to the set F2, edges corresponding to
pairs N(Fi), N(Fj), having some adjacencies, and vertices corresponding to triples N(Fi),
N(Fj), N(Fk), having pairwise adjacencies. G′ is a 3-valent plane graph and GC2,1(G

′) is
isomorphic to G. 2

Lemma 11.3 The set of (5, 3)-polycycles, having boundary sequence (23h)g, consists of:

• elementary (5, 3)-polycycle A2 with h = 3, g = 2,

• elementary (5, 3)-polycycle A3 with h = 2, g = 3,

• elementary (5, 3)-polycycle A5 with h = 1, g = 5,

• elementary (5, 3)-polycycle D with h = 0, g = 5.

Proof. Take a (5, 3)-polycycle with boundary sequence (23h)g and assume that it consists
of several elementary (5, 3)-polycycles put together.

Since it is a (5, 3)-polycycle, the graph, formed by elementary (5, 3)-polycycles with
two of them being adjacent if they share a bridge, is a tree. This tree has at least one
vertex of degree 1. Such a vertex correspond to an elementary (5, 3)-polycycle, say, P .
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92, T

Figure 72: The smallest (5, 8)-sphere, which is 8R5

If P has at least twice the pattern 22 in its boundary sequence, then h = 0 and we
are done. Hence, one can assume that it has the pattern 22 only once in its boundary
sequence; so, it is B2 or B3. But this is, clearly, impossible. Hence, the only possible cases
are the elementary (5, 3)-polycycles indicated above. 2

Theorem 11.4 Take a (5, q)-map, which is qR5, such that the corona of each q-gon is
q55q−5 and whose graph q(G) is connected.

Then it is one of the following:

• GC2,1(Dodecahedron), i.e., the strictly face-regular Nr. 55,

• the unique (5, 7)-sphere 7R5 with 260 vertices, depicted in Figure 73,

• the unique (5, 8)-sphere 8R5 with 92 vertices, depicted in Figure 72,

• the unique (5, 9)-sphere 9R5 with 68 vertices, depicted in Figure 78.

Proof. The connectedness of q(G) implies that the set of 5-gonal faces is partitioned
into (5, 3)-polycycles. The corona condition implies that the boundary sequence is of the
form (23q−6)g. Lemma 11.3 gives that the number g depends only on q.

After replacing those (5, 3)-polycycles by g-gons, one gets a map G with 6- and g-gons
only and with g ≤ 5. Hence, this map is on the sphere; it satisfies the condition of Lemma
11.2 and one gets the result. 2

Theorem 11.5 The smallest (5, 8)-sphere, which is 8R5, is depicted on Figure 72.

Proof. Euler formula for a (5, 8)-sphere gives 12 = f5 − 2f8; hence, e = 30 + 9f8 and
v = 20 + 6f8. Since the example, given above, has 92 vertices, one can assume in the
following, that f8 ≤ 12. Further enumeration yields:

e5−5 = 3f8, e8−8 = 5f8 and e5−5 = 30 + (3 +
1

2
)f8 .

The set of 5-gonal faces is partitioned into elementary (5, 3)-polycycles by bridges.
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Since the sphere is 8R5, every 8-gon is adjacent to exactly three 5-gons; hence, the
only elementary (5, 3)-polycycles, which can appear in the decomposition, are A3, A4, A5,
D, B3, C3, E1, E2, E3, E4. Denote by fA3

, . . . , their numbers and by t the number of
adjacencies of elementary (5, 3)-polycycles along their open edges.

By direct counting, one gets the equalities:







e5−8 = 9fA3
+ 10fA4

+ 10fA5
+ 5fD + 11fB3

+ 12fC3

+9fE1
+ 10fE2

+ 11fE3
+ 12fE4

− 2t
e5−5 = 18fA3

+ 15fA4
+ 10fA5

+ 12fB3
+ 6fC3

+ 3fE1
+ 5fE2

+ 7fE3
+ 9fE4

+ t .

Furthermore, the number t of adjacencies between (5, 3)-polycycles satisfies the in-
equality:

2t ≤ 2fD + 3fE1
+ 2fE2

.

By combining above equalities and inequalities one gets:























2e5−8 − e5−5 = 5
2
f8 − 30 = 5

2
(f8 − 12) ≤ 0

2e5−8 − e5−5 = 5fA4
+ 10fA5

+ 10fD + 10fB3
+ 18fC3

+15fE1
+ 15fE2

+ 15fE3
+ 15fE4

− 5t
≥ 5fA4

+ 10fA5
+ 5fD + 10fB3

+ 18fC3
+ 15

2
fE1

+ 10fE2
+ 15fE3

+ 15fE4

≥ 0 .

This implies 2e5−8 − e5−5 = 0; hence, f8 = 12 and fA4
= fA5

= fD = fB3
= fC3

=
fEi

= 0. So, the only polycycle, appearing in the decomposition, is A3. So, by Theorem
11.4, the sphere is obtained by GC2,1(Tetrahedron) and replacing all triangles by the
polycycles A3. 2

Theorem 11.6 There is an infinity of (5, q)-spheres, which are qR5, for q = 8, 11, 14,
17, 20.

Proof. The example for q = 8, which is given in Theorem 11.5, has four (5, 3)-polycycles
A3. The conclusion follows by Theorem 1.5.

In order to get a proof for other values of q, we need an initial example. The graph
GC2,1(Tetrahedron) can be interpreted in the following way. The triangular faces can be
shrunken to just one point. The obtained graph is Dodecahedron with a set S of four
special vertices, corresponding to those faces. For any 1 ≤ t ≤ 5, there exist a set St of
4t vertices of Dodecahedron, such that every face is incident to t vertices of this set:

1. For t = 0 or 5 (Dodecahedron or strictly face-regular Nr. 14), there is one possible
set and it has symmetry Ih,

2. For t = 1 or 4 (strictly face-regular Nrs. 6 or 13), there is one possible set and it
has symmetry T ,

3. For t = 2 or 3 (strictly face-regular Nrs. 8,9 or 11,12), there are two possibilities,
one of symmetry D3, the other of symmetry Th.

135



By truncating the vertices in one of those sets St and replacing the obtained triangles by
elementary (5, 3)-polycycles A3, one gets a (5, 5 + 3t)-sphere, which is (5 + 3t)R5. The
proof of infiniteness is then identical to the case q = 8. 2

In the above construction, we got a (5, 8)-sphere by putting the spheres together in a
path. If one create cycle, then one obtains higher genus surfaces, which are 8R5. So, for
every g ≥ 0, there is an infinity of (5, 8)-surfaces of genus g, which are 8R5.

Also, above operation of removing a vertex leave us with six 5-gons in a circuit; hence,
5R2 holds. Clearly, if one manage to eliminate all (5, 3)-polycycles A3, so as to obtain a
cycle, then one gets a (5, 8)-surface of genus g, which is 8R5 and 5R2. Such a structure
can be obtained for any g, g ≥ 2. But for g = 1 it does not exist.

Theorem 11.7 There is an infinity of (5, q)-spheres, which are qR5, for q = 9, 12, 15,
18, 21.

Proof. The graph, shown on Figure 78, is such a sphere. It can be obtained by taking
GC2,1(Bundle) (see Subsection 3.1) and replacing every 2-gon by a (5, 3)-polycycle A2.
The conclusion for q = 9 follows from Proposition 1.5.

On the other hand, if one takes the graph GC2,1(Bundle) and remove all 2-gons, then
the obtained graph is Cube. For every 0 ≤ t ≤ 4, there exist sets St of 2t vertices, such
that every face of Cube is incident to exactly t vertices of St. More precisely:

1. For t = 0 or 4 (Cube and strictly face-regular Nr. 10), there is one such set and it
has the symmetry Oh.

2. For t = 1 or 3 (strictly face-regular Nrs. 2, 7), there is one such set and it is of
symmetry D3d.

3. For t = 2 (strictly face-regular Nrs. 4, 5), there are two such sets, one of symmetry
Td and the other of symmetry D2h.

So, take Cube, truncate vertices belonging to the set St and fill them by (5, 3)-
polycycles A3. Also, insert three 2-gons on the edges corresponding to the 2-gons of
the original (5, 9)-sphere, which is 9R5. One gets infiniteness by Theorem 1.5. 2

By creating cycles in the chain of (5, 9)-spheres put together, we get surfaces of genus
g ≥ 1. By changing all elementary (5, 3)-polycycles A3 into pairs of adjacent (5, 3)-
polycycles E2, we get a (5, 9)-map 5R3. Easy to see, that such construction is possible
for any genus g ≥ 2.

Theorem 11.8 If G is a (5, q)-sphere, which is qRq−2, then:
(i) The graph q(G) is connected.
(ii) The set of 5-gonal faces belongs to the following set of (5, 3)-polycycles:
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(iii) q ≤ 7.
(iv) If q = 6, then such spheres are enumerated in [DeGr01] on pp 187-188 and

presented on Figure 13.
(v) If q = 7, then such sphere has at least 260 vertices. If it has 260 vertices, then it

is unique and has symmetry I (see Figure 73); otherwise, it has at least 280 vertices.

Proof. Suppose that the graph q(G) is not connected. This means that there exists a
set of 5-gonal faces, on which at least two (say, t) connected components of q(G) meet.

Since every q-gon is adjacent to exactly two pentagons, in the (5, 3)-polycycle, the
runs of 3 (i.e., sequence of 3 bounded by 2) of the boundary sequence have length at most
one, i.e., every 3-valent vertex is bounded by two 2-valent vertices. This implies v3 ≤ v2

and so, f5 ≤ 0, by Proposition 1.4. Hence, (i) is true.
Now, the connectedness of q(G) implies that the set of 5-gonal faces form (5, 3)-

polycycles, i.e., they have t = 1 and f5 = 6 + v3 − v2 ≤ 6. The set of (5, 3)-polycycles,
satisfying the condition that every run of 3 is of length at most one, is the announced
one.

The set of faces of q(G) comes from vertices of G, which are incident to three q-gonal
faces (so, they are of gonality 3) and the (5, 3)-polycycles (so, they are of gonality 5 or
6). Hence, by Lemma 4.2, q(G) has a vertex of degree at most 5; so, q − 2 ≤ 5 and (iii)
is true.

The following formulae are easy:

f5 = 12 + f7, e = 30 + 6f7,
e7−7 = 5

2
f7, e5−7 = 2f7 and e5−5 = 30 + 3

2
f7 .

Denote by n1, n2, n3, n4, n5 the respective number of such (5, 3)-polycycles, depicted in
(ii).

By direct counting, one obtains:

{

12 + f7 = f5 = n1 + 2n2 + 3n3 + 4n4 + 6n5,
30 + 3

2
f7 = e5−5 = n2 + 3n3 + 5n4 + 10n5 .

By eliminating n5, one obtains also:

60 − f7 = −10n1 − 14n2 − 12n3 − 10n4,

which implies f7 ≥ 60, i.e., that a (5, 7)-sphere, which is 7R5, has at least 260 vertices.
Furthermore, such a sphere with exactly 260 vertices has only the elementary (5, 3)-
polycycle A5 and we conclude by Theorem 11.4. If it has more than 260 vertices, then
ni > 0 for some 1 ≤ i ≤ 4, which implies 60− f7 ≤ −10 and hence, the announced result.
2

See below the only known (4, 8)-torus, which is 8R5 and not 4R1:
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260, I

Figure 73: The only (5, 7)-sphere, which is 7R5 and has less than 280 vertices

(24, 6, 6), p2

See below two examples of (5, 10)-tori, which are 10R5.

See below an example of a (5, 11)-torus, which is 11R5.

(24, 10, 2), p2
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12 Maps qR6

Theorem 12.1 (i) Any (4, q)-torus, which is qR6 and 3-connected, is also 4R2.
(ii) All (4, 8)-tori, which are 8R6, are also 4R2.

Proof. (i) The hypothesis of 3-connectedness of such a map G excludes the existence of
(4, 3)-polycycle S2 in the set of 4-gons of this torus.

This means that, if one considers the corresponding 6-valent map q(G), then all
its faces are 3-gonal (vertices or (4, 3)-polycycles S1) or 4-gonal ((4, 3)-polycycles P2k).
Clearly, by Euler formula, 4-gons are excluded, i.e., only S1 exist and the map is 4R2.

(ii) In a (4, 8)-torus, no 4-gon can be adjacent only to 4-gons, since it would imply
the structure of Cube. If a (4, 8)-torus contains a 4-gon, adjacent to three 4-gons, then
it contains a 8-gon, adjacent to at least three 4-gons and hence, to at most five 8-gons.
So, in a (4, 8)-torus, the 4-gons are adjacent to at most two other 4-gons. The result then
follows by usual counting and positivity. 2

Theorem 12.2 There are no (4, q)-spheres, which are qRq−2, for q ≥ 8.

Proof. Every q-gonal face of such a sphere G would be adjacent to exactly two 4-gons.
This means that the (4, 3)-polycycle S2 cannot appear in the decomposition of the set of
4-gonal faces. Hence, all faces of the sphere q(G) are 3- or 4-gonal. So, we conclude by
Lemma 4.2. 2

Theorem 12.3 There is no (5, 8)-torus, which is 8R6.

Proof. By re-doing computations of Theorem 11.8 for q = 8, one would get that a (5, 8)-
torus, which is 8R6, has connected 8(G) and the set of its 5-gonal faces is partitioned into
the (5, 3)-polycycles, depicted in Theorem 11.8 (ii).

Hence, the torus 8(G) is 6-valent and its faces are triangles (intersection of three
8-gons), pentagons and hexagons.

Euler formula for 6-valent toric map is
∑

i(3−i)pi = 0. Hence, there are no pentagonal
and hexagonal faces in 8(G). So, G has no pentagonal faces, which is impossible. 2

Theorem 12.4 If a (5, q)-sphere is qRj with j ≥ 6 and q(G) is connected, then j ≤ q−4.

Proof. By Lemma 4.2, the map q(G) of such a sphere G contains at least one 2-gon. It
is easy to see that the only (5, 3)-polycycle with two vertices of degree 2 on the boundary
is A2. So, the q-gonal faces, which are adjacent to this (5, 3)-polycycle A2, are adjacent
to at least four 5-gonal faces. 2

Note that one can construct some (5, 10)-spheres, which are 10R6. Take Dodecahedron
and select a set S of its edges, such that every 5-gon is incident to exactly one edge of this
set. Replacing those edges by the (5, 3)-polycycles A2, one obtains such spheres. Up to
isomorphism, there exist five such sets in Dodecahedron and they yield five (5, 10)-spheres
10R6 with 140 vertices and symmetry groups D3d, C2, D2, D3, Th.
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20, D2d
32, C2v 44, D3d

Figure 74: All weakly face-regular (4, 7)-spheres, which are 7R4

116, Td 188, Td

332, D3d

Figure 75: All known (4, 7)-spheres, which are 7R5 (no one exists with at most 62 vertices)
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32, D3 56, C2

Figure 76: All weakly face-regular (4, 8)-spheres, which are 8R5 and have at most 56
vertices

13 Other enumeration results: (4, q)-maps

In four remarks below (see also Table 1) we consider only (4, q)-spheres, which are different
from Cube.

Remark 13.1 Any (4, 7)-sphere 7Rj is one of the following:
(i) Six strictly face-regular ones (Prism7 and Nrs. 27–31).
(ii) Seven weakly face-regular ones: unique 7R2 (see Theorem 4.10), three 7R3 from

Figure 45 and three 7R4 from Figure 74.
(iii) Undecided case j = 5 (Theorem 4.7(ii2) implies that e4−4 = 12 in this case). Two

examples are known, Nr. 29 and the one on Figure 75.
Any (4, 7)-sphere 4Ri is one of the following:
(i) For i = 0, there exist an infinity of such spheres by Theorem 5.2.
(ii) For i = 1, besides 6 spheres on Figure 16 and Nrs. 27, 28, there exists an infinity

of such spheres by Theorem 5.3.
(iii) For i = 2, all known ones are Prism7, Nr. 29, an infinite series in Theorem 5.8,

the list of known ones up to 110 vertices on Figure 20.

Remark 13.2 For the (4, 8)-spheres, which are 8Rj, one has j ≤ 6 and:
(i) All with j ≤ 2 are given in Theorem 4.10.
(ii) All 8R3 are five spheres on Figure 46.
(iii) All known 8R4 are strictly face-regular ones Nrs. 31–34 and 15 spheres on The-

orem 10.3.
(iv) All known 8R5 are two spheres on Figure 76.
(v) There is no 8R6 with at most 56 vertices. If there is such a sphere, it cannot be

3-connected.
No 4R0, 4R3 are possible by Theorem 5.1.
There is an infinity of (4, 8)-spheres, which are 4R1, by Theorem 5.4. See Figure 17

for all such spheres with at most 56 vertices.
By Theorem 5.9(i), there exist an infinite series of (4, 8)-spheres 4R2.
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Note that there exist a (4, 8)-torus, which is 4R2 but not 8R6, while the property 8R5

is not related to property 4R1.

Remark 13.3 For the (4, 9)-spheres, which are 9Rj, one has j ≤ 6 and:
(i) All with j ≤ 2 are given in Theorem 4.10.
(ii) All 9R3 are strictly face-regular Nr. 35 and five spheres on Figure 47.
(iii) All known 9R4 are four spheres on Figure 77.
(iv) All known 9R5 are three spheres on Figure 78.
(v) There is no 9R6 with at most 58 vertices.
For a (4, 9)-sphere, which is 4Rj, one has:
(i) No 4R0, 4R3 are possible and no 4R1 with at most 58 vertices is known.
(ii) Any 4R1 has at least 108 vertices by Theorem 5.5.
(iii) All known 4R2 are Prism9, strictly face-regular Nr. 35, two spheres shown on

Figure 23 and an infinite series build in Proposition 5.9.

Remark 13.4 For the (4, 10)-spheres, which are 10Rj, one has j ≤ 7 and:
(i) All with j ≤ 2 are given in Theorem 4.10.
(ii) All 10R3 are six spheres on Figure 48.
(iii) All known 10R4 are strictly face-regular Nr. 38 and eight spheres on Figure 79.
(iv) All known 10R5 are two spheres on Figure 80.
(v) No 10R6, 10R7 with at most 56 vertices are known.
For a (4, 10)-sphere, which is 4Ri, one has:
(i) 4R0, 4R1 and 4R3 are impossible by Theorem 5.1.
(ii) The only 4R2 with at most 56 vertices are Prism10, strictly face-regular Nr. 38

and an infinite series build in Theorem 5.11.

14 Other enumeration results: (5, q)-maps

In four remarks below (see also Table 2) we consider only (5, q)-spheres, which are different
from Dodecahedron.

Remark 14.1 Any (5, 7)-sphere 7Rj is one of the following:
(i) Three strictly face-regular ones (Barrel7 and Nrs. 56, 57).
(ii) Three weakly face-regular ones with 7R1 given on Figure 37.
(iii) 25 weakly face-regular ones for j = 2 (see [DDS04]).
(iv) See on Figures 81, the only known (5, 7)-spheres, which are 7R3.
(v) There is an infinity of (5, 7)-sphere, which are 7R4. Conjecturally, they all belong

to an infinite series, whose first two members are presented on Figure 67.
(vi) The only known (5, 7)-sphere, which is 7R5, is presented on Figure 73; an infinite

series of such spheres may exist.
Any (5, 7)-sphere 5Ri is one of the following:
(i) Three strictly face-regular ones from (i) above.
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38, C2v 38, D3h 48, D2

58, C1

Figure 77: All weakly face-regular (4, 9)-spheres, which are 9R4 and have at most 58
vertices

48, C2 48, D2 48, D4

Figure 78: All weakly face-regular (4, 9)-spheres, which are 9R5 and have at most 58
vertices
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26, D3h
44, C2

44, C2

44, C2 44, C2h 44, D3

56, D2d 56, D4h

Figure 79: All weakly face-regular (4, 10)-spheres, which are 10R4 and have at most 56
vertices
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44, C2 44, D3

Figure 80: All weakly face-regular (4, 10)-spheres, which are 10R5 and have at most 56
vertices

(ii) The spheres 5R2 (they have at least 84 vertices; an infinite series of such spheres
with one cycle is constructed in [HaSo04]).

(iii) Two spheres 5R3, which are given on Figure 26.

Remark 14.2 For a (5, 8)-sphere, which is 8Rj, one has j ≤ 6 and:
(i) All 8R0 are strictly face-regular ones Barrel8 and Nr. 58.
(ii) All known 8R1 are four spheres on Figure 38, there is a finite number of such

spheres by Theorem 4.4(ii).
(iii) All known 8R2 are five spheres on Figure 82, the infinite series of (5, 8)-spheres

with 8-gons organized in exactly one ring (see Figure 12 in [DDS04]) and strictly-face
regular one Nr. 59 with 92 vertices.

(iv) All known 8R3 are four spheres on Figure 83.
(v) All known 8R4 are four spheres on Figure 84.
(vi) there is an infinite series of 8R5 by Theorem 11.6 and the smallest one has 92

vertices (see Theorem 11.5).

Remark 14.3 For a (5, 9)-sphere, which is 9Rj, one has j ≤ 7 and:
(i) All 9R0 are strictly face-regular Barrel9 and two spheres on Figure 29.
(ii) All known 9R1 are five spheres on Figure 39, there is a finite number of such

spheres by Theorem 7.2.
(iii) All known 9R2 are four spheres on Figure 85.
(iv) All known 9R3 are three spheres on Figure 86.
(v) The smallest 9R5 is presented on Figure 87 and an infinite series of such spheres

is constructed in Theorem 11.7.
(vi) There are no 9R4 with at most 68 vertices.

Remark 14.4 For a (5, 10)-sphere, which is 10Rj, one has j ≤ 8 and:
(i) All 10R0 are strictly face-regular ones Barrel10, Nr. 60 and three spheres on Figure

30.
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68, C3 68, T
68, D2

76, C2
180, D5

260, I

Figure 81: All weakly face-regular (5, 7)-spheres, which are 7R3 and have at most 76
vertices, an example with 180 vertices and the first one with symmetry I
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56, D3 56, D3d
68, D2

74, C3v 74, D3h

Figure 82: All weakly face-regular (5, 8)-spheres, which are 8R2 and have at most 74
vertices and more than one circuit.

56, C2

56, D3
68, C2

68, C2

Figure 83: All weakly face-regular (5, 8)-spheres, which are 8R3 and have at most 74
vertices
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44, D2d 68, C2 68, D2h

200, Ih

Figure 84: All weakly face-regular (5, 8)-spheres, which are 8R4 and have at most 74
vertices, and the one with 200 vertices and symmetry Ih

52, D2d
68, D3 68, D3h

Figure 85: All weakly face-regular (5, 9)-spheres, which are 9R2 and have at most 68
vertices and more than one circuit
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68, C2 68, D3

180, Ih

Figure 86: All weakly face-regular (5, 9)-spheres, which are 9R3 and have at most 68
vertices, and smallest (5, 9)-sphere 9R3 of symmetry I or Ih

68, D3

Figure 87: The only weakly face-regular (5, 9)-sphere, which is 9R5 and have at most 68
vertices
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80, C2h 80, C2h

80, D3 80, D3 80, D3

Figure 88: All (5, 10)-spheres, which are 10R2, have more than one ring of 10-gons (with
all rings of 10-gons of length greater than 2) and have at most 80 vertices

(ii) All known 10R1 are ten spheres on Figure 40.
(iii) All known 10R2 are 12 spheres on [DDS04], an infinity of non 3-connected such

spheres obtained by inserting Dodecahedron (on an edge separating two pentagons, which
are not adjacent) to a 10R2 sphere and five spheres on Figure 88. See [DDS04] for an
iteration of this construction from the Dodecahedron.

(iv) All known 10R3 are three spheres on Figure 89.
(v) All known 10R4 are three spheres on Figure 90.
(vi) There is no 10Rj with j ≥ 5 and at most 80 vertices.

15 2-connectivity: non-polyhedral (p, q)-spheres

If a graph is not 3-connected, then this means that deleting of some two edges disconnect
it, i.e., that two faces share more than one edge. For all examples in this paper (except
for Theorem 6.5), those two faces are of the same gonality q and share exactly two edges.

Also it turns out, that in all known examples those two faces are of the same gonality
q.

Moreover, in all those examples, between two common edges of q-gons lies one of four
following graphs:

• I0 = Tetrahedron-e (a shortened notation for Tetrahedron without one edge),
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80, Cs 80, Cs
80, D3

Figure 89: All weakly face-regular (5, 10)-spheres, which are 10R3 and have at most 80
vertices

80, D2h 80, D2h 80, Td

Figure 90: All weakly face-regular (5, 10)-spheres, which are 10R4 and have at most 80
vertices
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• I1 = Cube-e,

• I2 = Dodecahedron-e (see Remark 14.4),

• I ′
1 = a pair I0 of adjacent triangles with I1 put on their common edge,

• I ′
2 = a pair I0 of adjacent triangles with I2 put on their common edge.

The appearance of those graphs is as follows:

• I1 appears for p = 4 and (q, j)= (8, 3) 1st on Figure 46, (8, 4) on Figure 62, (8, 5)
all on Figure 76; (9, 3) 1st on Figure 47, (9, 4) all but one on Figure 77, (9, 5) all on
Figure 78; (10, 3) 1st on Figure 48, (10, 4) all but one on Figure 79, (10, 5) all on
Figure 80.

• I ′
1 appears for p = 4 and (q, j) = (7, 4) 1st on Figure 74.

• I2 appears for p = 5 and (q, j)= (9, 2) 1st on Figure 85, (9, 3) all but last on Figure
86; (10, 2) in exceptional M2(4, 10), (10, 3) all on Figure 89, (10, 4) 1st on Figure 90.

• I ′
2 appears for p = 5 and (q, j) = (8, 3) second on Figure 83, (q, j) = (8, 4) all but

last on Figure 84.

We have seen in Section 2.1 that the enumeration of strictly face-regular (p, q)-map
3R1 or 2R0 was more complicate than for other cases. The full description of only 2-
connected weakly face-regular (p, q)-maps 2R0 or 3R1 is an open problem. One case that
admits a complete solution is the (3, 7)-spheres, which are 3R1. The PT -insertion on
an edge, consist of inserting a pair of triangle along that edge. Given a (4, 7)-sphere a
PT -insertion set S consists of a set of edges, incident to squares only and such that every
square is incident to exactly one edge of S. A (4, 7)-sphere is said to be of class I if its
only (4, 3)-polycycles are P6, P10 and S2 (see Section 1.2).

Theorem 15.1 (i) Take a (3, 7)-sphere, which is 3R1. Then it arises from a PT -
insertion on a PT -insertion set of a (4, 7)-sphere, which is Cube or of class I.

(ii) Any (4, 7)-sphere G of class I, having a (4, 3)-polycycle S2 arise from another
(4, 7)-sphere G′ of class I, by replacing an edge e of G′, which belongs to a PT -insertion
set by the following structure:

All (4, 7)-spheres of class I arise from successive application of the above operation to
(4, 7)-sphere, having only P6 and P10 as (4, 3)-polycycles.
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Proof. (i) Take a (3, 7)-sphere G which is 3R1 and remove all pairs of adjacent triangles.
The obtained (4, 7)-sphere G′, clearly, has a PT -insertion set from which one can recon-
struct the pairs of adjacent triangles. If the sphere is the Cube, then there is nothing to
prove. Otherwise, the 4-gons of G′ are grouped in (4, 3)-polycycles, which should have an
even number of 4-gons. Clearly, only P6, P10 and S2 are possible.

(ii) is obvious. 2

The above class of (4, 7)-spheres, whose 4-gons are in (4, 3)-polycycles P6 and P10 is
very large. Up to 62 vertices and except of (4, 7)-spheres 4R1, one has 11 possibilities.
Also, this class is infinite, as proved by the transformation below:

16 Remaining questions

We list here remaining problems, which we considerer to be most interesting:

1. Decide finiteness or not for (4, 7)-spheres 7R5 and (5, 7)-spheres 7R5.

2. Decide finiteness or not for (5, 7)-spheres 7R3 and (5, 10)-spheres 5R3.

3. Decide existence of (5, q)-tori qR5

One of the most interesting questions, that arise in this research is to check our con-
jecture that an infinity of (p, q)-spheres qRj exists if and only if a (p, q)-torus qRj exists.
Some testing ground for it is to decide finiteness or not for (4, 9)-spheres 9R4 and (5, 13)-
spheres 13R0.

For every pair pRi, qRj and fixed genus g ≥ 2, the number of strictly face-regular
possibilities is, clearly, finite. But it is, certainly, extremely large. An interesting question
would be to decide, what type of strict face-regularity can appear on surfaces of genus
g ≥ 2.

Another direction is to study all weakly face-regular (p, q)-maps of valency s, s ≥ 4;
all such strictly face-regular maps are found in [De02]. One can also permit p = q in the
main problem.

Complete classification looks impossible and many finite classes would be extremely
large.

Acknowledgment We are grateful to Mikhail Shtogrin for help on (5, 3)-polycycles
and to Achill Schuermann for letting us use a 4 processors Xeon 3GHz computer.
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