Zigzags in plane graphs and generalizations

Mathieu Dutour

ENS/CNRS, Paris and Hebrew University, Jerusalem

and

Michel Deza

ENS/CNRS, Paris and ISM, Tokyo

I. Simple two-faced

polyhedra

Polyhedra and planar graphs

A graph is called $k\text{-connected}$ if after removing any set of - 1 vertices it remains connected.

The skeleton of a polytope P is the graph $G(P)$ formed by its vertices, with two vertices adjacent if they generate ^a face of P_{\cdot}

Theorem (Steinitz)

(i) A graph G is the skeleton of a 3-polytope if and only if it is planar and 3-connected.

(ii) P and P' are in the same combinatorial type if and only if
 $G(P)$ is isomorphic to $G(P').$
The dual graph G^\ast of a plane graph G is the plane graph $G(P)$ is isomorphic to $G(P^{\prime}).$

The dual graph G^{\ast} of a plane graph G is the plane graph
At of G , with two faces adjacent if they formed by the faces of $G,$ with two faces adjacent if they share an edge.

Simple two-faced polyhedra

A polyhedron is called simple if all its vertices are 3- valent. If one denote p_i the number of faces of gonality i , then Euler's relation take the form:

$$
12 = \sum_i (6-i)p_i .
$$

A simple planar graph is called two-faced if the gonality of its faces has only two possible values:

> and b, where $3 \le a < b \le$.

We consider mainly classes q_n , i.e. simple planar graphs with n vertices and $(a,b)=(q,6)$;
there are 3 case:

there are 3 cases: 3_n , 4_n , 5_n .

 $z=6$; 30 $6,6$

 D_{3d}

 D_{3h}

 $z=30$ _{5,10} D_{5h}

 \mathbf{D}_{3h}

 $z=8;40\;8,8$ $\rm{D}_{\,4d}$

 $- p.5/4$

-connectedness

Theorem

- (i) Any 3-valent plane graph without (>6)-gonal faces is 2-connected.
- (ii) Moreover, any 3-valent plane graph without (>6)-gonal faces is 3-connected except of the following serie G ກ :

-connectedness

Theorem

- (i) Any 3-valent plane graph without (>6)-gonal faces is 2-connected.
- (ii) Moreover, any 3-valent plane graph without (>6)-gonal faces is 3-connected except of the following serie G ກ :

-connectedness

Theorem

- (i) Any 3-valent plane graph without (>6)-gonal faces is 2-connected.
- (ii) Moreover, any 3-valent plane graph without (>6)-gonal faces is 3-connected except of the following serie G ກ :

Point groups

(point group) $Isom(P)\subset Aut(G(P))$ (combinatorial group) **Theorem**(Mani, 1971) Given a 3-connected planar graph G_τ there exist a 3 -polytope P , whose group of isometries is isomorphic to $ut(G)$ and $G(P) = G$.

So, $Aut(G)$ of plane graphs G are finite subgroups of $O(3)$. The symmetry groups of graphs q_n are known:

- $\bullet\,$ For $3_n\colon D_2,\,D_{2h},\,D_{2d},\,T,\,T_d$ (Fowler and al.)
- For 4_n : C_1 , C_s , C_2 , C_i , C_{2v} , C_{2h} , D_2 , D_3 , D_{2d} , D_{2h} , D_{3d} ,
 D_{3h} , D_6 , D_{6h} , O , O_h (Dutour and Deza)

 For 5_n : C_1 , C_2 , C_i , C_s , C_3 , D_2 , S_4 , C_{2v} , , O_h (Dutour and Deza)
- \bullet For 5_n : C_1 , C_2 , C_i , C_s , C_3 , D_2 , S_4 , C $\mathcal{L}_{2v}, C_{2h}, D_3, S_6, C_{3v}, \ D_{5h}, D_{5d}, D_{6h}, D_{6d},$ $\{B_{3h},\,D_{2h},\,D_{2d},\,D_{5},\,D_{6},\,D_{3h},\,D_{3d},\,T,\,D_{5h},\,D_{5d},\,D_{6h},\,D_{6d},\}$ $_d,$ $T_h,$ $I,$ I_h (Fowler and al.)

II. Zigzags

A plane graph G

Take two edges

Zigzags

Continue it left-right alternatively

... until we come back

A self-intersecting zigzag

Zigzags

A double covering of 18 edges: $10+10+16$

Intersection Types

Let Z and Z^\prime be (possibly, $Z = Z'$) zigzags of a plane graph
orientation be selected on them. An edge of
 $Z \cap Z'$ is called of type I or type II, if Z and Z' and let an orientation be selected on them. An edge of intersection $Z \cap Z'$ is called of type I or type II, if Z and Z'
traverse e in opposite or same direction, respectively
 $\begin{array}{cc} \searrow & Z' \end{array}$ traverse e in opposite or same direction, respectively

Type I Type II

Intersection Types

Let Z and Z^\prime be (possibly, $Z = Z'$) zigzags of a plane graph
orientation be selected on them. An edge of
 $Z \cap Z'$ is called of type I or type II, if Z and Z' and let an orientation be selected on them. An edge of intersection $Z \cap Z'$ is called of type I or type II, if Z and Z'
traverse e in opposite or same direction, respectively
 $\begin{array}{cc} \searrow & Z' \end{array}$ traverse e in opposite or same direction, respectively

Type I Type II

The types of self-intersection depends on orientation chosen on zigzags except if $Z=Z^\prime$

Zigzag parameters

- $\bullet\,$ The signature of a zigzag Z is the pair (α_1,α_2) , where α_1 and α_2 are the numbers of its edges of self-intersection of type I and type II, respectively.
- \bullet The intersection vector $Int(Z)$ lists pairs of intersection (α_1,α_2) with all other zigzags.
- \bullet z-vector of G is the vector enumerating lengths (numbers of edges) of all its zigzags with their signature as subscript.

2 zigzags with $Int = (1$ $(3,3), (3,3)$
 $Int = (3,$ self-intersecting with $Int = (3, 3)$

Duality and types

Theorem

The zigzags of a plane graph G are in one-to-one correspondence with zigzags of G^* . The length is . The length is
I and II are inte preserved, but intersection of type I and II are interchanged.

Theorem

Let G be a plane graph; for any orientation of all zigzags of , we have:

(i) The number of edges of type II, which are incident to any fixed vertex, is even.

(ii) The number of edges of type I, which are incident to any fixed face, is even.

Bipartite graphs

Remark A plane graph is bipartite if and only if its faces have even gonality.

Theorem (Shank-Shtogrin)

For any planar bipartite graph G there exist an orientation of zigzags, with respect to which each edge has type I.

Zigzag properties of ^a graph

- ● z -uniform: all zigzags have the same length and signature,
- ● z -transitive: symmetry group is transitive on zigzags,
- ● z -knotted: there is only one zigzag,
- $\bullet \;$ z -balanced: all zigzags of the same length and signature, have identical intersection vectors.

All known z -uniform 3 -valent graphs are z -balanced.

Zigzags of reg. and semireg. polyhedra

First generalizations of zigzags

Above Table contains plane graphs, which are not 3- valent, and non-planar graphs.

In fact, the notion of zigzag can be easily generalized on any plane graph and on ^a graph, embedded in any oriented surface.

Moreover, this notion, being local, can be generalized even for non-oriented surfaces.

Perfect matching on 5_n **graphs**

Let G be a z -knotted graph $5_n.$

- (i) $z=n_{\alpha_1,\alpha_2}$ with $\alpha_1\geq 1$ a perfect matching PM $\frac{n}{2}.$ If $\alpha_1 =$ ype I form $\frac{n}{2}$ then the edges of type I form
- (iii) every face incident to two or zero edges of PM
- cident to zero edges of $\it{PM} ,$ (iv) two faces, F_1 and F_2 are in- M is organized around them in concentric circles.

M. Deza, M. Dutour and P.W. Fowler, *Zigzags, Railroads and Knots in* Fullerenes, (2002).

III. railroad structure of

graphs q_n

Railroads

A railroad in graph $q_n,\,q=3$ $\,$, $4,5$ is a circuit of hexagonal
n is adjacent to its neighbors
d is bordered by two zigzags. faces, such that any of them is adjacent to its neighbors on opposite faces. Any railroad is bordered by two zigzags.

with triply self-int. railroad

It is smallest such $4_n.$ Green railroad also triply self-int.

Railroads with triple points in small 4_n

Railroads and **pseudo-roads** of $4_{126}(D_{3h})$

One of two self-intersecting railroads and the equatorial simple railroad All twelve pseudo-roads A pseudo-road between 4-gons b and c is a sequence of hexagons $a_1,\,\ldots,\,a_l,$ s.t. if $a_0=b$ and $a_{l+1}=c,$ then any $a_i,$ $1 \leq i \leq l$, is adjacent to a_{i-1} and a_{i+1} on opposite edges.

Triply intersecting railroad in

Conjecture: a railroad-curve of any 4_n appears in some 5_m .

Tight with only simple zigzags

 $\begin{array}{c|c} \hline & 15 & 2 \\ \hline \text{ complete (checked for }\pi\text{)} \\\hline \text{rangements of plane cut} \\\hline \end{array}$ It gives 7 Grünbaum arrangements of plane curves.

First IPR with self-intersect. railroad

IPR $5_{120}(C_{2v})$

IPR $5_{120}(C_{2v})$

IPR 5_{120} $(D_{5h}$

Comparing graphs

IV. parametrizing graphs q_n

Parametrizing graphs q_n

idea: the hexagons are of zero curvature, it suffices to give relative positions of faces of non-zero curvature.

- Goldberg (1937) All $3_n,\,4_n$ or 5_n of symmetry $(T,\,T_d),\,(O,$ $_h$) or (I, I_h) are given by Goldberg-Coxeter construction $GC_{\bm{k}}$
- !
}} Fowler and al. (1988) All 5_n of symmetry $D_5,\,D_6$ or T are described in terms of 4 parameters.
- Graver (1999) All 5_n can be encoded by 20 integer parameters.
- Thurston (1998) The 5_n are parametrized by 10 complex parameters.
- Sah (1994) Thurston's result implies that the Nrs of $3_n,$, $5_n \sim n, n^3, n^9$.

Goldberg-Coxeter construction

Given a 3-valent plane graph $G,$ the zigzags of the Goldberg-Coxeter construction of $GC_{k,l}(G)$ are obtained by:
● Associating to G two elements L and R of a group

- Associating to G two elements L and R of a group called moving group,
- k_{-}
- computing the value of the (k,l) -product $L\odot$
the lengths of zigzags are obtained by comp
cycles structure of $L\odot_{kl}R$ $_l$ R ,
ting the lengths of zigzags are obtained by computing the cycles structure of $L\odot_k$

cycles structure of $L\odot_{k,l} R.$ For tight 5_n of symmetry I or I_h this gives $6,$ 10 or 15 zigzags.

M. Dutour and M. Deza, *Goldberg-Coxeter construction for* 3- *or* 4-*valent* plane graphs, submitted

The structure of graphs 3_n

The graph $3_{20}(D_{2d})$

and railroad-structure of graphs

All zigzags and railroads are simple.

The z -vector is of the form

 Λ \sim \mathcal{M} $\sim,(4s_2)^{m_2},(4s_3)^{m_3} \quad \text{with} \quad s_i m_i = \frac{n_4}{4}$ railroads is $m_1+m_2+m_3-3.$ $\ddot{ }$

 the number of railroads is $m_1+m_2+m_3-3.$

- has ≥ 3 zigzags with equality if and only if it is tight.
- If G is tight, then $z(G) = n^3$ (so, each zigzag is a
Hamiltonian circuit).
All 3_n are tight if and only if $\frac{n}{4}$ is prime.
There exists a tight 3 if and only if $\frac{n}{2}$ is odd. Hamiltonian circuit).
- All 3_n are tight if and only if
- $\frac{n}{4}$ is prime.
I only if $\frac{n}{4}$ i There exists a tight 3_n if and only if $\frac{n}{4}$ is odd.

Conjecture on $4_n(D₃)$, 4 parameters

For tight graphs 4_n of symmetry D_3 , D_{3d} or D_{3h} the -vector is of the form

> k with $k \in \{1,2,3,6\}$
 a^k, b^l with $k, l \in \{1,3\}$

> :h symmetry has sy
 14 of symmetry D_2 a^k with $k \in \{1, 2, 3, 6\}$

- $,3\}$ sym A knotted 4_n of such symmetry has symmetry $D_3.$
- or a^k, b^l with $k, l \in \{1$
such symmetry has s
ted 4_n of symmetry l
st 2 primes if there is a knotted 4_n of symmetry D_3 , then $\frac{n}{2}$ is the product of at most 2 primes product of at most 2 primes

First z -knotted 4_n of symmetry $D_3.$

V. Zigzags

on

surfaces

Klein and Dyck map

Klein map: $z=8^2$

 1 Dyck map: $z = 6^1$
cal notion, is defined on any surface, ϵ
ones. Zigzag, being ^a local notion, is defined on any surface, even on non-orientable ones.

Regular maps

A flag-transitive map is called regular. Zigzags of regular maps are simple.

 $\begin{array}{l} 6^{16} \ 10^{66} \ 10^{66} \ \hline \end{array}$ or $8^{12} \ \hline$

or $10^{10} \ \hline$ or $6^{110} \ \hline$ or $10^{10} \ \hline$

or $96 \ \hline$ generated by two

or elations
 $\beta^3 = 1.$ $(*)$ is a solvable group of order 96 generated by two elements $R,\,S$ subject to the relations $S^3 = S^8 = (RS)^2 = (S^2R^{-1})^3 = 1.$

Folding ^a surface

Let G be a map on a surface S and f a fixed-point free involution on $S;$ denote by \tilde{G} $\!$ the corresponding map on the folded surface S .

- \bullet Zigzags of G, which are invariant under f, are mapped to zigzags of half-length and half-signature in G .
- If $Z_2=f(Z_1)$ with $Z_2\neq Z_1$, then we put compatible orientation on $Z_i.$ Then, the Z_i are mapped to a zigzag σ of \tilde{G} $\mathbb {Y}$ with the signature of Z_1 plus the half of the intersection between Z_1 and $Z_2.$

 plane is ^a folding of the Dodecahedron by central inversion. Example: Petersen graph embedded on the projective

Lins trialities

Jones, Thornton (1987): those are only "good" dualities.

- 1. S. Lins, *Graph-Encoded Maps*, J. Combinatorial Theory Ser. B **³²** (1982) 171–181.
- 2. K. Anderson and D.B. Surowski, *Coxeter-Petrie Complexes* of Regular Maps, European J. of Combinatorics **23-8** (2002) 861–880.

Example: Tetrahedron

 $\frac{1}{2}$ $\frac{1}{\sqrt{L}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ - $\mathcal{L}(\mathcal{T}_{\text{other}} | \mathbf{L}_{\text{other}})$ two Lins maps on projective plane.

Bipartite skeleton case

Two representation of $skew(Cube)$: on Torus and as a Cube with cyclic orientation of vertices (marked by \cup) reversed. **Theorem**

For bipartite graph embedded in oriented surface, the skew operation is, in fact, reversing orientation of one of the part of the bipartition.

Prisms and antiprisms

Let χ denotes the Euler characteristic. We conjecture:

- $skew(Prism_m)$ has $\chi = gcd(m, 4) m$ and is oriented
iff m is even;
 $phial(Prism_m)$ has $\chi = 2 + gcd(m, 4) 2m$ and is iff m is even;
- $\mathit{hial}(Prism_m)$ has $\chi = 2 + \mathit{gcd}(m,4) 2m$ and is
ion-oriented.
 keul (APrism) has $\chi = 1 + \mathit{gcd}(m,3) 2m$ and non-oriented.
- $\begin{split} \mathit{skew}(APrism_m) \;\mathsf{has}\; \chi &= 1 + \mathit{gcd}(m,3) 2m \;\mathsf{and}\; \mathsf{is} \ \mathsf{non-oriented;} \ \mathit{phial}(APrism_m) \;\mathsf{has}\; \chi &= 3 + \mathit{acd}(m,3) 2m \;\mathsf{and}\; \mathsf{is} \end{split}$) has $\chi=1$
) has $\chi=3$ non-oriented;
- $\mathit{hial}(\mathit{APrism}_m)$ has $\chi = 3 + \mathit{gcd}(m,3) 2m$ and is intented. oriented.

VI. Zigzags

on n -dimensional

complexes

Zigzags on *n*-dimensional polytopes

A flag $u=(f_0,\ldots)$ $i,j_{n-1})$ is a sequence of faces f_i (of
nension i with $f_i\subset f_{i+1}.$ ere exist an unique flag $\sigma_i(u)$, which polytope $P)$ of dimension i with $f_i\subset f_{i+1}.$ Given a flag u , there exist an unique flag $\sigma_i(u)$, which differs from u only in position $i.$

A zigzag z is a circuit of flags $(u_j)_{1\leq}$ -, such that $u_j = \sigma_n \ldots \sigma_1(u_{j-1})$; the number of flags is called its length.

The zigzags partition the flag-set of $P.$ -vector of P is a vector, listing zigzags with their lengths.

Proposition

If the dimension of polytope is odd, then the length of any zigzag is even.

Zigzag of reg. and semireg. d -polytopes

Reg.-faced and Conway's polytopes

