# Zigzags in plane graphs and generalizations

#### Mathieu Dutour

ENS/CNRS, Paris and Hebrew University, Jerusalem

and

#### Michel Deza

ENS/CNRS, Paris and ISM, Tokyo

I. Simple two-faced

polyhedra

#### **Polyhedra and planar graphs**

A graph is called *k*-connected if after removing any set of k-1 vertices it remains connected.

The skeleton of a polytope P is the graph G(P) formed by its vertices, with two vertices adjacent if they generate a face of P.

Theorem (Steinitz)

(i) A graph G is the skeleton of a 3-polytope if and only if it is planar and 3-connected.

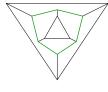
(ii) *P* and *P'* are in the same combinatorial type if and only if G(P) is isomorphic to G(P').

The dual graph  $G^*$  of a plane graph G is the plane graph formed by the faces of G, with two faces adjacent if they share an edge.

#### Simple two-faced polyhedra

A polyhedron is called simple if all its vertices are 3-valent. If one denote  $p_i$  the number of faces of gonality *i*, then Euler's relation take the form:

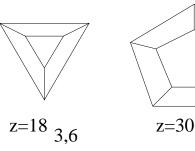
$$12 = \sum_i (6-i)p_i \; .$$


A simple planar graph is called two-faced if the gonality of its faces has only two possible values:

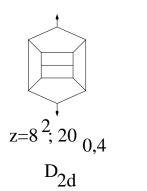
a and b, where  $3 \le a < b \le 6$ .

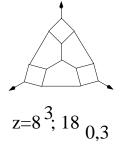
We consider mainly classes  $q_n$ , i.e. simple planar graphs with n vertices and (a, b) = (q, 6);

there are 3 cases:  $3_n$ ,  $4_n$ ,  $5_n$ .

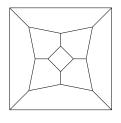

| (a,b) | Polyhedra          | Exist if and only if  | $p_a$              | n                  |
|-------|--------------------|-----------------------|--------------------|--------------------|
| (5,6) | $5_n$ (fullerenes) | $p_6 \in N - \{1\}$   | $p_5 = 12$         | $n = 20 + 2p_6$    |
| (4,6) | $4_n$              | $p_6 \in N - \{1\}$   | $p_4 = 6$          | $n = 8 + 2p_6$     |
| (3,6) | $3_n$              | $p_6/2 \in N - \{1\}$ | $p_3 = 4$          | $4 + 2p_6$         |
| (4,5) | 4 dual deltahedra  | $p_5 = 2, 3, 4, 5$    | $p_4 = 5, 4, 3, 2$ | n = 10, 12, 14, 16 |
| (3,5) | Dürer's Octahedron | $p_5 = 6$             | $p_3 = 2$          | n = 12             |
| (3,4) | Prism <sub>3</sub> | $p_4 = 3$             | $p_3 = 2$          | n = 6              |




z=6; 30 <sub>6,6</sub> D <sub>3d</sub>


6

 $^{\rm D}_{\rm 3h}$ 

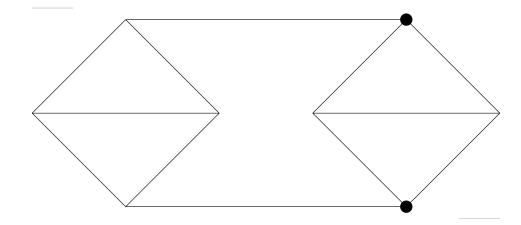



z=30<sub>5,10</sub> D<sub>5h</sub>





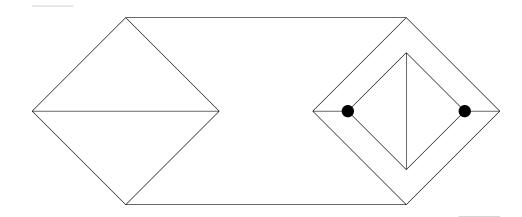
 $\mathsf{D}_{\mathrm{3h}}$ 




z=8; 40 <sub>8,8</sub> D<sub>4d</sub>

#### k-connectedness

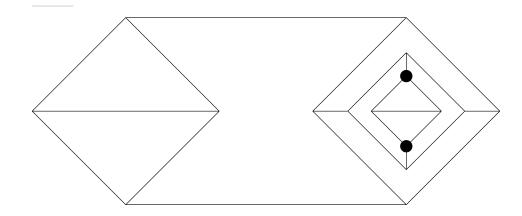
#### Theorem


- *(i)* Any 3-valent plane graph without (>6)-gonal faces is 2-connected.
- (ii) Moreover, any 3-valent plane graph without (>6)-gonal faces is 3-connected except of the following serie  $G_n$ :



#### k-connectedness

#### Theorem


- *(i)* Any 3-valent plane graph without (>6)-gonal faces is 2-connected.
- (ii) Moreover, any 3-valent plane graph without (>6)-gonal faces is 3-connected except of the following serie  $G_n$ :



#### k-connectedness

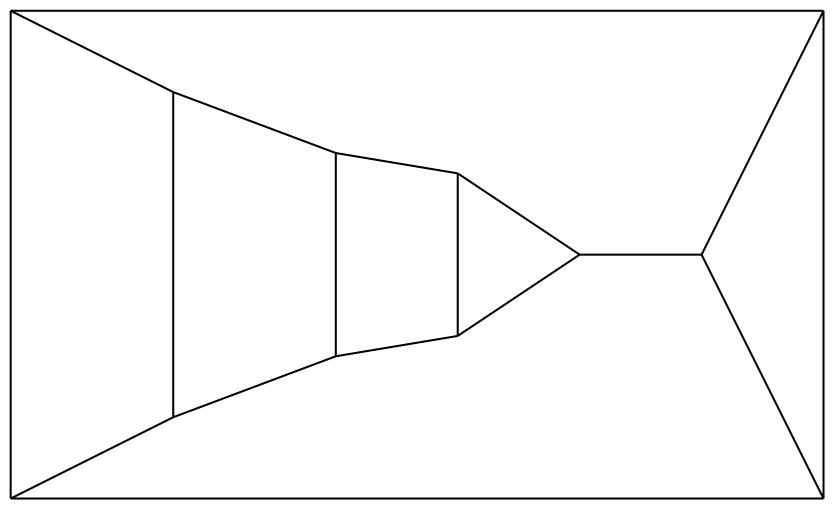
#### Theorem

- *(i)* Any 3-valent plane graph without (>6)-gonal faces is 2-connected.
- (ii) Moreover, any 3-valent plane graph without (>6)-gonal faces is 3-connected except of the following serie  $G_n$ :



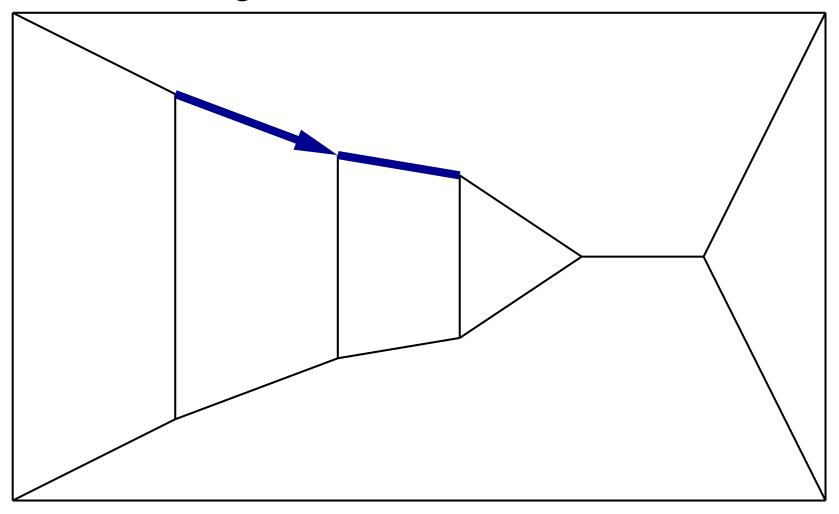
### **Point groups**

(point group)  $Isom(P) \subset Aut(G(P))$  (combinatorial group) Theorem(Mani, 1971) Given a 3-connected planar graph G, there exist a 3-polytope P, whose group of isometries is isomorphic to Aut(G) and G(P) = G.


So, Aut(G) of plane graphs G are finite subgroups of O(3). The symmetry groups of graphs  $q_n$  are known:

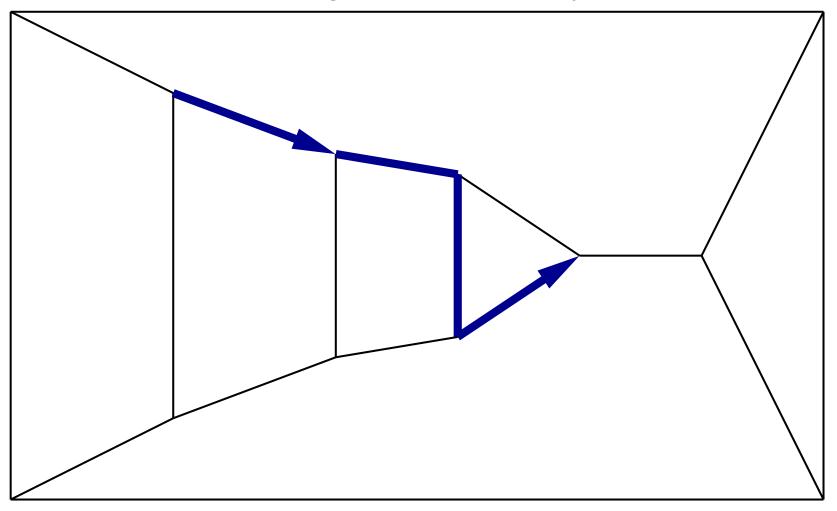
- For  $3_n$ :  $D_2$ ,  $D_{2h}$ ,  $D_{2d}$ , T,  $T_d$  (Fowler and al.)
- For  $4_n$ :  $C_1$ ,  $C_s$ ,  $C_2$ ,  $C_i$ ,  $C_{2v}$ ,  $C_{2h}$ ,  $D_2$ ,  $D_3$ ,  $D_{2d}$ ,  $D_{2h}$ ,  $D_{3d}$ ,  $D_{3h}$ ,  $D_6$ ,  $D_{6h}$ , O,  $O_h$  (Dutour and Deza)
- For  $5_n$ :  $C_1$ ,  $C_2$ ,  $C_i$ ,  $C_s$ ,  $C_3$ ,  $D_2$ ,  $S_4$ ,  $C_{2v}$ ,  $C_{2h}$ ,  $D_3$ ,  $S_6$ ,  $C_{3v}$ ,  $C_{3h}$ ,  $D_{2h}$ ,  $D_{2d}$ ,  $D_5$ ,  $D_6$ ,  $D_{3h}$ ,  $D_{3d}$ , T,  $D_{5h}$ ,  $D_{5d}$ ,  $D_{6h}$ ,  $D_{6d}$ ,  $T_d$ ,  $T_h$ , I,  $I_h$  (Fowler and al.)

II. Zigzags



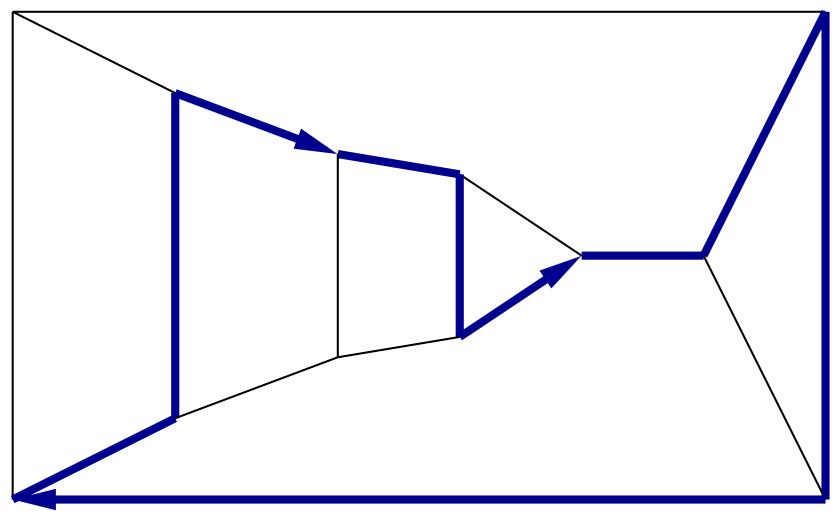

#### A plane graph G





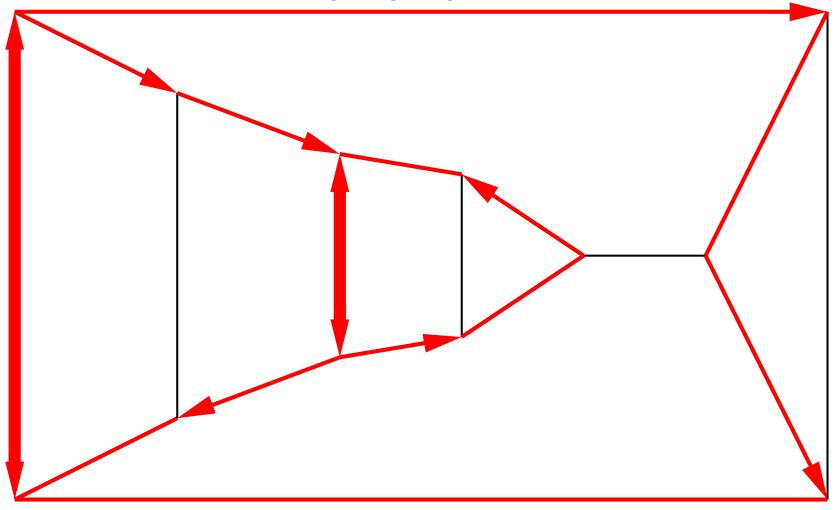

#### Take two edges




Zigzags

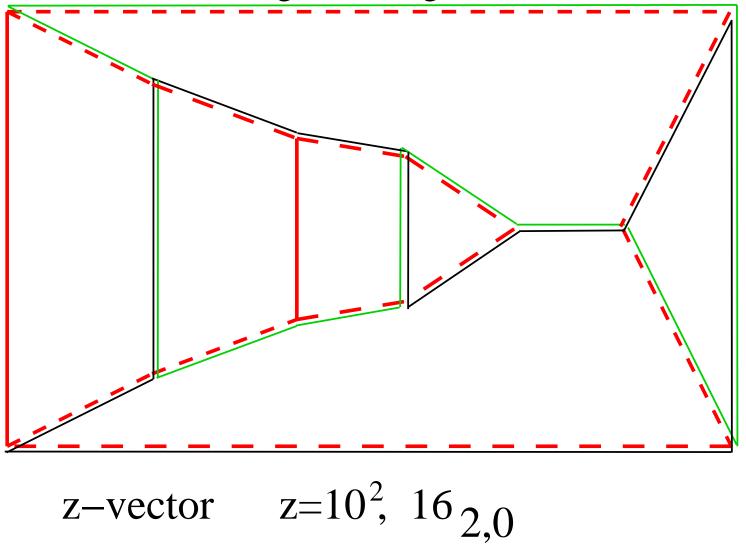
#### Continue it left-right alternatively ....





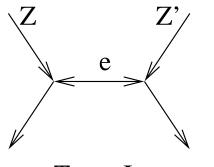

#### ... until we come back



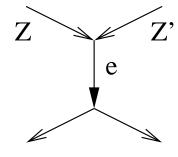



#### A self-intersecting zigzag




Zigzags

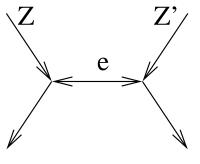
#### A double covering of 18 edges: 10+10+16




### **Intersection Types**

Let Z and Z' be (possibly, Z = Z') zigzags of a plane graph G and let an orientation be selected on them. An edge of intersection  $Z \cap Z'$  is called of type I or type II, if Z and Z' traverse e in opposite or same direction, respectively



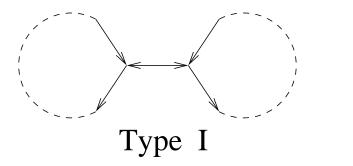


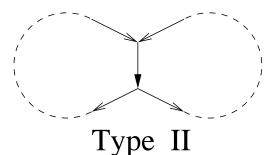



Type II

### **Intersection Types**

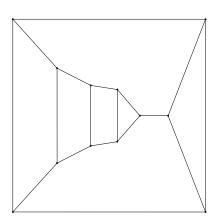
Let Z and Z' be (possibly, Z = Z') zigzags of a plane graph G and let an orientation be selected on them. An edge of intersection  $Z \cap Z'$  is called of type I or type II, if Z and Z' traverse e in opposite or same direction, respectively





Z Z'e

Type I

Type II


The types of self-intersection depends on orientation chosen on zigzags except if Z = Z':





## **Zigzag parameters**

- The signature of a zigzag Z is the pair  $(\alpha_1, \alpha_2)$ , where  $\alpha_1$  and  $\alpha_2$  are the numbers of its edges of self-intersection of type I and type II, respectively.
- The intersection vector Int(Z) lists pairs of intersection  $(\alpha_1, \alpha_2)$  with all other zigzags.
- z-vector of G is the vector enumerating lengths (numbers of edges) of all its zigzags with their signature as subscript.



2 zigzags with Int = (1,3), (3,3)1 self-intersecting with  $Int = (3,3)^2$ 

### **Duality and types**

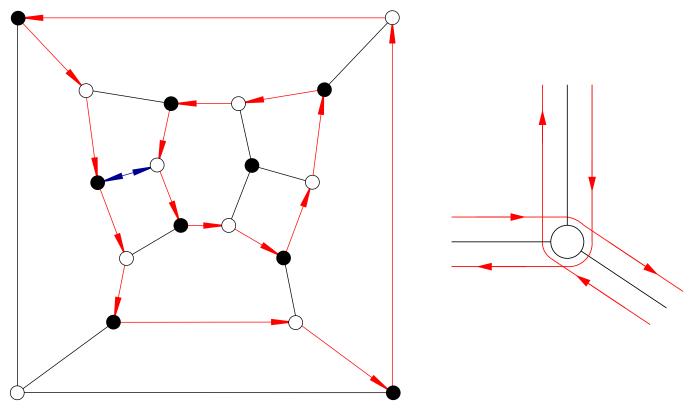
#### Theorem

The zigzags of a plane graph G are in one-to-one correspondence with zigzags of  $G^*$ . The length is preserved, but intersection of type I and II are interchanged.

#### Theorem

Let *G* be a plane graph; for any orientation of all zigzags of *G*, we have:

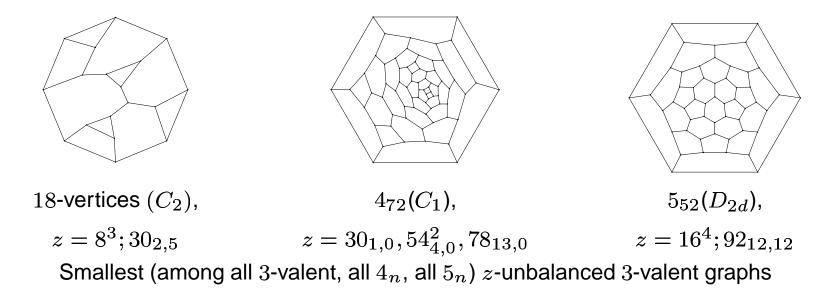
(*i*) The number of edges of type II, which are incident to any fixed vertex, is even.


(ii) The number of edges of type I, which are incident to any fixed face, is even.

### **Bipartite graphs**

**Remark** A plane graph is **bipartite** if and only if its faces have even gonality.

**Theorem** (Shank-Shtogrin)


For any planar bipartite graph G there exist an orientation of zigzags, with respect to which each edge has type I.



## Zigzag properties of a graph

- z-uniform: all zigzags have the same length and signature,
- z-transitive: symmetry group is transitive on zigzags,
- z-knotted: there is only one zigzag,
- *z*-balanced: all zigzags of the same length and signature, have identical intersection vectors.

All known *z*-uniform 3-valent graphs are *z*-balanced.



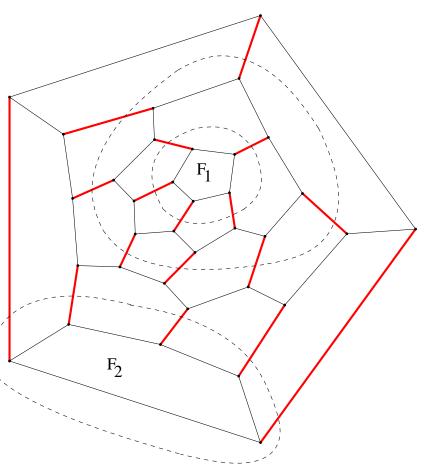
## Zigzags of reg. and semireg. polyhedra

| #edges | polyhedron                  | z-vector  | int. vector            |
|--------|-----------------------------|-----------|------------------------|
| 6      | Tetrahedron                 | $4^{3}$   | $(1,1)^2$              |
| 12     | Cube, Octahedron            | $6^{4}$   | $(0,2)^{3}$            |
| 30     | Dodecahedron, Icosahedron   | $10^{6}$  | $(0,2)^5$              |
| 24     | Cuboctahedron               | 86        | $(0,2)^4, (0,0)$       |
| 60     | Icosidodecahedron           | $10^{12}$ | $(0,2)^5, (0,0)^6$     |
| 48     | Rhombicuboctahedron         | $12^{8}$  | $(0,2)^6, (0,0)$       |
| 120    | Rhombicosidodecahedron      | $20^{12}$ | $(0,2)^{10},(0,0)$     |
| 72     | Truncated Cuboctahedron     | $18^{8}$  | $(0,6), (0,2)^6$       |
| 180    | Truncated Icosidodecahedron | $30^{12}$ | $(0, 10), (0, 2)^{10}$ |
| 18     | Truncated Tetrahedron       | $12^{3}$  | $(3,3)^2$              |
| 36     | 36 Truncated Octahedron     |           | $(0,4), (0,2)^4$       |

| 36  | Truncated Cube                       | $18^{4}$                | $(2,4)^3$             |
|-----|--------------------------------------|-------------------------|-----------------------|
| 90  | Truncated Icosahedron                | $18^{10}$               | $(0,2)^{9}$           |
| 90  | Truncated Dodecahedron               | $30^{6}$                | $(2,4)^5$             |
| 60  | Snub Cube                            | $30^4_{3,0}$            | $(4,4)^3$             |
| 150 | Snub Dodecahedron                    | $50_{5,0}^{6}$          | $(4,4)^5$             |
| 3m  | $Prism_m$ , $m \equiv 0 \pmod{4}$    | $(\frac{3m}{2})^4$      | $(0, \frac{m}{2})^3$  |
| 3m  | $Prism_m$ , $m\equiv 2 \pmod{4}$     | $(3m_{rac{m}{2},0})^2$ | (0,2m)                |
| 3m  | $Prism_m$ , $m\equiv 1,3 \pmod{4}$   | $6m_{m,2m}$             |                       |
| 4m  | $APrism_m, m \equiv 0 \pmod{3}$      | $(2m)^4$                | $(0, \frac{2m}{3})^3$ |
| 4m  | $APrism_m, m \equiv 1,2 \pmod{3}$    | $2m; 6m_{0,2m}$         |                       |
| 84  | Klein map(oriented, genus 3 surface) | $8^{21}$                | $(0,1)^8,0^{12}$      |
| 48  | Dyck map(oriented, genus 3 surface)  | $6^{16}$                | $(0,1)^6,0^9$         |

### **First generalizations of zigzags**

Above Table contains plane graphs, which are not 3-valent, and non-planar graphs.


In fact, the notion of zigzag can be easily generalized on any plane graph and on a graph, embedded in any oriented surface.

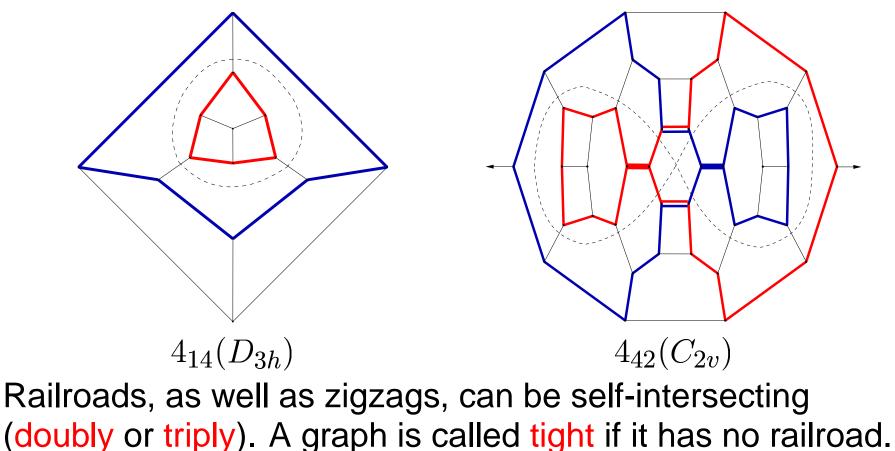
Moreover, this notion, being local, can be generalized even for non-oriented surfaces.

#### **Perfect matching on** $5_n$ **graphs**

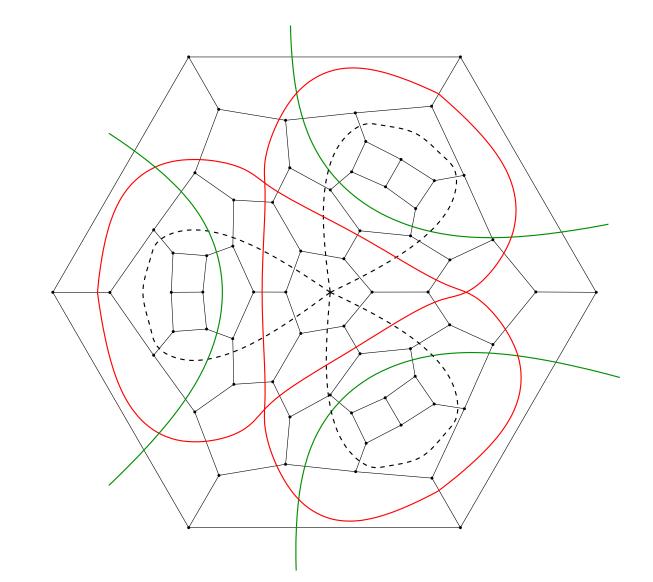
Let G be a z-knotted graph  $5_n$ .

- (i)  $z = n_{\alpha_1,\alpha_2}$  with  $\alpha_1 \ge \frac{n}{2}$ . If  $\alpha_1 = \frac{n}{2}$  then the edges of type I form a perfect matching PM
- (iii) every face incident to two or zero edges of PM
- (iv) two faces,  $F_1$  and  $F_2$  are incident to zero edges of PM, PM is organized around them in concentric circles.



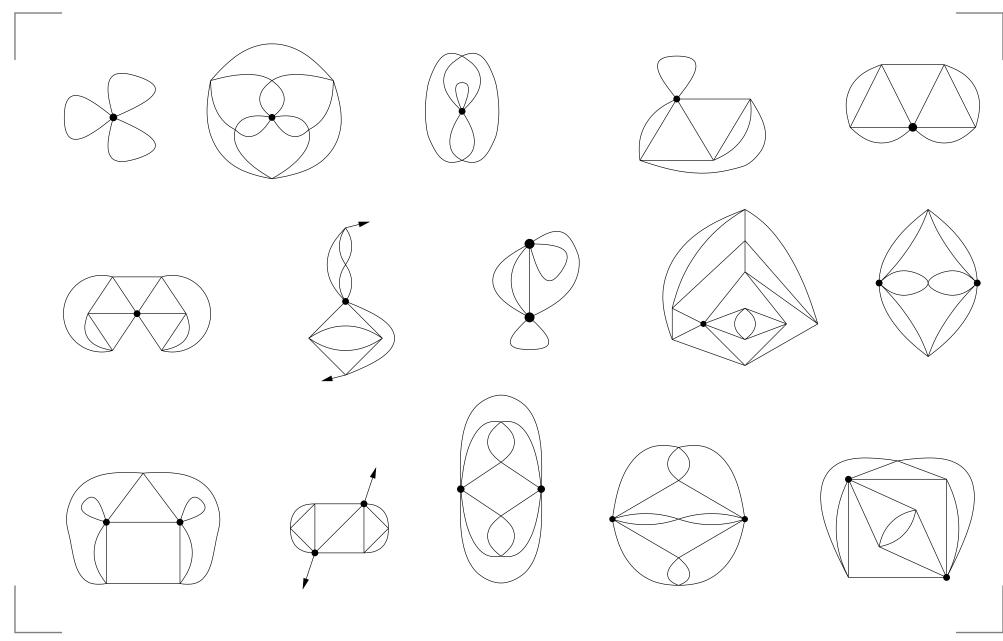

M. Deza, M. Dutour and P.W. Fowler, *Zigzags, Railroads and Knots in Fullerenes*, (2002).

III. railroad structure of

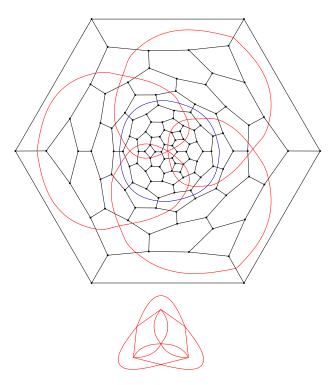

graphs q<sub>n</sub>

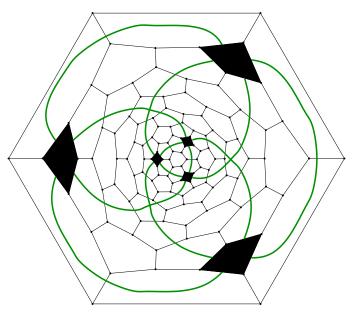
#### Railroads

A railroad in graph  $q_n$ , q = 3, 4, 5 is a circuit of hexagonal faces, such that any of them is adjacent to its neighbors on opposite faces. Any railroad is bordered by two zigzags.




### $4_{66}(D_{3h})$ with triply self-int. railroad

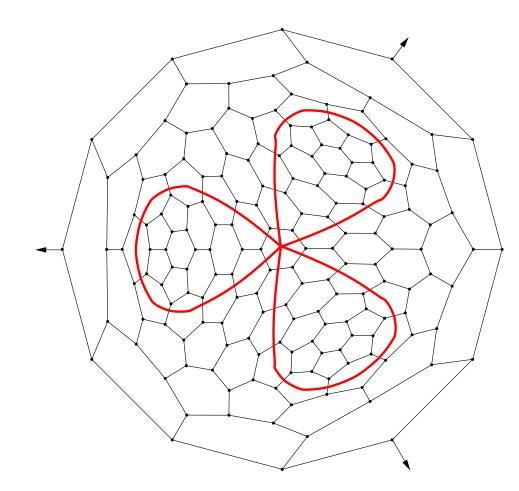




It is smallest such  $4_n$ . Green railroad also triply self-int.

### **Railroads with triple points in small** $4_n$



## **Railroads and pseudo-roads of** $4_{126}(D_{3h})$



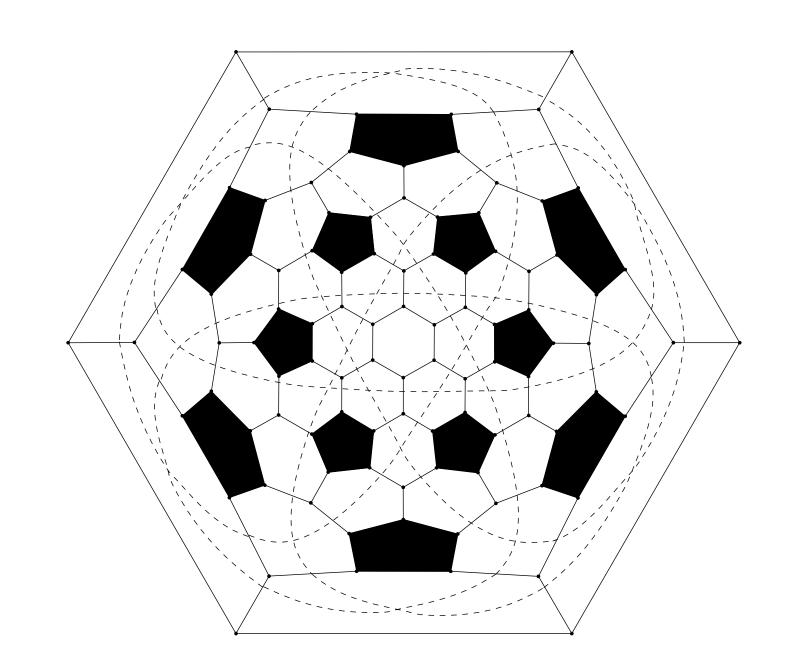




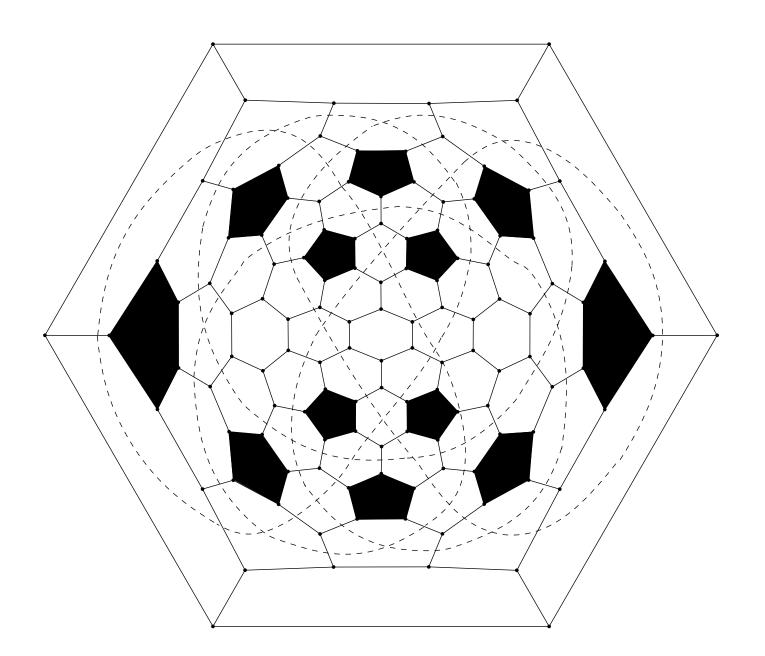

One of two self-intersecting railroads and the equatorial simple railroad All twelve pseudo-roads A pseudo-road between 4-gons b and c is a sequence of hexagons  $a_1, \ldots, a_l$ , s.t. if  $a_0 = b$  and  $a_{l+1} = c$ , then any  $a_i$ ,  $1 \le i \le l$ , is adjacent to  $a_{i-1}$  and  $a_{i+1}$  on opposite edges.

## **Triply intersecting railroad in** $5_{176}(C_{3v})$

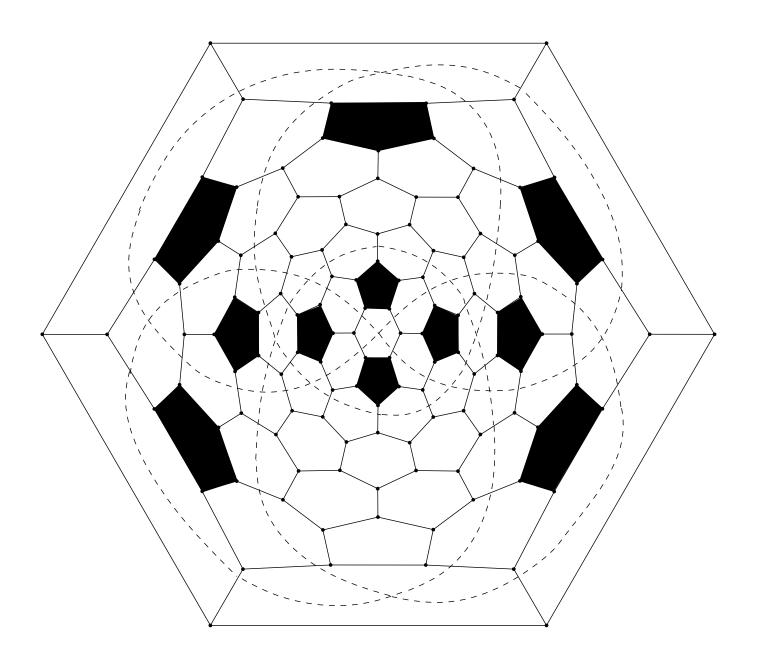



**Conjecture:** a railroad-curve of any  $4_n$  appears in some  $5_m$ .

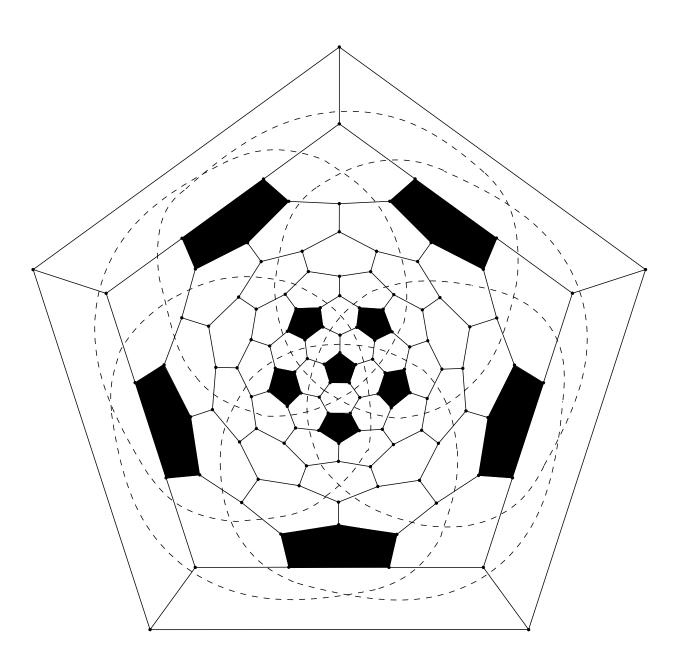
## **Tight** $5_n$ with only simple zigzags


| n   | group    | z-vector     | orbit lengths | int. vector             |
|-----|----------|--------------|---------------|-------------------------|
| 20  | $I_h$    | $10^{6}$     | 6             | $2^5$                   |
| 28  | $T_d$    | $12^{7}$     | 3,4           | $2^6$                   |
| 48  | $D_3$    | $16^{9}$     | 3,3,3         | $2^8$                   |
| 60  | $I_h$    | $18^{10}$    | 10            | $2^9$                   |
| 60  | $D_3$    | $18^{10}$    | 1,3,6         | $2^9$                   |
| 76  | $D_{2d}$ | $22^4, 20^7$ | 1,2,4,4       | $4,2^9$ and $2^{10}$    |
| 88  | T        | $22^{12}$    | 12            | $2^{11}$                |
| 92  | $T_h$    | $22^6, 24^6$ | 6,6           | $2^{11}$ and $2^{10},4$ |
| 140 | Ι        | $28^{15}$    | 15            | $2^{14}$                |

Conjecture: this list is complete (checked for  $n \le 200$ ). It gives 7 Grünbaum arrangements of plane curves.

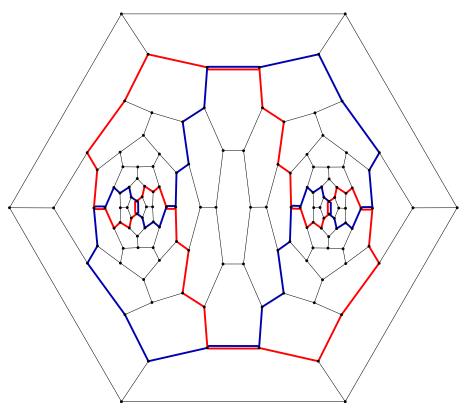

#### **First IPR** $5_n$ with self-intersect. railroad




**IPR**  $5_{120}(C_{2v})$ 



**IPR**  $5_{120}(C_{2v})$ 




#### **IPR** $5_{120}(D_{5h})$



#### **Comparing graphs** $q_n$

| q                             | 3         | 4              | 5             |
|-------------------------------|-----------|----------------|---------------|
| max # of zigzags in tight     | 3         | 8(?)           | 15(?)         |
| all tight with simple zigzags | all tight | Cube, Tr. Oct. | 9 examples(?) |
| int. size of 2 simple zigzags | any even  | 2, 4, 6        | any even      |



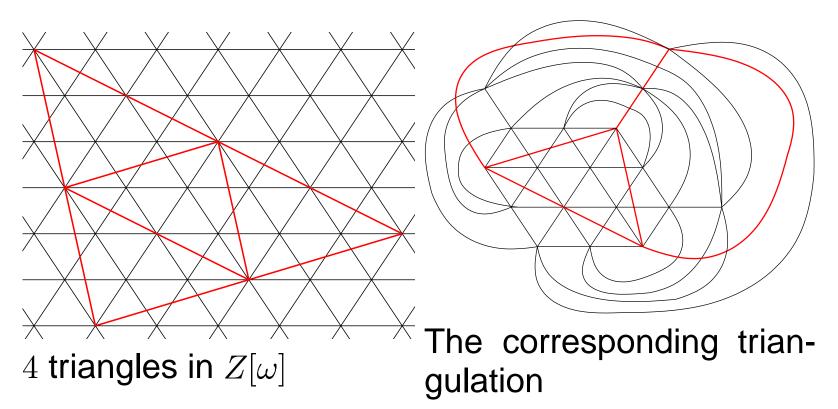
# IV. parametrizing graphs $q_n$

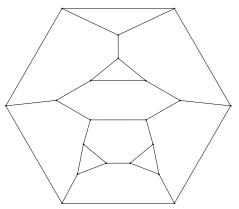
#### **Parametrizing graphs** $q_n$

idea: the hexagons are of zero curvature, it suffices to give relative positions of faces of non-zero curvature.

- Goldberg (1937) All  $3_n$ ,  $4_n$  or  $5_n$  of symmetry (T,  $T_d$ ), (O,  $O_h$ ) or (I,  $I_h$ ) are given by Goldberg-Coxeter construction  $GC_{k,l}$ .
- Fowler and al. (1988) All  $5_n$  of symmetry  $D_5$ ,  $D_6$  or T are described in terms of 4 parameters.
- Graver (1999) All  $5_n$  can be encoded by 20 integer parameters.
- Thurston (1998) The  $5_n$  are parametrized by 10 complex parameters.
- Sah (1994) Thurston's result implies that the Nrs of  $3_n$ ,  $4_n$ ,  $5_n \sim n$ ,  $n^3$ ,  $n^9$ .

#### **Goldberg-Coxeter construction**


Given a 3-valent plane graph G, the zigzags of the Goldberg-Coxeter construction of  $GC_{k,l}(G)$  are obtained by:


- Associating to G two elements L and R of a group called moving group,
- computing the value of the (k, l)-product  $L \odot_{k, l} R$ ,
- the lengths of zigzags are obtained by computing the cycles structure of  $L \odot_{k,l} R$ .

For tight  $5_n$  of symmetry *I* or  $I_h$  this gives 6, 10 or 15 zigzags.

M. Dutour and M. Deza, *Goldberg-Coxeter construction for* 3- *or* 4-*valent plane graphs*, submitted

#### The structure of graphs $3_n$





The graph  $3_{20}(D_{2d})$ 

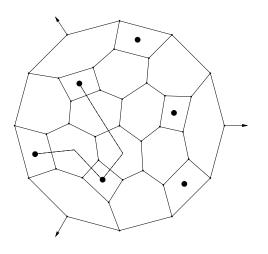
#### *z*- and railroad-structure of graphs $3_n$

All zigzags and railroads are simple.

The z-vector is of the form

 $(4s_1)^{m_1}, (4s_2)^{m_2}, (4s_3)^{m_3}$  with  $s_i m_i = \frac{n}{4};$ 

the number of railroads is  $m_1 + m_2 + m_3 - 3$ .


- G has  $\geq 3$  zigzags with equality if and only if it is tight.
- If G is tight, then  $z(G) = n^3$  (so, each zigzag is a Hamiltonian circuit).
- All  $3_n$  are tight if and only if  $\frac{n}{4}$  is prime.
- There exists a tight  $3_n$  if and only if  $\frac{n}{4}$  is odd.

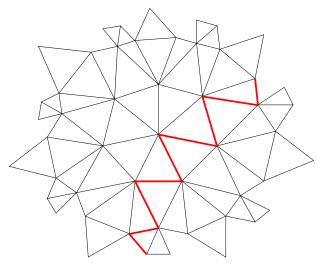
**Conjecture on**  $4_n(D_3)$ , 4 parameters

For tight graphs  $4_n$  of symmetry  $D_3$ ,  $D_{3d}$  or  $D_{3h}$  the *z*-vector is of the form

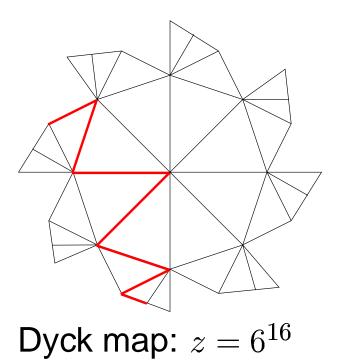
> $a^k$  with  $k \in \{1, 2, 3, 6\}$ or  $a^k, b^l$  with  $k, l \in \{1, 3\}$

- A knotted  $4_n$  of such symmetry has symmetry  $D_3$ .
- if there is a knotted  $4_n$  of symmetry  $D_3$ , then  $\frac{n}{2}$  is the product of at most 2 primes




First *z*-knotted  $4_n$  of symmetry  $D_3$ .

### V. Zigzags


#### on

#### surfaces

#### **Klein and Dyck map**



Klein map:  $z = 8^{21}$ 



Zigzag, being a local notion, is defined on any surface, even on non-orientable ones.

#### **Regular maps**

A flag-transitive map is called regular. Zigzags of regular maps are simple.

| map                   | n   | rot. group | z         | $z(GC_{k,l})/k^2 + kl + l^2$        |
|-----------------------|-----|------------|-----------|-------------------------------------|
| <b>Dod.</b> $\{5^3\}$ | 20  | $A_5$      | $10^{6}$  | $10^6$ or $6^{10}$ or $4^{15}$      |
| Klein* $\{7^3\}$      | 56  | PSL(2,7)   | $8^{21}$  | $8^{21}$ or $6^{28}$                |
| Dyck* $\{8^3\}$       | 32  | (*)        | $6^{16}$  | $6^{16}$ or $8^{12}$                |
| $\{11^3\}$            | 220 | PSL(2, 11) | $10^{66}$ | $10^{66}$ or $6^{110}$ or $12^{55}$ |

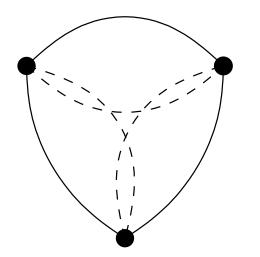
(\*) is a solvable group of order 96 generated by two elements R, S subject to the relations  $R^3 = S^8 = (RS)^2 = (S^2R^{-1})^3 = 1.$ 

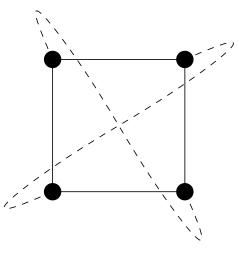
#### **Folding a surface**

Let *G* be a map on a surface *S* and *f* a fixed-point free involution on *S*; denote by  $\tilde{G}$  the corresponding map on the folded surface  $\tilde{S}$ .

- Zigzags of G, which are invariant under f, are mapped to zigzags of half-length and half-signature in  $\tilde{G}$ .
- If  $Z_2 = f(Z_1)$  with  $Z_2 \neq Z_1$ , then we put compatible orientation on  $Z_i$ . Then, the  $Z_i$  are mapped to a zigzag  $\tilde{Z}$  of  $\tilde{G}$  with the signature of  $Z_1$  plus the half of the intersection between  $Z_1$  and  $Z_2$ .

Example: Petersen graph embedded on the projective plane is a folding of the Dodecahedron by central inversion.


#### **Lins trialities**


| (v, f, z)  ightarrow                  | our notation             | notation in [1] | notation in [2]         |
|---------------------------------------|--------------------------|-----------------|-------------------------|
| (v, f, z)                             | $\mathcal{M}$            | gem             | $\mathcal{M}$           |
| (f, v, z)                             | $\mathcal{M}^*$          | dual gem        | $\mathcal{M}^*$         |
| $(oldsymbol{z}, f, oldsymbol{v})$     | $phial(\mathcal{M})$     | phial gem       | $p((p(\mathcal{M}))^*)$ |
| $(f, \boldsymbol{z}, \boldsymbol{v})$ | $(phial(\mathcal{M}))^*$ | skew-dual gem   | $(p(\mathcal{M}))^*$    |
| (v, z, f)                             | $skew(\mathcal{M})$      | skew gem        | p(M)                    |
| $(oldsymbol{z},oldsymbol{v},f)$       | $(skew(\mathcal{M}))^*$  | skew-phial gem  | $p(\mathcal{M}^*)$      |

Jones, Thornton (1987): those are only "good" dualities.

- 1. S. Lins, *Graph-Encoded Maps*, J. Combinatorial Theory Ser. B **32** (1982) 171–181.
- 2. K. Anderson and D.B. Surowski, *Coxeter-Petrie Complexes* of *Regular Maps*, European J. of Combinatorics **23-8** (2002) 861–880.

#### **Example: Tetrahedron**





phial(Tetrahedron)skew(Tetrahedron)two Lins maps on projective plane.

#### **Bipartite skeleton case**



Two representation of skew(Cube): on Torus and as a Cube with cyclic orientation of vertices (marked by  $\bigcirc$ ) reversed. Theorem

For bipartite graph embedded in oriented surface, the skew operation is, in fact, reversing orientation of one of the part of the bipartition.

#### **Prisms and antiprisms**

Let  $\chi$  denotes the Euler characteristic. We conjecture:

- $skew(Prism_m)$  has  $\chi = gcd(m, 4) m$  and is oriented iff *m* is even;
- $phial(Prism_m)$  has  $\chi = 2 + gcd(m, 4) 2m$  and is non-oriented.
- $skew(APrism_m)$  has  $\chi = 1 + gcd(m, 3) 2m$  and is non-oriented;
- $phial(APrism_m)$  has  $\chi = 3 + gcd(m, 3) 2m$  and is oriented.

## VI. Zigzags

#### on *n*-dimensional

complexes

#### **Zigzags on** *n***-dimensional polytopes**

A flag  $u = (f_0, \ldots, f_{n-1})$  is a sequence of faces  $f_i$  (of polytope P) of dimension i with  $f_i \subset f_{i+1}$ . Given a flag u, there exist an unique flag  $\sigma_i(u)$ , which differs from u only in position i.

A zigzag *z* is a circuit of flags  $(u_j)_{1 \le j \le l}$ , such that  $u_j = \sigma_n \dots \sigma_1(u_{j-1})$ ; the number of flags is called its length.

The zigzags partition the flag-set of P. *z*-vector of P is a vector, listing zigzags with their lengths.

#### **Proposition**

If the dimension of polytope is odd, then the length of any zigzag is even.

#### **Zigzag of reg. and semireg.** *d***-polytopes**

| d | d-polytope                             | <i>z</i> -vector       |
|---|----------------------------------------|------------------------|
| 3 | Dodecahedron                           | $10^{6}$               |
| 4 | 24-cell                                | $12^{48}$              |
| 4 | 600-cell                               | $30^{240}$             |
| d | $d$ -simplex= $\alpha_d$               | $(n+1)^{n!/2}$         |
| d | $d$ -cross-polytope= $\beta_d$         | $(2n)^{2^{n-2}(n-1)!}$ |
| 4 | octicosahedric polytope                | $45^{480}$             |
| 4 | snub 24-cell                           | $20^{144}$             |
| 4 | $0_{21}$ =Med( $\alpha_4$ )            | $15^{12}$              |
| 5 | $1_{21}$ =Half-5-Cube                  | $12^{240}$             |
| 6 | $2_{21}$ =Schläfi polytope (in $E_6$ ) | $18^{4320}$            |
| 7 | $3_{21}$ =Gosset polytope (in $E_7$ )  | $90^{48384}$           |
| 8 | $4_{21}$ (240 roots of $E_8$ )         | $36^{29030400}$        |

#### **Reg.-faced and Conway's polytopes**

| d | d-polytope                       | <i>z</i> -vector                           |
|---|----------------------------------|--------------------------------------------|
| 4 | Pyr(Icosahedron)                 | $25^{12}$                                  |
| 4 | BPyr(Icosahedron)                | $40^{12}$                                  |
| 4 | $0_{21} + Pyr(eta_3)$            | $42^{6}$                                   |
| d | $Pyr(\beta_{d-1}), d \ge 4$      | $(rac{2(d^2-1)}{gcd(d,2)})^x$             |
| d | $BPyr(\alpha_{d-1})$ , $d \ge 5$ | $ig(rac{2d^2}{gcd(d,2)}ig)^y$             |
| 4 | Grand Antiprism                  | $30^{20}, 50^{40}, 90^{20}$                |
| 4 | $C_p 	imes C_q$                  | $(rac{2pq}{t})^{2t}, (rac{4pq}{t})^{2t}$ |
|   | (put $t = gcd(p,q)$ )            | if both, $p$ and $q$ , are odd             |
|   |                                  | $(rac{2pq}{t})^{6t}$ , otherwise          |