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I. Simple

two-faced

polyhedra

– p.2/48



Polyhedra and planar graphs

A graph is called

�

-connected if after removing any set of

�

�
�

vertices it remains connected.

The skeleton of a polytope

�

is the graph
� � � �

formed by
its vertices, with two vertices adjacent if they generate a
face of

�

.

Theorem (Steinitz)
(i) A graph

�

is the skeleton of a
�

-polytope if and only if it is
planar and

�

-connected.
(ii)

�

and

� �

are in the same combinatorial type if and only if

� � � �

is isomorphic to
� � � � �

.

The dual graph

� 	

of a plane graph

�

is the plane graph
formed by the faces of

�

, with two faces adjacent if they
share an edge.
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Simple two-faced polyhedra

A polyhedron is called simple if all its vertices are
�

-valent.
If one denote �� the number of faces of gonality

�
, then

Euler’s relation take the form:

�� �
�

��

�
� � ����

A simple planar graph is called two-faced if the gonality of
its faces has only two possible values:

� and

	

, where
� 
 � � 	 
 �

.

We consider mainly classes �� , i.e. simple planar graphs
with � vertices and

� ���
	 � � � ��
� �

;
there are

�

cases:

�
 ,

�
 ,

�
 .
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� ��� � �

Polyhedra Exist if and only if ��� 	

�
 � � � 
 � (fullerenes) � � ��� �� � �� � � � 	 � �� � � �

�� � � � � � � � ��� �� � �� � � 	 � � � � �

�� � � � � � � � � � � � �� � �� � � � � � �

�� � 
 �

4 dual deltahedra � � � � � � � � � 
 �� � 
 � � � � � � 	 � � � � � � � � � � � �

�� � 
 �

Dürer’s Octahedron � � � � �� � � 	 � � �

�� � � �

Prism� �� � � �� � � 	 � �

z=30 5,10 z=8  ; 183
0,3z=8  ; 20 0,4

2z=18 3,6z=6; 30 6,6

 D     3d 3h D       D    5h   D    2d  D     4d

8,8z=8; 40

 D    3h
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-connectedness

Theorem

(i) Any 3-valent plane graph without (>6)-gonal faces is

�

-connected.

(ii) Moreover, any 3-valent plane graph without (>6)-gonal
faces is

�

-connected except of the following serie

�
 :
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Point groups

(point group)

��� � � � � � � ��� 	 � � � � � �

(combinatorial group)
Theorem(Mani, 1971)
Given a

�

-connected planar graph

�

, there exist a

�

-polytope

�

, whose group of isometries is isomorphic to�� 	 � � �

and

� � � � � �

.

So,

�� 	 � � �

of plane graphs

�

are finite subgroups of


 � � �

.
The symmetry groups of graphs � are known:

● For

�
 :

�� ,

��� �,

�� �,
�

,
� � (Fowler and al.)

● For

�
 :

��� ,

��� ,

�� ,
�� ,
���� ,

�� �,

�� ,

�� ,

��� �,

�� �,

��� �,��� �,

��� ,

��� �,




,

 � (Dutour and Deza)

● For

�
 :

��� ,
�� ,
�� ,

��� ,

�� ,

�� ,

��� ,

���� ,

�� �,

�� ,

�� ,

���� ,�� �,

�� �,
��� �,

� ,

�� ,

��� �,

�� �,

�

,

�� �,

� �,

��� �,

�� �,� �,

� �,
�

,
� � (Fowler and al.)
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II. Zigzags
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Zigzags

A plane graph G
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Zigzags

Take two edges
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Zigzags

Continue it left−right alternatively ....
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Zigzags

... until we come back
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Zigzags

A self−intersecting zigzag
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Zigzags

A double covering of 18 edges: 10+10+16

z=10 ,  162z−vector 2,0
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Intersection Types

Let

�

and

� �

be (possibly,

� � � �

) zigzags of a plane graph

�

and let an orientation be selected on them. An edge of
intersection

� � � �

is called of type I or type II, if
�

and

� �

traverse � in opposite or same direction, respectively

ee

Type  I Type  II

Z’Z
Z Z’

The types of self-intersection depends on orientation
chosen on zigzags except if :

Type  IIType  I
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Zigzag parameters

● The signature of a zigzag

�

is the pair

��� � � � � �
, where

� � and � � are the numbers of its edges of
self-intersection of type I and type II, respectively.

● The intersection vector

� � 	 � � �

lists pairs of intersection

��� � � � � �

with all other zigzags.

● z-vector of

�

is the vector enumerating lengths
(numbers of edges) of all its zigzags with their signature
as subscript.

�
zigzags with

� � 	 � � �
�

� �
�

� �
�

� �

�

self-intersecting with

� � 	 � � �
�

� � �
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Duality and types

Theorem
The zigzags of a plane graph

�

are in one-to-one
correspondence with zigzags of

� 	

. The length is
preserved, but intersection of type I and II are interchanged.

Theorem
Let

�

be a plane graph; for any orientation of all zigzags of

�

, we have:
(i) The number of edges of type II, which are incident to any
fixed vertex, is even.
(ii) The number of edges of type I, which are incident to any
fixed face, is even.
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Bipartite graphs

Remark A plane graph is bipartite if and only if its faces have
even gonality.
Theorem (Shank-Shtogrin)
For any planar bipartite graph

�

there exist an orientation of
zigzags, with respect to which each edge has type I.
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Zigzag properties of a graph

● �-uniform: all zigzags have the same length and signature,

● �-transitive: symmetry group is transitive on zigzags,

● �-knotted: there is only one zigzag,

● �-balanced: all zigzags of the same length and signature, have
identical intersection vectors.

All known �-uniform

�

-valent graphs are �-balanced.

� �

-vertices

� ��� �

,

� � � ��� � � �	� �

� 
 � (

��� ),

� � � � �� � � 
 � �� � � �  � � � � �


 � � (

� � �),

� � � � �� � � � �	� � �

Smallest (among all

�

-valent, all

� � , all


 � ) �-unbalanced

�

-valent graphs
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Zigzags of reg. and semireg. polyhedra

# edges polyhedron �-vector int. vector

6 Tetrahedron

� � ��
�

� � �

12 Cube, Octahedron

� � �	
�


 � �

30 Dodecahedron, Icosahedron
� 	 � �	

�

 � �

24 Cuboctahedron

 � �	
�


 � �
�

�	
�

	 �

60 Icosidodecahedron

� 	 � � �	
�


 � �
�

�	
�

	 � �

48 Rhombicuboctahedron

� 
 � �	
�


 � �
�

�	
�

	 �

120 Rhombicosidodecahedron


	 � � �	
�


 � ��
�

�	
�

	 �

72 Truncated Cuboctahedron

�  � �	
�

� �
�

�	
�


 � �

180 Truncated Icosidodecahedron

�	 � � �	
�

� 	 �
�

�	
�


 � ��

18 Truncated Tetrahedron

� 
 � � �
�

� � �

36 Truncated Octahedron

� 
 � �	
�

� �
�

�	
�


 � �
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36 Truncated Cube

�  � � 

�

� � �

90 Truncated Icosahedron

�  �� �	
�


 � �

90 Truncated Dodecahedron
�	 � � 


�
� � �

60 Snub Cube
�	 �

��� �

� �
�

� � �

150 Snub Dodecahedron

�	 �
� � �

� �
�

� � �

3m

��� �	� 
�� , 
  	 ��� � � � � � � �
�

� � �	
�

�
�

� �

3m

��� �	� 
�� , 
  
 ��� � � � � � � 
�� � � � � �	
�


 
 �

3m

��� �	� 
� , 
  �
�

� ��� � � � � � 
� � � �

4m

� ��� �	� 
� � 
  	 ��� � � � � � 
 
 � � �	
�

� �
�

� �

4m

� ��� �	� 
� � 
  �
�


 �� � � � � 
 
� � 
� � � �

84 Klein map(oriented, genus

�

surface)

 � � �	
�

� � �
�

	 � �

48 Dyck map(oriented, genus

�

surface)

� � � �	
�

� � �
�

	 �
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First generalizations of zigzags

Above Table contains plane graphs, which are not
�

-valent,
and non-planar graphs.

In fact, the notion of zigzag can be easily generalized on
any plane graph and on a graph, embedded in any oriented
surface.

Moreover, this notion, being local, can be generalized even
for non-oriented surfaces.
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Perfect matching on � graphs

Let

�

be a �-knotted graph

��
� .

(i) � � ���� � � � with 	 � 
 �
� . If 	 � �

�
� then the edges of type I form

a perfect matching

� �

(iii) every face incident to two or
zero edges of

� �

(iv) two faces,

� � and

� � are in-
cident to zero edges of

� �
,� �

is organized around them
in concentric circles.

F2

F1

M. Deza, M. Dutour and P.W. Fowler, Zigzags, Railroads and Knots in
Fullerenes, (2002).
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III. railroad

structure of

graphs
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Railroads

A railroad in graph � , � � �
�

�
�

�

is a circuit of hexagonal
faces, such that any of them is adjacent to its neighbors on
opposite faces. Any railroad is bordered by two zigzags.

� � � � ��� � � � � � � ����
�

Railroads, as well as zigzags, can be self-intersecting
(doubly or triply). A graph is called tight if it has no railroad.
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� � � � with triply self-int. railroad

It is smallest such

�
 . Green railroad also triply self-int.

– p.21/48



Railroads with triple points in small �
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Railroads and pseudo-roads of � � � � �

One of two self-intersecting railroads
and the equatorial simple railroad All twelve pseudo-roads

A pseudo-road between

�

-gons

	

and � is a sequence of
hexagons � � , . . . , �� , s.t. if �� � 	

and �� � � � �, then any � � ,

� 
 � 
 �

, is adjacent to � � � � and � � � � on opposite edges.
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Triply intersecting railroad in � � � ���

Conjecture: a railroad-curve of any

�
 appears in some

� �.
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Tight � with only simple zigzags

� group �-vector orbit lengths int. vector


	 ��� � 	 �

6

 �


  ��� � 
 �

3,4

 �

�  � � � � �

3,3,3


 �

�	 ��� �  ��

10


 �

�	 � � �  ��

1,3,6


 �

	 � � � � 
 
 �
�


	 �

1,2,4,4

�
�


 �

and


 ��

  � 
 
 � �

12


 � �


 
 �� 
 
 �
�


 � �
6,6


 � �

and


 ��
�

�

� �	 � 
  � �
15


 � �

Conjecture: this list is complete (checked for � 
 � � �

).
It gives

�

Grünbaum arrangements of plane curves.
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First IPR � with self-intersect. railroad
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IPR � �� � �
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IPR � �� � �
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IPR � �� � �
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Comparing graphs �

q

� � �

max # of zigzags in tight

�  �� � � � �� �

all tight with simple zigzags all tight Cube, Tr. Oct.




examples(?)

int. size of




simple zigzags any even




,
�

,
�

any even
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IV. parametrizing

graphs
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Parametrizing graphs �
idea: the hexagons are of zero curvature, it suffices to give
relative positions of faces of non-zero curvature.

Goldberg (1937) All

�
 ,

�
 or

�
 of symmetry (

�

,

� �), (




,
 �) or (

�

,

� �) are given by Goldberg-Coxeter
construction

� ��
�
�

� .

Fowler and al. (1988) All

�
 of symmetry

�  ,

�� or

�

are described in terms of
�

parameters.

Graver (1999) All

�
 can be encoded by

� �

integer
parameters.

Thurston (1998) The
�
 are parametrized by

� �

complex
parameters.

Sah (1994) Thurston’s result implies that the Nrs of

�
 ,

�
 ,

�
 � �, � � , � �.
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Goldberg-Coxeter construction

Given a

�

-valent plane graph

�

, the zigzags of the
Goldberg-Coxeter construction of

� �
�
�

�
� � �

are obtained by:

Associating to

�

two elements

�

and
�

of a group
called moving group,

computing the value of the

� �
�

� �

-product

� � �
�

� �

,

the lengths of zigzags are obtained by computing the
cycles structure of

� � �
�

� �
.

For tight

�
 of symmetry

�
or

� � this gives

�

,

� �

or

� �

zigzags.
M. Dutour and M. Deza, Goldberg-Coxeter construction for

�

- or

�

-valent
plane graphs, submitted
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The structure of graphs �

�

triangles in

� �
�

� The corresponding trian-
gulation

The graph

� � �
� ��� � �
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- and railroad-structure of graphs �

All zigzags and railroads are simple.

The �-vector is of the form

� � � � � � �
�

� � � � � � �
�

� � � � � � �

with � � � � �
�

� �

the number of railroads is � � � �� � � � �
�

.

�

has

� �

zigzags with equality if and only if it is tight.

If

�

is tight, then �
� � � � � � (so, each zigzag is a

Hamiltonian circuit).

All

�
 are tight if and only if


� is prime.

There exists a tight

�
 if and only if


� is odd.
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Conjecture on � � , parameters
For tight graphs

�
 of symmetry

� � ,

�� � or

�� � the

�-vector is of the form

� � with

� � � �
�

�
�

�
�

� �
or � � �

	�

with

�
�

� � � �
�

� �

A knotted

�
 of such symmetry has symmetry

� � .

if there is a knotted

�
 of symmetry

� � , then


� is the

product of at most

�

primes

First �-knotted

��
� of sym-

metry

�	� .
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V. Zigzags

on

surfaces
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Klein and Dyck map

Klein map: � � � � �

Dyck map: � � �
� �

Zigzag, being a local notion, is defined on any surface, even

on non-orientable ones.
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Regular maps

A flag-transitive map is called regular.
Zigzags of regular maps are simple.

map � rot. group � �
� � �
�
�

�
��� � � � � � � � �

Dod.

� � � � � � � � � � � � �
or

� � �

or

� �  

Klein

	 � �� � �� � � � ��
�

� � � � � � � �

or

� � �

Dyck

	 � � � � �� � � � � � � � � �

or

� � �

� � � � � � � � � � � ��
�

� � � � � � � � � � �

or

� � � �

or

��   

� � �

is a solvable group of order

��

generated by two
elements

�

,

�

subject to the relations

�� � � �

� � � � � � � � �� � � � � � � �

.
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Folding a surface

Let

�

be a map on a surface

�

and

�

a fixed-point free
involution on

�

; denote by

� �

the corresponding map on the
folded surface

� �

.

Zigzags of

�

, which are invariant under

�

, are mapped
to zigzags of half-length and half-signature in

� �

.

If

�� � � � �� �

with

�� � � � � , then we put compatible
orientation on

�� . Then, the
�� are mapped to a zigzag

� �

of

� �

with the signature of

� � plus the half of the
intersection between

� � and

�� .

Example: Petersen graph embedded on the projective
plane is a folding of the Dodecahedron by central inversion.
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Lins trialities

�� �
�

� �
� � our notation notation in [1] notation in [2]

�� �
�

� �
�

gem

� �
� � � �

� 	

dual gem

	

�
� �

�
� � � � � � � � � �

phial gem � � � � � � � 	 �

� �
� � � � � � � � � � � � � � 	

skew-dual gem

� � � � � 	

�� � � �
� � � � �� � �

skew gem � � �

�
� � � �

� � � � � � � � � � 	

skew-phial gem � � 	 �

Jones, Thornton (1987): those are only “good” dualities.

1. S. Lins, Graph-Encoded Maps, J. Combinatorial
Theory Ser. B 32 (1982) 171–181.

2. K. Anderson and D.B. Surowski, Coxeter-Petrie Complexes
of Regular Maps, European J. of Combinatorics 23-8 (2002) 861–880.
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Example: Tetrahedron

� � � � � � � � 	�� � � � �� � � � � � � � � � � 	 � � � � �� � � �

two Lins maps on projective plane.
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Bipartite skeleton case

4

1

6

8 7

5

2

3

3 6

3

8 7

5 6 4

1 2

3 5

64

8 7

Two representation of � � � � � �� 	 � �
: on Torus and as a Cube

with cyclic orientation of vertices (marked by ) reversed.
Theorem
For bipartite graph embedded in oriented surface, the skew operation is,
in fact, reversing orientation of one of the part of the bipartition.
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Prisms and antiprisms

Let � denotes the Euler characteristic.
We conjecture:

� � � � � � � � � � �
�

has � � � � � � ���
� �

� � and is oriented
iff � is even;

� � � � � � � � � � � �
�

has � � � � � � � � � �
� �

�
� � and is

non-oriented.

� � � � � � � � � � � �
�

has � � � � � � � � � �
� �

�
� � and is

non-oriented;

� � � � � � � �� � � � �
�

has � � � � � � � � ���
� �

�
� � and is

oriented.
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VI. Zigzags

on -dimensional

complexes
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Zigzags on -dimensional polytopes

A flag � � � �� �� � � �
�
 � �

�

is a sequence of faces
�� (of

polytope

�

) of dimension

�

with

�� � �� � � .
Given a flag � , there exist an unique flag �� � � �

, which differs
from � only in position

�

.

A zigzag � is a circuit of flags

� � �
� � � � � � , such that

� � � � � � � � � � � � � �
�

; the number of flags is called its length.

The zigzags partition the flag-set of

�

.

�-vector of

�

is a vector, listing zigzags with their lengths.

Proposition
If the dimension of polytope is odd, then the length of any
zigzag is even.
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Zigzag of reg. and semireg. -polytopes

� �

-polytope �-vector

�

Dodecahedron

� 	 �

� 
 �

-cell

� 
 � �

� �	 	

-cell
�	 � ��

� �

-simplex= 	 � � � � � � � � � �

� �

-cross-polytope=

� � � 
 � � � �� � �� � � 	 �

�

octicosahedric polytope

� � � ��

�

snub


 �

-cell


	 � � �

� 	 � � =Med( 	 � )

� � � �

� � � � =Half-
�

-Cube

� 
 � ��

� 
 � � =Schläfli polytope (in


 � )

�  � � ��

	 � � � =Gosset polytope (in


 �)


	 � � � � �

 � � � (


 �	

roots of


 � )

� � � �� �� �� �

– p.47/48



Reg.-faced and Conway’s polytopes

� �

-polytope �-vector

� ��� � � ��� �� � ��� �� � � � 
 � � �

� � ��� � � ��� �� � ��� �� � � � �	 � �

� 	 � � � ��� � � � � � � 
 �

� ��� � � � � � � �

,

� 
 � � � � � � � � 	

	
 � � � � � 	
��

� � ��� � � 	 � � � �

,

� 
 � � � � �
	
 � � � � � 	

��

�

Grand Antiprism

�	 ��
�

�	 ��
�


	 ��

� �� � �� � � � �
�

� � �
�

� � � �
�

� � �

(put

� � � � � ��� � � �
) if both, � and �, are odd

� � � �
�

� � �

, otherwise
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