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|. k-valent

two-faced polyhedra



Polyhedra and planar graphs

fA graph is called k-connected If after removing any set of T
k — 1 vertices It remains connected.

The skeleton of a polytope P is the graph G(P) formed by
Its vertices, with two vertices adjacent if they generate a
face of P.

Theorem (Steinitz)

() A graph G is the skeleton of a 3-polytope if and only if it is
planar and 3-connected.

(i) P and P’ are in the same combinatorial type if and only if
G(P) is isomorphic to G(P").

A planar graph is represented as Schlegel diagram, the pro-
gram used for this is CaGe by G. Brinkmann, O. Delgado, A.

LDress and T. Harmuth. J
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k-valent two-faced polyhedra

o .

The Euler formula for plane graphs V' — £ + F = 2,
take the following form for k-valent graphs:

12=7% ,(6—4)p; It k=3
and 8 =>".(4—i)p; if k=4

[/

With p; the number of faces of gonality .
A k-valent plane graph is called two-faced if the gonality of
its faces has only two possible values « and b.

# 3-valent plane graphs with n vertices and faces of
gonality ¢ and 6 (classes ¢,,),

# 4-valent plane graphs with n vertices and faces of
L gonality 3 or 4 (octahedrites) J
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Classes and thelr generation
|7 Polyhedra Exist if and only if Pa n T

k| (a,b)

3| (3,6) 3n pe/2 € N — {1} p3 =4 4 4 2pg
3 | (4,6) 4n ps € N — {1} pa=6 | 8+ 2pg
3 | (5,6) || 5n (fullerenes) ps € N — {1} ps =12 | 20 + 2pg
4 1 (3,4) octahedrite ps € N — {1} p3 =8 6 + pa

Generation programs

1. 3-valent: CPF for two-faced maps on the sphere by T.
Harmuth
CGF for two-faced maps on surfaces of genus
g by T. Harmuth

2. 4-valent: ENU by T. Heidemeier
3. General: plantri by G. Brinkmann and B. McKay

o -
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Point groups

f(point group) Isom(P) C Aut(G(P)) (combinatorial group) T
Theorem (Mani, 1971)
Given a 3-connected planar graph G, there exist a
3-polytope P, whose group of isometries is isomorphic to
Aut(G) and G(P) = G.

e [or octahedrites: (Cq, Cs, C;), (Ca, Coy, Cap, S4), (D2,
Dsag, Dap), (D3, D3g, D3p), (D4, Dag, Dan), (O, Op). (Deza
and al.)

e For 3,: (Do, Day, Doy), (T, T;) (Fowler and al.)

® For 477, (C11 CS! CZ)! (021 02’01 CQh)! (D21 D2d1 D2h)’ (Dg,
D34, D3p), (Ds, Dgp), (O, Op) (Deza and al.)

e [or 5n (Cl, CS! Cz), (02, 02’01 CZh; 34)1 (031 C?)’U! C3h1 SG)’

L (D2, Doy, Dag), (D3, Dsy, Dsg), (Ds, Dsp, Dsq), (De, Den, J
Dgy), (T, Ty, T},), (I, I,) (Fowler and al.)
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k-connectedness

-

Theorem

(1) Any octahedrite Is 3-connected.

(i) Any 3-valent plane graph without (> 6)-gonal faces is
2-connected.

(i) Moreover, any 3-valent plane graph without (> 6)-gonal
faces is 3-connected except of the following serie G,,:

AN
NS
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k-connectedness

-

Theorem

(1) Any octahedrite Is 3-connected.

(i) Any 3-valent plane graph without (> 6)-gonal faces is
2-connected.
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Medial Graph
-

Given a plane graph G, the 4-valent plane graph Med(G) Is T
defined as the graph having as vertices the edges of G with
two vertices adjacent if and only if they share a vertex and
belong to a common face.




Medial Graph
-

Given a plane graph G, the 4-valent plane graph Med(G) Is T
defined as the graph having as vertices the edges of G with
two vertices adjacent if and only if they share a vertex and
belong to a common face. Med(G) = Med(G*)




| nver se medial graph

o .

If G Is a 4-valent plane graph, then there exist exactly two
graphs H; and H; such that G = Med(Hy) = Med(H2).
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| nver se medial graph

| .

If G Is a 4-valent plane graph, then there exist exactly two
graphs H; and H, such that G = Med(H,) = Med(H>).
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| nver se medial graph

If G Is a 4-valent plane graph, then there exist exactly two
graphs H; and Hs such that G = Med(H1) = Med(H>).
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Il. Zlgzags
and

Central circuits



Central circuits

-

A 4—valent plane graph G




Central circuits

-

Take an edge of G




Central circuits

-

Continue it straight ahead ...




Central circuits

-

... until the end




Central circuits

-

A self-intersecting central circuit




-

Central circuits

A partition of edges of G

CC=42 6, 8



-

Z1gzags

A plane graph G

T~

/

IS
e




Z1gzags
-

Take two edges

IS
e




Z1gzags
-

Continue It left-right alternatively ....




Z1gzags
-

... until we come back




Z1gzags
-

A self—intersecting zigzag

\

>




Z1gzags
- -

A double covering of 18 edges: 10+10+16
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| z-vector z=1072 16, o o



| nter section Typesfor zigzags

fLet Z and Z' be (possibly, Z = Z') zigzags of a plane graphT
(G and let an orientation be selected on them. An edge of
intersection Z N 7' is called of type | or type Il, if Z and Z’
traverse e in opposite or same direction, respectively

/N

Type | Type I
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| nter section Typesfor zigzags

fLet Z and Z' be (possibly, Z = Z') zigzags of a plane graphT
(G and let an orientation be selected on them. An edge of
intersection Z N 7' is called of type | or type Il, if Z and Z’
traverse e in opposite or same direction, respectively

/

Type | Type I

The types of self-intersection depends on orientation
chosen on zigzags except if Z7 = 7.
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| nter section Typesfor central circuits
~ Let G be a 4-valent plane graph -



| nter section Typesfor central circuits

| .

Take C;(B¥), Co(__) a bipartition of the face-set of G




| nter section Typesfor central circuits

o .

Let C' and C’ be two central circuits of G and let an
orientation be selected on them.




| nter section Typesfor central circuits

| .

Local View on a vertex v and type
C C C C

Type | Type Il



| nter section Typesfor central circuits

| .

C' and C’ have 2 intersections | and 2 intersection Il




Medial, zigzags and central circuits

o .

Zigzags of a plane graph G are in one-to-one
correspondence with zigzags of G*.

Types are interchanged



Medial, zigzags and central circuits

o .

Zigzags of a plane graph G are in one to one
correspondence with central circuits of Med(G).




| nter section two ssmple ZC-circuits
f # For the class of graph 4,, the size of the intersection of T
two simple zigzags belongs to {0,2,4,6}.

# [or classes of octahedrites, graph 3,, or graph 5,, the
size of the intersection of two simple ZC-circuits can be
any even number.

. ‘ Two simple zigzags
v

of a graph 5, with
P Zn7|=s
fesh .'f-‘\
!

g
‘ "' On surfaces of
'.. genus ¢ > 1, the
— Intersection can be
odd. J
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Bipartite graphs

fRemark A plane graph is bipartite if and only if its faces haveT
even gonality.
Theorem (Shank-Shtogrin)
For any planar bipartite graph G there exist an orientation of
zigzags, with respect to which each edge has type I.




Perfect matching on 5,, graphs

fLet G be a graph 5, with one
zigzag with self-intersection numbers

(a1, a2).

(l) o1 > % | ap = 2 then
the edges of self-intersection of
type | form a perfect matching

PM

(i) every face incident to 0 or 2
edges of PM

(iii) two faces, F; and F, are free of \\
PM, PM is organized around

them in concentric circles.
M. Deza, M. Dutour and P.W. Fowler, Zigzags, Railroads and Knots in

Fullerenes, Journal of Chemical Information and Computer Sciences, in

Lpress. J
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111. rallroad
structure

and tightness



Railroads, 4-valent case

o -

A railroad in an octahedrite is a circuit of square faces, such
that any of them is adjacent to its neighbors on opposite
faces. Any railroad is bordered by two central circuits

oc16(D2) 0c2(Cay)
Railroads, as well as central circuits, can be
Lself-intersecting. A graph is called tight if it has no railroad. J
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Rallroads, 3-valent case

o .

A railroad in graph ¢,, ¢ = 3,4, 5 Is a circuit of hexagonal
faces, such that any of them is adjacent to its neighbors on
opposite faces. Any railroad is bordered by two zigzags.

414(D3p,) 442(Cay)
Railroads, as well as zigzags, can be self-intersecting
L(doubly or triply). A graph is called tight if it has no raiIroad.J
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Triple salf-inter section

166(Ds) 5176(C3p)
. 061 3h Conjecture: It is smallest
It Is smallest such 4,,. such &
n

. :



Removing central circuits

o .

Take a 4-valent plane graph G and a central circuit




Removing central circuits

o .

Remove the edges of the central circuit




Removing central circuits

o .

Remove the vertices of degree 0 or 2




Removing zigzags

o .

Take a plane graph G and a zigzag




Removing zigzags

- Go to the medial




Removing zigzags

Remove the central circuit




Removing zigzags

o .

Take one (out of two) inverse medial graph




-

Extremal problem
-

Given a class of tight graphs (octahedrites, graphs g¢,,),

there exist a constant C' such that any element of the class
has at most C' ZC-circuits.

9

Every tight octahedrite has at most 6 central circuits.
Proof method: Local analysis + case by case analysis.

Every tight 3,, has exactly 3 zigzags.
Proof method: uses an algebraic formalism on the

graphs 3,,.

Every tight 4,, has at most 9 zigzags.
Conjecture: The correct upper bound is 8. checked for

n < 400

Every tight 5,, has at most 15 zigzags.
Attempted proof: uses a local analysis on zigzags. J
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Tight with ssimple central circuits

o -

Theorem 1 There is exactly 8 tight octahedrites with simple
central circuits.

Proof method: after removing a central circuit, the obtained
graph has faces of gonality at most 4.




-

Tight with ssimple central circuits

Theorem 1 There is exactly 8 tight octahedrites with simpl
central circuits.

-

e

Proof method: after removing a central circuit, the obtained
graph has faces of gonality at most 4.

N

y




-

# All tight 3,, have simple zigzags

Tight with ssmple zigzags
-

LI Infinity of such graphs

#® There are exactly 2 tight graph 4,, with simple zigzags:

Cube and Truncated Octahedron=GC} 1(Cube).
Proof method: the size
of intersection of two sim-
ple zigzags is at most
6. There Is at most 9
zigzags.

[JUpper bound on n.

There is at least 9 tight graphs 5,, with simple zigzags.
G. Brinkmann and T. Harmuth computation of fullerenes
with simple zigzags up to 200 vertices.
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Tight 5,, with ssimple zigzags

DaP

I, 20 T, 127 Ds, 16”

60 Dj, 1810 60 I, 1810 76 Daog, 224,207



Tight 5,, with ssimple zigzags
B o

92 Ty, 245 220

15
L 140 1, 28 J



V. Goldberg-Coxeter

construction



-

The construction

# Take a 3- or 4-valent plane graph Gy. The graph Gj Is

formed of triangles or squares.

# Break the triangles or squares into pieces according to

parameter (k,1).

3—valent case

A I I B

-
I
L - J_ _L
I
I

[ Y R K R R
I I I I I

I

L J_ L - d__L_d__ —
I I I I I

I I I I I

- A I R I R I

I I I I I I

L _— L _dJd__L_4d__L _
I I

I I

="

I I

L _—

- o

k=5

4—valent case

=



Gluing the pieces

o .

#® Glue the pieces together in a coherent way.

#® We obtain another triangulation or quadrangulation of
the plane.

N T NT TN T TN TR =
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Final steps

o .

# Go to the dual and obtain a 3- or 4-valent plane graph,
which is denoted GCjy;(Go) and called

“Goldberg-Coxeter construction”.

#® The construction works for any 3- or 4-valent map on
oriented surface.

Operation GC3 g on Tetrahedron, Cube and Dodecahedron

o -
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Goldberg-Coxeter for Cube

n -
w '
-
an 2’1‘
.8 IS
B B -
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L,
A .
" VA W\»‘MMWWP

.

Goldberg-Coxeter for Octahedron



°

Properties

One associates > = k + le's (Eisenstein integer) or
z = k + li(Gaussian integer) to the pair (k,[) in 3- or
4-valent case.

If one writes G'C,(Gy) instead of GCY,;(Gop), then one
has:

GC,(GC,(Gp)) = GC,u(Gy)
If Go has n vertices, then GC ;(Go) has

n(k? + kl +1?) = n|z|? vertices if Gy is 3-valent,
n(k? + 1?) = n|z|? vertices if Gy is 4-valent.
If Gy has a plane of symmetry, we reduceto 0 <[ < k.

GCy1(Go) has all rotational symmetries of G and all
symmetriesif [ =0o0r( = k.

=

-
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The special case GC; g

f #® Any ZC-circuit of GGy corresponds to k£ ZC-circuits of T
GCy 0(Go) with length multiplied by £.

» Ifthe ZC-vector of Gy is ..., ¢/, ..., then the ZC-vector
of GC;C,O(G()) IS ..., (kcl)kml, Ce

— p.36/5!
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The special case GC; g

f #® Any ZC-circuit of GGy corresponds to k£ ZC-circuits of T
GCy 0(Go) with length multiplied by £.

» Ifthe ZC-vector of Gy is ..., ¢/, ..., then the ZC-vector
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/
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(k,[)-product formalism

o .

Given a 3-valent plane graph G, the zigzags of the
Goldberg-Coxeter construction of GCj, ;(G) are obtained by:

# Associating to G two elements L and R of a group
called moving group,

o Computing the value of the (£, [)-product L ©; R,

# The lengths of zigzags are obtained by computing the
cycle structure of L & R.

For GC% (Dodecahedron) with ged(k, 1) = 1, this gives 6, 10 or
15 zigzags.

M. Dutour and M. Deza, Goldberg-Coxeter construction for 3- or 4-valent
plane graphs, Electronic Journal of Combinatorics, 11-1 (2004) R20.

o -
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| llustration

f # For any ZC-circuit of GCy ;(Gp), there exist o > 1 T
length(ZC)=2(k? + kl + [*)a  3-valent case
length(ZC)=(k* + I*)a 4-valent case

The [ZC]-vector of GC},1(Go) is the vector ... o™, . ..
where my, Is the number of ZC-circuits with order «;.

® If ged(k,l) =1, then GCY ;(Cube) has 6 zigzags If £ =
(mod 3) and 4 otherwise.

#® For Truncated Icosidodecahedron, possible [ZC]:

230 340
260 320

230 524
260 512

320 524
340 512
536

1512
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V. Parametrizing

graphs



Parametrizing graphsgq,

o .

ldea: the hexagons are of zero curvature, it suffices to give
relative positions of faces of non-zero curvature.

o Goldberg (1937) All 3,,, 4,, or 5,, of symmetry (T, T,), (O,
O;) or (I, 1) are given by Goldberg-Coxeter
construction GCY ;.

# Fowler and al. (1988) All 5,, of symmetry D5, Dg or T
are described in terms of 4 parameters.

# Graver (1999) All 5,, can be encoded by 20 integer
parameters.

#® Thurston (1998) The 5,, are parametrized by 10 complex
parameters.

# S5Sah (1994) Thurston’s result implies that the Nrs of 3,,,
\_ 4, 5, ~n, n3, no.

— p.40/5



Thestructure of graphs 3,

f W@

The corresponding trian-
gulation

4 triangles in Z{w

The graph 320(Dayy)




z- and railroad-structure of graphs 3,

o .

All zigzags and railroads are simple.
#® The z-vector is of the form

(51)™, (452)"™, (4sg)™  With sim; = 5

the number of railroads is m + m9y + m3 — 3.
#® (G has > 3 zigzags with equality if and only if it is tight.

» If G istight, then z(G) = n? (so, each zigzag is a
Hamiltonian circuit).

» All 3, are tight if and only If 7 Is prime.

# There exists a tight 3,, if and only If 7 is odd.
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© o o @

General theory

Extensions:

3-valent or 4-valent graphs.

Classes of graphs with fixed p;, 7 # 6.

Classes with a fixed symetry.

Maps on surfaces.

Dictionnary

3-valent graph G

4-valent graph Gy

ring
Euler formula
Zero-curvature

ZC-circuits

Operation

Eisenstein integers Z[w]
>.i(6 —i)p; =12
hexagons
zigzags
leapfrog graph

Gaussian integers Z[i]
>.i(4—1)pi =8
squares
central circuits

medial graph

— p.43/5



Number of parameters
|7 Graphs 3, T

Graph 5,,:
_ Groups | #param. Group | #param.
Octahedrites:
D 2
Group | #param. 2 C1 10
C 6 d 1 © 0
! Graphs 4,,: Cs 4
Co 4 G 2
rou aram. D 4
Dy 3 P p 2
D 3
Ds 9 C1 4 3
D 2
Dy 2 C2 3 >
D 2
0 1 D2 2 6
Ds 2 T 2
O 1 I 1

If there Is just one parameter, then this is Goldberg-Coxeter
construction (of Octahedron, Tetrahedron, Cube,
Dodecahedron for octahedrite, 3,,, 4,,, 5., respectively).

o -
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Conjectureon 4, (D3, D3g or Ds)

f ® 4,(Ds3 C Dgsy, D3g, Dg, Dgp,, O, Oy,) are described by two T
complex parameters. They exists if and only if n =0, 2
(mod 6) and n > 8.

4,(D3) with one zigzag  The defining triangles

® 4,(Dsy C Oy, Dgp,) exists if and only if n = 0,8 (mod 12),
n > 8.

# If n increases, then part of 4,,(D3) amongst
L 4 (D3, D3g, D3) goes to 100% J



M or e conjectures

~ ® All 4, with only simple zigzags are: -
o GC]C7()(C’LL[)6), GCk)k(C’ube) and
s the family of 4,,(Ds C ...) with parameters (m, 0) and
(2, m — 2i) with n = 4m(2m — 3i) and
z = (6m — 6i)° 3 (6m)™ %, (12m — 18i)"
They have symmetry D3, or Oy, or Dy,
® Any4,(Ds; C ...)with one zigzag is a 4,,(D3).

o Fortight graphs 4,,(Ds C ...) the z-vector Is of the form
a® with k € {1,2,3,6} or a*, b with k,1 € {1, 3}

® Tight4,(D3,) existif and only if n =0 (mod 12), they are
z-transitive with

» 2= (n/2)2/3670 Iff n = 24 (mod 36) and, otherwise,

s 2=(3n/2)2),,iffn=0,12 (mod 36) o
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VI. Zigzags
on

surfaces



Klein and Dyck map
A

F'Y

Klein map: z = 821 Dyck map: z = 616

# Zigzags (and central circuits), being local notions, are
defined on any surface, even on non-orientable ones.

#® Goldberg-Coxeter and parameter constructions are
defined only on oriented surfaces.



Linstrialities

-

(v, f,z) — | our notation | notation in [1] | notation in [2]
(v, [, 2) M gem M
(f,v,2) M* dual gem M*

(2, /,0) | phial(M) phial gem p((p(M))%)
(f,z,v) | (phial(M))* | skew-dual gem (p(M))*
(v, 2, [) skew (M) skew gem p(M)
(z,v, /) | (skew(M))* | skew-phial gem p(M*)

Jones, Thornton (1987): those are only “good” dualities.

1. S. Lins, Graph-Encoded Maps, J. Combinatorial
Theory Ser. B 32 (1982) 171-181.

2. K. Anderson and D.B. Surowski, Coxeter-Petrie Complexes

.

of Regular Maps, European J. of Combinatorics 23-8 (2002) 861—880J
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Example: Tetrahedron

o
,:Z:/‘ ‘
phial(Tetrahedron) skew(Tetrahedron)

two Lins maps on projective plane.



Bipartite skeleton case

AN

Two representation of skew(Cube): on Torus and as a Cube
with cyclic orientation of vertices (marked by * ) reversed.

Theorem
For bipartite graph embedded in oriented surface, the skew operation is,
In fact, reversing orientation of one of the part of the bipartition.

-

— p.51/5



Prisms and antiprisms

-

Let v denotes the Euler characteristic.
Conjecture

® skew(Prismy,) has xy = ged(m,4) —m and is oriented
Iff m Is even;

® phial(Prismy,) has x = 2 4 ged(m,4) — 2m and IS
non-oriented.

® skew(APrismg,) has x =1+ ged(m,3) —2m and IS
non-oriented;

® phial(APrismy,) has x = 3 4 ged(m,3) — 2m and is
oriented.

o -
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The End

— p.53/5!

Removing 3 central circuits of Med(GC11 4(Cube)).

.
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