# Zigzags and Central Circuits for 3- or 4-valent plane graphs and generalizations

Michel Deza ENS/CNRS, Paris and ISM, Tokyo Mathieu Dutour Hebrew University, Jerusalem

Mikhail Shtogrin Steklov Institute, Moscow and Patrick Fowler

**Exeter University** 

# I. k-valent two-faced polyhedra

# **Polyhedra and planar graphs**

A graph is called *k*-connected if after removing any set of k-1 vertices it remains connected.

The skeleton of a polytope P is the graph G(P) formed by its vertices, with two vertices adjacent if they generate a face of P.

Theorem (Steinitz)

(i) A graph G is the skeleton of a 3-polytope if and only if it is planar and 3-connected.

(ii) *P* and *P'* are in the same combinatorial type if and only if G(P) is isomorphic to G(P').

A planar graph is represented as Schlegel diagram, the program used for this is CaGe by G. Brinkmann, O. Delgado, A. Dress and T. Harmuth.

# k-valent two-faced polyhedra

The Euler formula for plane graphs V - E + F = 2, take the following form for *k*-valent graphs:

$$12 = \sum_{i} (6-i)p_{i} \quad \text{if} \quad k = 3$$
  
and  $8 = \sum_{i} (4-i)p_{i} \quad \text{if} \quad k = 4$ 

With  $p_i$  the number of faces of gonality *i*. A *k*-valent plane graph is called two-faced if the gonality of its faces has only two possible values *a* and *b*.

- 3-valent plane graphs with n vertices and faces of gonality q and 6 (classes  $q_n$ ),
- 4-valent plane graphs with n vertices and faces of gonality 3 or 4 (octahedrites)

# **Classes and their generation**

| k | (a,b)  | Polyhedra          | Exist if and only if  | $p_a$      | n           |
|---|--------|--------------------|-----------------------|------------|-------------|
| 3 | (3, 6) | $3_n$              | $p_6/2 \in N - \{1\}$ | $p_3 = 4$  | $4 + 2p_6$  |
| 3 | (4, 6) | $4_n$              | $p_6 \in N - \{1\}$   | $p_4 = 6$  | $8 + 2p_6$  |
| 3 | (5, 6) | $5_n$ (fullerenes) | $p_6 \in N - \{1\}$   | $p_5 = 12$ | $20 + 2p_6$ |
| 4 | (3, 4) | octahedrite        | $p_4 \in N - \{1\}$   | $p_3 = 8$  | $6 + p_4$   |

Generation programs

1. 3-valent: CPF for two-faced maps on the sphere by T. Harmuth

CGF for two-faced maps on surfaces of genus g by T. Harmuth

- 2. 4-valent: ENU by T. Heidemeier
- 3. General: plantri by G. Brinkmann and B. McKay

# **Point groups**

(point group)  $Isom(P) \subset Aut(G(P))$  (combinatorial group) Theorem (Mani, 1971) Given a 3-connected planar graph G, there exist a 3-polytope P, whose group of isometries is isomorphic to Aut(G) and G(P) = G.

- For octahedrites:  $(C_1, C_s, C_i)$ ,  $(C_2, C_{2v}, C_{2h}, S_4)$ ,  $(D_2, D_{2d}, D_{2h})$ ,  $(D_3, D_{3d}, D_{3h})$ ,  $(D_4, D_{4d}, D_{4h})$ ,  $(O, O_h)$ . (Deza and al.)
- For  $3_n$ :  $(D_2, D_{2h}, D_{2d})$ ,  $(T, T_d)$  (Fowler and al.)
- For  $4_n$ :  $(C_1, C_s, C_i)$ ,  $(C_2, C_{2v}, C_{2h})$ ,  $(D_2, D_{2d}, D_{2h})$ ,  $(D_3, D_{3d}, D_{3h})$ ,  $(D_6, D_{6h})$ ,  $(O, O_h)$  (Deza and al.)

• For  $5_n$ :  $(C_1, C_s, C_i)$ ,  $(C_2, C_{2v}, C_{2h}, S_4)$ ,  $(C_3, C_{3v}, C_{3h}, S_6)$ ,  $(D_2, D_{2h}, D_{2d})$ ,  $(D_3, D_{3h}, D_{3d})$ ,  $(D_5, D_{5h}, D_{5d})$ ,  $(D_6, D_{6h}, D_{6d})$ ,  $(T, T_d, T_h)$ ,  $(I, I_h)$  (Fowler and al.)

## k-connectedness

#### Theorem

- *(i)* Any octahedrite is 3-connected.
- *(ii)* Any 3-valent plane graph without (> 6)-gonal faces is 2-connected.
- (iii) Moreover, any 3-valent plane graph without (> 6)-gonal faces is 3-connected except of the following serie  $G_n$ :



## k-connectedness

#### Theorem

- *(i)* Any octahedrite is 3-connected.
- *(ii)* Any 3-valent plane graph without (> 6)-gonal faces is 2-connected.
- (iii) Moreover, any 3-valent plane graph without (> 6)-gonal faces is 3-connected except of the following serie  $G_n$ :



## k-connectedness

#### Theorem

- *(i)* Any octahedrite is 3-connected.
- *(ii)* Any 3-valent plane graph without (> 6)-gonal faces is 2-connected.
- (iii) Moreover, any 3-valent plane graph without (> 6)-gonal faces is 3-connected except of the following serie  $G_n$ :



# **Medial Graph**

Given a plane graph G, the 4-valent plane graph Med(G) is defined as the graph having as vertices the edges of G with two vertices adjacent if and only if they share a vertex and belong to a common face.



# **Medial Graph**

Given a plane graph G, the 4-valent plane graph Med(G) is defined as the graph having as vertices the edges of G with two vertices adjacent if and only if they share a vertex and belong to a common face.  $Med(G) = Med(G^*)$ 



# **Inverse medial graph**

If G is a 4-valent plane graph, then there exist exactly two graphs  $H_1$  and  $H_2$  such that  $G = Med(H_1) = Med(H_2)$ .



# **Inverse medial graph**

If G is a 4-valent plane graph, then there exist exactly two graphs  $H_1$  and  $H_2$  such that  $G = Med(H_1) = Med(H_2)$ .



# **Inverse medial graph**

If G is a 4-valent plane graph, then there exist exactly two graphs  $H_1$  and  $H_2$  such that  $G = Med(H_1) = Med(H_2)$ .

# II. Zigzags and Central circuits

#### A 4-valent plane graph G



#### Take an edge of G



Continue it straight ahead ...



#### ... until the end



#### A self-intersecting central circuit



#### A partition of edges of G





#### A plane graph G





#### Take two edges



Zigzags

#### Continue it left-right alternatively ....





#### ... until we come back





#### A self-intersecting zigzag



Zigzags

#### A double covering of 18 edges: 10+10+16



# **Intersection Types for zigzags**

Let Z and Z' be (possibly, Z = Z') zigzags of a plane graph G and let an orientation be selected on them. An edge of intersection  $Z \cap Z'$  is called of type I or type II, if Z and Z' traverse e in opposite or same direction, respectively









# **Intersection Types for zigzags**

Let Z and Z' be (possibly, Z = Z') zigzags of a plane graph G and let an orientation be selected on them. An edge of intersection  $Z \cap Z'$  is called of type I or type II, if Z and Z' traverse e in opposite or same direction, respectively



Z Z'e

Type I



The types of self-intersection depends on orientation chosen on zigzags except if Z = Z':





Let G be a 4-valent plane graph



Take  $C_1(\square)$ ,  $C_2(\square)$  a bipartition of the face-set of G



Let C and C' be two central circuits of G and let an orientation be selected on them.











Type II

C and C' have 2 intersections I and 2 intersection II



# Medial, zigzags and central circuits

Zigzags of a plane graph G are in one-to-one correspondence with zigzags of  $G^*$ .



Types are interchanged

# Medial, zigzags and central circuits

Zigzags of a plane graph G are in one to one correspondence with central circuits of Med(G).




# **Intersection two simple ZC-circuits**

- For the class of graph  $4_n$  the size of the intersection of two simple zigzags belongs to  $\{0, 2, 4, 6\}$ .
- For classes of octahedrites, graph  $3_n$  or graph  $5_n$  the size of the intersection of two simple ZC-circuits can be any even number.



Two simple zigzags of a graph  $5_n$  with  $|Z \cap Z'| = 8$ .

On surfaces of genus  $g \ge 1$ , the intersection can be odd.

# **Bipartite graphs**

**Remark** A plane graph is bipartite if and only if its faces have even gonality.

Theorem (Shank-Shtogrin)

For any planar bipartite graph G there exist an orientation of zigzags, with respect to which each edge has type I.



# **Perfect matching on** $5_n$ **graphs**

Let *G* be a graph  $5_n$  with one zigzag with self-intersection numbers  $(\alpha_1, \alpha_2)$ .

- (i)  $\alpha_1 \geq \frac{n}{2}$ . If  $\alpha_1 = \frac{n}{2}$  then the edges of self-intersection of type I form a perfect matching PM
- (ii) every face incident to 0 or 2 edges of PM
- (iii) two faces,  $F_1$  and  $F_2$  are free of PM, PM is organized around them in concentric circles.





# III. railroad

structure

and tightness

#### **Railroads**, 4-valent case

A railroad in an octahedrite is a circuit of square faces, such that any of them is adjacent to its neighbors on opposite faces. Any railroad is bordered by two central circuits





 $oc_{22}(C_{2v})$ 

Railroads, as well as central circuits, can be self-intersecting. A graph is called tight if it has no railroad.

#### Railroads, 3-valent case

A railroad in graph  $q_n$ , q = 3, 4, 5 is a circuit of hexagonal faces, such that any of them is adjacent to its neighbors on opposite faces. Any railroad is bordered by two zigzags.



### **Triple self-intersection**



 $4_{66}(D_{3h})$ It is smallest such  $4_n$ .  $\begin{array}{c} 5_{176}(C_{3v})\\ \textbf{Conjecture: It is smallest}\\ \text{ such } 5_n \end{array}$ 

# **Removing central circuits**

Take a 4-valent plane graph G and a central circuit



# **Removing central circuits**

Remove the edges of the central circuit



# **Removing central circuits**

Remove the vertices of degree 0 or 2









#### Take one (out of two) inverse medial graph



# **Extremal problem**

Given a class of tight graphs (octahedrites, graphs  $q_n$ ), there exist a constant C such that any element of the class has at most C ZC-circuits.

- Every tight octahedrite has at most 6 central circuits. Proof method: Local analysis + case by case analysis.
- Every tight  $3_n$  has exactly 3 zigzags. Proof method: uses an algebraic formalism on the graphs  $3_n$ .
- Every tight  $4_n$  has at most 9 zigzags. Conjecture: The correct upper bound is 8. checked for  $n \le 400$
- Every tight  $5_n$  has at most 15 zigzags.
  Attempted proof: uses a local analysis on zigzags.

# **Tight with simple central circuits**

**Theorem 1** There is exactly 8 tight octahedrites with simple central circuits.

**Proof method**: after removing a central circuit, the obtained graph has faces of gonality at most 4.



# **Tight with simple central circuits**

**Theorem 1** There is exactly 8 tight octahedrites with simple central circuits.

**Proof method**: after removing a central circuit, the obtained graph has faces of gonality at most 4.



# **Tight with simple zigzags**

- All tight 3<sub>n</sub> have simple zigzags
   Infinity of such graphs
- There are exactly 2 tight graph  $4_n$  with simple zigzags: Cube and Truncated Octahedron= $GC_{1,1}(Cube)$ .

Proof method: the size of intersection of two simple zigzags is at most 6. There is at most 9 zigzags.  $\blacksquare$  Upper bound on n.



There is at least 9 tight graphs 5<sub>n</sub> with simple zigzags.
 G. Brinkmann and T. Harmuth computation of fullerenes with simple zigzags up to 200 vertices.

# **Tight** $5_n$ with simple zigzags



#### **Tight** $5_n$ with simple zigzags



# IV. Goldberg-Coxeter construction

#### **The construction**

- Take a 3- or 4-valent plane graph  $G_0$ . The graph  $G_0^*$  is formed of triangles or squares.
- Break the triangles or squares into pieces according to parameter (k, l).



# **Gluing the pieces**

- Glue the pieces together in a coherent way.
- We obtain another triangulation or quadrangulation of the plane.



# **Final steps**

- Go to the dual and obtain a 3- or 4-valent plane graph, which is denoted GC<sub>k,l</sub>(G<sub>0</sub>) and called "Goldberg-Coxeter construction".
- The construction works for any 3- or 4-valent map on oriented surface.



Operation  $GC_{2,0}$  on Tetrahedron, Cube and Dodecahedron

# **Goldberg-Coxeter for Cube**



## **Goldberg-Coxeter for Octahedron**



# **Properties**

- One associates  $z = k + le^{i\frac{\pi}{3}}$  (Eisenstein integer) or z = k + li (Gaussian integer) to the pair (k, l) in 3- or 4-valent case.
- If one writes  $GC_z(G_0)$  instead of  $GC_{k,l}(G_0)$ , then one has:

$$GC_z(GC_{z'}(G_0)) = GC_{zz'}(G_0)$$

• If  $G_0$  has n vertices, then  $GC_{k,l}(G_0)$  has

$$n(k^2 + kl + l^2) = n|z|^2$$
 vertices if  $G_0$  is 3-valent,  
 $n(k^2 + l^2) = n|z|^2$  vertices if  $G_0$  is 4-valent.

- If  $G_0$  has a plane of symmetry, we reduce to  $0 \le l \le k$ .
- $GC_{k,l}(G_0)$  has all rotational symmetries of  $G_0$  and all symmetries if l = 0 or l = k.

# The special case $GC_{k,0}$

- Any ZC-circuit of  $G_0$  corresponds to k ZC-circuits of  $GC_{k,0}(G_0)$  with length multiplied by k.
- If the ZC-vector of  $G_0$  is  $\ldots, c_l^{m_l}, \ldots$ , then the ZC-vector of  $GC_{k,0}(G_0)$  is  $\ldots, (kc_l)^{km_l}, \ldots$ .



# The special case $GC_{k,0}$

- Any ZC-circuit of  $G_0$  corresponds to k ZC-circuits of  $GC_{k,0}(G_0)$  with length multiplied by k.
- If the ZC-vector of  $G_0$  is  $\ldots, c_l^{m_l}, \ldots$ , then the ZC-vector of  $GC_{k,0}(G_0)$  is  $\ldots, (kc_l)^{km_l}, \ldots$ .



# The special case $GC_{k,0}$

- Any ZC-circuit of  $G_0$  corresponds to k ZC-circuits of  $GC_{k,0}(G_0)$  with length multiplied by k.
- If the ZC-vector of  $G_0$  is  $\ldots, c_l^{m_l}, \ldots$ , then the ZC-vector of  $GC_{k,0}(G_0)$  is  $\ldots, (kc_l)^{km_l}, \ldots$ .



# (k,l)-product formalism

Given a 3-valent plane graph G, the zigzags of the Goldberg-Coxeter construction of  $GC_{k,l}(G)$  are obtained by:

- Associating to G two elements L and R of a group called moving group,
- Computing the value of the (k, l)-product  $L \odot_{k,l} R$ ,
- The lengths of zigzags are obtained by computing the cycle structure of  $L \odot_{k,l} R$ .

For  $GC_{k,l}(Dodecahedron)$  with gcd(k,l) = 1, this gives 6, 10 or 15 zigzags. M. Dutour and M. Deza, *Goldberg-Coxeter construction for* 3- or 4-valent plane graphs, Electronic Journal of Combinatorics, 11-1 (2004) R20.

#### Illustration

- For any ZC-circuit of  $GC_{k,l}(G_0)$ , there exist  $\alpha \ge 1$   $length(ZC)=2(k^2+kl+l^2)\alpha$  3-valent case  $length(ZC)=(k^2+l^2)\alpha$  4-valent case The [ZC]-vector of  $GC_{k,l}(G_0)$  is the vector  $\ldots, \alpha_k^{m_k}, \ldots$ where  $m_k$  is the number of ZC-circuits with order  $\alpha_k$ .
- If gcd(k, l) = 1, then  $GC_{k,l}(Cube)$  has 6 zigzags if  $k \equiv l$ (mod 3) and 4 otherwise.
- For Truncated Icosidodecahedron, possible [ZC]:



| $2^{30}, 3^{40}$ | $2^{30}, 5^{24}$ | $3^{20}, 5^{24}$ |
|------------------|------------------|------------------|
| $2^{60}, 3^{20}$ | $2^{60}, 5^{12}$ | $3^{40}, 5^{12}$ |
| $2^{90}$         | $3^{60}$         | $5^{36}$         |
| $9^{20}$         | $6^{30}$         | $15^{12}$        |

# V. Parametrizing graphs

# **Parametrizing graphs** $q_n$

Idea: the hexagons are of zero curvature, it suffices to give relative positions of faces of non-zero curvature.

- Goldberg (1937) All  $3_n$ ,  $4_n$  or  $5_n$  of symmetry (T,  $T_d$ ), (O,  $O_h$ ) or (I,  $I_h$ ) are given by Goldberg-Coxeter construction  $GC_{k,l}$ .
- Fowler and al. (1988) All  $5_n$  of symmetry  $D_5$ ,  $D_6$  or T are described in terms of 4 parameters.
- Graver (1999) All  $5_n$  can be encoded by 20 integer parameters.
- Thurston (1998) The  $5_n$  are parametrized by 10 complex parameters.
- Sah (1994) Thurston's result implies that the Nrs of  $3_n$ ,  $4_n$ ,  $5_n \sim n$ ,  $n^3$ ,  $n^9$ .

# The structure of graphs $3_n$





The graph  $3_{20}(D_{2d})$ 

#### *z*- and railroad-structure of graphs $3_n$

All zigzags and railroads are simple.

The z-vector is of the form

 $(4s_1)^{m_1}, (4s_2)^{m_2}, (4s_3)^{m_3}$  with  $s_i m_i = \frac{n}{4};$ 

the number of railroads is  $m_1 + m_2 + m_3 - 3$ .

- G has  $\geq 3$  zigzags with equality if and only if it is tight.
- If G is tight, then  $z(G) = n^3$  (so, each zigzag is a Hamiltonian circuit).
- All  $3_n$  are tight if and only if  $\frac{n}{4}$  is prime.
- There exists a tight  $3_n$  if and only if  $\frac{n}{4}$  is odd.
## **General theory**

**Extensions:** 

- 3-valent or 4-valent graphs.
- Classes of graphs with fixed  $p_i$ ,  $i \neq 6$ .
- Classes with a fixed symetry.
- Maps on surfaces.

|                | $3$ -valent graph $G_0$                  | 4-valent graph $G_0$              |  |
|----------------|------------------------------------------|-----------------------------------|--|
| ring           | Eisenstein integers $\mathbb{Z}[\omega]$ | Gaussian integers $\mathbb{Z}[i]$ |  |
| Euler formula  | $\sum_{i} (6-i) p_i = 12$                | $\sum_{i} (4-i)p_i = 8$           |  |
| zero-curvature | hexagons                                 | squares                           |  |
| ZC-circuits    | zigzags                                  | central circuits                  |  |
| Operation      | tion leapfrog graph medial g             |                                   |  |

#### Dictionnary

## **Number of parameters**



If there is just one parameter, then this is Goldberg-Coxeter construction (of Octahedron, Tetrahedron, Cube, Dodecahedron for octahedrite,  $3_n$ ,  $4_n$ ,  $5_n$ , respectively).

## **Conjecture on** $4_n(D_{3h}, D_{3d} \text{ or } D_3)$

•  $4_n(D_3 \subset D_{3h}, D_{3d}, D_6, D_{6h}, O, O_h)$  are described by two complex parameters. They exists if and only if  $n \equiv 0, 2 \pmod{6}$  and  $n \geq 8$ .





 $4_n(D_3)$  with one zigzag The defining triangles

- $4_n(D_{3d} \subset O_h, D_{6h})$  exists if and only if  $n \equiv 0, 8 \pmod{12}$ ,  $n \ge 8$ .
- If *n* increases, then part of  $4_n(D_3)$  amongst  $4_n(D_{3h}, D_{3d}, D_3)$  goes to 100%

## **More conjectures**

- All  $4_n$  with only simple zigzags are:
  - $GC_{k,0}(Cube)$ ,  $GC_{k,k}(Cube)$  and
  - the family of  $4_n(D_3 \subset ...)$  with parameters (m, 0) and (i, m - 2i) with n = 4m(2m - 3i) and  $z = (6m - 6i)^{3m-3i}, (6m)^{m-2i}, (12m - 18i)^i$ They have symmetry  $D_{3d}$  or  $O_h$  or  $D_{6h}$
- Any  $4_n(D_3 \subset \ldots)$  with one zigzag is a  $4_n(D_3)$ .
- For tight graphs  $4_n(D_3 ⊂ ...)$  the *z*-vector is of the form
    $a^k$  with  $k \in \{1, 2, 3, 6\}$  or  $a^k, b^l$  with  $k, l \in \{1, 3\}$
- Tight  $4_n(D_{3d})$  exist if and only if  $n \equiv 0 \pmod{12}$ , they are z-transitive with
  - $z = (n/2)_{n/36,0}^6$  iff  $n \equiv 24 \pmod{36}$  and, otherwise,

• 
$$z = (3n/2)_{n/4,0}^2$$
 iff  $n \equiv 0, 12 \pmod{36}$ 

# VI. Zigzags

### on

surfaces

## **Klein and Dyck map**





- Zigzags (and central circuits), being local notions, are defined on any surface, even on non-orientable ones.
- Goldberg-Coxeter and parameter constructions are defined only on oriented surfaces.

## **Lins trialities**

| (v, f, z)  ightarrow                               | our notation             | notation in [1]       | notation in [2]         |
|----------------------------------------------------|--------------------------|-----------------------|-------------------------|
| (v, f, z)                                          | $\mathcal{M}$            | gem                   | $\mathcal{M}$           |
| (f, v, z)                                          | $\mathcal{M}^*$          | dual gem              | $\mathcal{M}^*$         |
| $(\boldsymbol{z}, \boldsymbol{f}, \boldsymbol{v})$ | $phial(\mathcal{M})$     | phial gem             | $p((p(\mathcal{M}))^*)$ |
| $(f, \boldsymbol{z}, \boldsymbol{v})$              | $(phial(\mathcal{M}))^*$ | skew-dual gem         | $(p(\mathcal{M}))^*$    |
| (v, z, f)                                          | $skew(\mathcal{M})$      | <mark>skew</mark> gem | p(M)                    |
| $(\boldsymbol{z}, \boldsymbol{v}, f)$              | $(skew(\mathcal{M}))^*$  | skew-phial gem        | $p(\mathcal{M}^*)$      |

Jones, Thornton (1987): those are only "good" dualities.

- 1. S. Lins, *Graph-Encoded Maps*, J. Combinatorial Theory Ser. B **32** (1982) 171–181.
- 2. K. Anderson and D.B. Surowski, *Coxeter-Petrie Complexes* of *Regular Maps*, European J. of Combinatorics **23-8** (2002) 861–880.

## **Example: Tetrahedron**





phial(Tetrahedron)skew(Tetrahedron)two Lins maps on projective plane.

## **Bipartite skeleton case**



Two representation of skew(Cube): on Torus and as a Cube with cyclic orientation of vertices (marked by  $\bigcirc$ ) reversed. Theorem

For bipartite graph embedded in oriented surface, the skew operation is, in fact, reversing orientation of one of the part of the bipartition.

## **Prisms and antiprisms**

Let  $\chi$  denotes the Euler characteristic. **Conjecture** 

- $skew(Prism_m)$  has  $\chi = gcd(m, 4) m$  and is oriented iff *m* is even;
- $phial(Prism_m)$  has  $\chi = 2 + gcd(m, 4) 2m$  and is non-oriented.
- $skew(APrism_m)$  has  $\chi = 1 + gcd(m, 3) 2m$  and is non-oriented;
- $phial(APrism_m)$  has  $\chi = 3 + gcd(m, 3) 2m$  and is oriented.



Removing 3 central circuits of  $Med(GC_{11,4}(Cube))$ .