Zigzags and Central Circuits for - or -valent plane graphs and generalizations

Michel DezaENS/CNRS, Paris and ISM, Tokyo Mathieu Dutour Hebrew University, Jerusalem

Mikhail Shtogrin Steklov Institute, Moscow and Patrick Fowler

Exeter University

$l. k$ -valent two-faced polyhedra

Polyhedra and planar graphs

A graph is called $k\text{-connected}$ if after removing any set of - 1 vertices it remains connected.

The skeleton of a polytope P is the graph $G(P)$ formed by its vertices, with two vertices adjacent if they generate ^a face of P_{\cdot}

Theorem (Steinitz)

(i) A graph G is the skeleton of a 3-polytope if and only if it is planar and 3-connected.

(ii) P and P' are in the same combinatorial type if and only if
 $G(P)$ is isomorphic to $G(P').$ $G(P)$ is isomorphic to $G(P^{\prime}).$

A planar graph is represented as Schlegel diagram, the program used for this is CaGe by G. Brinkmann, O. Delgado, A. Dress and T. Harmuth.

-valent two-faced polyhedra

The Euler formula for plane graphs $V-E+F=2$, take the following form for $k\text{-}$ valent graphs:

$$
12 = \sum_{i} (6-i)p_i \quad \text{if} \quad k=3
$$

and
$$
8 = \sum_{i} (4-i)p_i \quad \text{if} \quad k=4
$$

With p_i the number of faces of gonality i . A $k\text{-}$ valent plane graph is called two-faced if the gonality of its faces has only two possible values a and $b.$

- -valent plane graphs with n vertices and faces of gonality q and 6 (classes q_n),
- 4-valent plane graphs with n vertices and faces of gonality 3 or 4 (octahedrites)

Classes and their generation

\bm{k}	(a,b)	Polyhedra	Exist if and only if	p_{a}	\boldsymbol{n}
3	(3, 6)	3_n	$p_6/2 \in N - \{1\}$	$p_3 = 4$	$4 + 2p_6$
3	(4, 6)	4_n	$p_6 \in N - \{1\}$	$p_4 = 6$	$8 + 2p_6$
3	(5, 6)	5_n (fullerenes)	$p_6 \in N - \{1\}$	$p_5 = 12$	$20 + 2p_6$
$\overline{4}$	(3,4)	octahedrite	$p_4 \in N - \{1\}$	$p_3 = 8$	$6 + p_4$
Generation programs					

Generation programs

1. 3-valent: CPF for two-faced maps on the sphere by T. Harmuth

CGF for two-faced maps on surfaces of genus g by T. Harmuth

- 2. 4-valent: ENU by T. Heidemeier
- 3. General: plantri by G. Brinkmann and B. McKay

Point groups

(point group) $Isom(P)\subset Aut(G(P))$ (combinatorial group) **Theorem** (Mani, 1971) Given a 3 -connected planar graph G_τ there exist a 3 -polytope P , whose group of isometries is isomorphic to $ut(G)$ and $G(P) = G$.

- $\bullet\,$ For octahedrites: $(C_1,\,C_s,\,C_i)$, $(C_2,\,C_{2v},\,C_{2h},\,S_4)$, $(D_2,\,$ ֦֚ $(p_{2d},\,D_{2h}),\,(D_3,\,D_{3d},\,D_{3h}),\,(D_4,\,D_{4d},\,D_{4h}),\,(O,\,O_h).$ (Deza and al.)
- $\bullet\,$ For $3_n\colon (D_2,\,D_{2h},\, D_{2d}),\,(T,\,T_d)$ (Fowler and al.)
- \bullet For 4_n : (C_1, C_s, C_i) , (C_2, C_i) , C_{2v} , C_{2h}), (D_2, D_{2d}, D_{2h}) , $(D_3,$ ֦ $_{{3d}},$ $D_{{3h}}),$ $(D_6,\, D_{6h}),$ $(O,\, O_h)$ (Deza and al.)

 \bullet For 5_n : (C_1, C_s, C_i) , (C_2, C_i) , C_{2v} , C_{2h} , S_4), (C_3, C_{3v}, C) ֦ ___ , S_6), $(D_2, D_{2h}, D_{2d}), (D_3, D_{3h}, D_{3d}), (D_5, D_{5h}, D_{5d}), (D_6, D_{6h},$ (D_{6d}) , (T, T_d, T_h) , (I, I_h) (Fowler and al.)

-connectedness

Theorem

- (i) Any octahedrite is -connected.
- (ii) Any 3-valent plane graph without (>6)-gonal faces is -connected.
- (iii) Moreover, any 3-valent plane graph without (> 6)-gonal faces is 3-connected except of the following serie G ກ -

-connectedness

Theorem

- (i) Any octahedrite is -connected.
- (ii) Any 3-valent plane graph without (>6)-gonal faces is -connected.
- (iii) Moreover, any 3-valent plane graph without (> 6)-gonal faces is 3-connected except of the following serie G ກ -

-connectedness

Theorem

- (i) Any octahedrite is -connected.
- (ii) Any 3-valent plane graph without (>6)-gonal faces is -connected.
- (iii) Moreover, any 3-valent plane graph without (> 6)-gonal faces is 3-connected except of the following serie G ກ -

Medial Graph

Given a plane graph G , the 4-valent plane graph $Med(G)$ is defined as the graph having as vertices the edges of G with two vertices adjacent if and only if they share ^a vertex and belong to ^a common face.

Medial Graph

Given a plane graph G , the 4-valent plane graph $Med(G)$ is defined as the graph having as vertices the edges of G with two vertices adjacent if and only if they share ^a vertex and belong to a common face. $Med(G) = Med(G^*)$

Inverse medial graph

If G is a 4-valent plane graph, then there exist exactly two graphs H_1 and H_2 such that $G = Med(H_1) = Med(H_2)$.

Inverse medial graph

If G is a 4-valent plane graph, then there exist exactly two graphs H_1 and H_2 such that $G = Med(H_1) = Med(H_2)$.

Inverse medial graph

If G is a 4-valent plane graph, then there exist exactly two graphs H_1 and H_2 such that $G = Med(H_1) = Med(H_2)$.

II. Zigzags and **Central circuits**

A 4−valent plane graph G

Take an edge of G

Continue it straight ahead ...

... until the end

A self−intersecting central circuit

A partition of edges of G

A plane graph G

Take two edges

Zigzags

Continue it left-right alternatively

... until we come back

A self-intersecting zigzag

Zigzags

A double covering of 18 edges: $10+10+16$

Intersection Types for zigzags

Let Z and Z^\prime be (possibly, $Z = Z'$) zigzags of a plane graph
orientation be selected on them. An edge of
 $Z \cap Z'$ is called of type I or type II, if Z and Z' and let an orientation be selected on them. An edge of intersection $Z \cap Z'$ is called of type I or type II, if Z and Z'
traverse e in opposite or same direction, respectively
 $\begin{array}{cc} \searrow & Z' \end{array}$ traverse e in opposite or same direction, respectively

Type I Type II

Intersection Types for zigzags

Let Z and Z^\prime be (possibly, $Z = Z'$) zigzags of a plane graph
orientation be selected on them. An edge of
 $Z \cap Z'$ is called of type I or type II, if Z and Z' and let an orientation be selected on them. An edge of intersection $Z \cap Z'$ is called of type I or type II, if Z and Z'
traverse e in opposite or same direction, respectively
 $\begin{array}{cc} \searrow & Z' \end{array}$ traverse e in opposite or same direction, respectively

Type I Type II

The types of self-intersection depends on orientation chosen on zigzags except if $Z=Z^\prime$

Let G be a 4-valent plane graph

Take $\mathcal{C}_1(\bigsqcup),\, \mathcal{C}_2(\bigsqcup)$ a bipartition of the face-set of G

Let C and C' be two central circuits of G and let an orientation be selected on them.

Type I Type II

Medial, zigzags and central circuits

Zigzags of a plane graph G are in one-to-one correspondence with zigzags of G^* .

Types are interchanged

Medial, zigzags and central circuits

Zigzags of a plane graph G are in one to one correspondence with central circuits of $Med(G)$.

Intersection two simple ZC-circuits

- For the class of graph 4_n the size of the intersection of two simple zigzags belongs to $\{$
- $\{2,4,6\}$
h 3_n or $\mathfrak g$
nole ZC-For classes of octahedrites, graph 3_n or graph 5_n the size of the intersection of two simple ZC-circuits can be any even number.

Two simple zigzags of a graph 5_n with 707 .

On surfaces of genus $g~\geq~1,$ the intersection can be odd.

Bipartite graphs

Remark A plane graph is bipartite if and only if its faces have even gonality.

Theorem (Shank-Shtogrin)

For any planar bipartite graph G there exist an orientation of zigzags, with respect to which each edge has type I.

Perfect matching on 5_n **graphs**

Let G be a graph 5_n with one zigzag with self-intersection numbers α_2).

- (i) $\alpha_1 \geq \frac{n}{2}$. If $\alpha_1 = \frac{n}{2}$ then
the edges of self-intersection of the edges of self-intersection of type I form ^a perfect matching PM
- (ii) every face incident to 0 or 2 edges of PM
- $M, \; P M$ is organized around (iii) two faces, F_1 and F_2 are free of them in concentric circles.

M. Deza, M. Dutour and P.W. Fowler, *Zigzags, Railroads and Knots in* Fullerenes, Journal of Chemical Information and Computer Sciences, in press.

III. railroad

structure

and tightness

Railroads, -valent case

A railroad in an octahedrite is a circuit of square faces, such that any of them is adjacent to its neighbors on opposite faces. Any railroad is bordered by two central circuits

 $oc_{22}(C_{2v})$ ֚֚֡

 $\left(\begin{matrix} 2v \end{matrix}\right)$ Railroads, as well as central circuits, can be self-intersecting. A graph is called tight if it has no railroad.

Railroads, -valent case

A railroad in graph $q_n, \, q=3$, 4, 5 is a circuit of hexagonal
n is adjacent to its neighbors
d is bordered by two zigzags. faces, such that any of them is adjacent to its neighbors on opposite faces. Any railroad is bordered by two zigzags.

Triple self-intersection

 Λ . (D_{λ}) It is smallest such $4_n.$

 $17c(C)$ $\left. \begin{array}{c} 3v \ 0 \ \end{array} \right)$ Conjecture: It is smallest such $5\,$

Removing central circuits

Take a 4-valent plane graph G and a central circuit

Removing central circuits

Remove the edges of the central circuit

Removing central circuits

Remove the vertices of degree 0 or 2

Take one (out of two) inverse medial graph

Extremal problem

Given a class of tight graphs (octahedrites, graphs q_n), there exist a constant C such that any element of the class has at most C ZC-circuits.

- **E** Every tight octahedrite has at most 6 central circuits. Proof method: Local analysis ⁺ case by case analysis.
- **Exery tight** 3_n has exactly 3 zigzags. Proof method: uses an algebraic formalism on the graphs 3_n .
- \bullet Every tight 4_n has at most 9 zigzags. Conjecture: The correct upper bound is 8. checked for $n \leq 400$
- Every tight 5_n has at most 15 zigzags. Attempted proof: uses ^a local analysis on zigzags.

Tight with simple central circuits

Theorem 1 There is exactly 8 tight octahedrites with simple central circuits.

Proof method: after removing ^a central circuit, the obtained graph has faces of gonality at most 4.

Tight with simple central circuits

Theorem 1 There is exactly 8 tight octahedrites with simple central circuits.

Proof method: after removing ^a central circuit, the obtained graph has faces of gonality at most 4.

Tight with simple zigzags

- All tight $\mathbb{3}_n$ have simple zigzags **IIII•Infinity of such graphs**
- There are exactly 2 tight graph 4_n with simple zigzags: Cube and Truncated Octahedron= GC_1 .

Proof method: the size of intersection of two simple zigzags is at most . There is at most zigzags. \Box g \angle ayə.
 ■■●Upper bound on n . **6** O_h , 6^4 **24**

with simple zigzags up to 200 vertices. $\begin{array}{ccc} \hbox{4} & \hbox{24} & \hbox{O}_h, \hbox{1} \ \hbox{A simple zigza} \ \hbox{mational} \end{array}$ There is at least 9 tight graphs 5_n with simple zigzags. G. Brinkmann and T. Harmuth computation of fullerenes

Tight 5_n with simple zigzags

Tight 5_n with simple zigzags

IV. Goldberg-Coxeter construction

The construction

- Take a 3- or 4-valent plane graph G_0 . The graph G_0^* is
formed of triangles or squares.
Break the triangles or squares into pieces according t formed of triangles or squares.
- Break the triangles or squares into pieces according to

Gluing the pieces

- Glue the pieces together in ^a coherent way. \bullet
- We obtain another triangulation or quadrangulation of the plane.

Final steps

- Go to the dual and obtain a 3 or 4 -valent plane graph, which is denoted $GC_{\bm k}$ $_l(G_0)$ and called
nstruction". "Goldberg-Coxeter construction".
- The construction works for any 3- or 4- valent map on oriented surface.

Operation $GC_{2,0}$ on Tetrahedron, Cube and Dodecahedron

Goldberg-Coxeter for Cube

Goldberg-Coxeter for Octahedron

Properties

- One associates $z = k + le^{i\frac{\pi}{3}}$ $\frac{3}{5}$ $\frac{2}{3}$ (Eisenstein integer) or
r) to the pair (k,l) in 3- o $k = k + li$ (Gaussian integer) to the pair (k, l) in 3- or
-valent case.
Fone writes $GC_*(G_0)$ instead of $GC_{k,l}(G_0)$, then one -valent case.
- If one writes $GC_z(G_0)$ instead of GC
has: $GC_z(GC_{z'}(G_0)) = GC$ $\iota(G_0)$, then one has:

$$
GC_z(GC_{z'}(G_0)) = GC_{zz'}(G_0)
$$

 $\displaystyle\frac{1}{z} (GC)$ ces, tl If G_0 has n vertices, then GC_{k_n}

$$
F_0
$$
 has *n* vertices, then $GC_{k,l}(G_0)$ has $n(k^2 + kl + l^2) = n|z|^2$ vertices if G_0 is 3-valent, $n(k^2 + l^2) = n|z|^2$ vertices if G_0 is 4-valent. F_0 has a plane of symmetry, we reduce to $0 \le l \le k$

- If G_0 has a plane of symmetry, we reduce to $0\leq l\leq k.$
- 2 vertices \quad if $\quad G_0$ is 4-valent.

imetry, we reduce to $0 \leq l \leq k$

inal symmetries of G_0 and all ___ $_l(G_0)$ has all rotational symmetries of G_0 and all
metries if $l=0$ or $l=k$. symmetries if $l = 0$ or $l = k$.

The special case $GC_{k,0}$

- $,0$
-ci Any ZC-circuit of G_0 corresponds to k ZC-circuits of
- $\mathfrak{g}_0(G_0)$ with length multiplied by $k.$ e ZC-vector of G_0 is $\dots, c_l^{m_l}, \dots,$ t If the ZC-vector of G_0 is $\ldots, c^{m_l}_l, \ldots$, then the ZC-vector of GC_k . . . <u>.</u>

The special case $GC_{k,0}$

- $,0$
-ci Any ZC-circuit of G_0 corresponds to k ZC-circuits of
- $\mathfrak{g}_0(G_0)$ with length multiplied by $k.$ e ZC-vector of G_0 is $\dots, c_l^{m_l}, \dots,$ t If the ZC-vector of G_0 is $\ldots, c^{m_l}_l, \ldots$, then the ZC-vector of GC_k . . . <u>.</u>

The special case $GC_{k,0}$

- $,0$
-ci Any ZC-circuit of G_0 corresponds to k ZC-circuits of
- $\mathfrak{g}_0(G_0)$ with length multiplied by $k.$ e ZC-vector of G_0 is $\dots, c_l^{m_l}, \dots,$ t If the ZC-vector of G_0 is $\ldots, c^{m_l}_l, \ldots$, then the ZC-vector of GC_k . . . <u>.</u>

 $\bm{b}(t)$ **-product formalism**
ent plane graph G , the zigzags of the
reter construction of $GC_{k,l}(G)$ are ob Given a 3-valent plane graph $G,$ the zigzags of the Goldberg-Coxeter construction of $GC_{k,\cdot}$ $_{l}(G)$ are obtained by:
nd R of a group

- Associating to G two elements L and R of a group called moving group,
- Computing the value of the (k,l) -product $L\odot_k$
- \mathcal{L}, l)-product $L \odot_{k,l} R,$ tained by computing The lengths of zigzags are obtained by computing the cycle structure of $L\odot_k$ $\begin{aligned} \mathsf{cycle}\ \mathsf{structure}\ \mathsf{of}\ L\odot_{k,l}R. \ \mathsf{For}\ GC_{k.l}(Dodecahedron)\ \mathsf{with}\ \end{aligned}$

 $_l(Dodecahedron)$ with $gcd(k,l)=1$, this gives 6 , 10 or
gs.
and M. Deza, *Goldberg-Coxeter construction for* 3 - *or* 4 -*valent* -\$zigzags. M. Dutour and M. Deza, *Goldberg-Coxeter construction for* 3- *or* 4*-valent* plane graphs, Electronic Journal of Combinatorics, **11-1** (2004) R20.

Illustration

- For any ZC-circuit of $GC_{k,\cdot}$ $\mu(G_0)$, there exist $\alpha \geq 1$
2) α - 3-valent case $\left| \right|$ $\left| \right|$ $\left| \right|$ $\left| \right|$ =2(k^2+kl+l^2) α 3-valent case $\left(1/(7\Omega)\right)$ $=(k^2 + l^2)\alpha$ 4-valent case The [ZC]-vector of $GC_{k,\cdot}$ $\mu(G_0)$ is the vector \ldots
r of ZC-circuits with o $m\,$ $\frac{r}{k}$. . . where m_k is the number of ZC-circuits with order $\alpha_k.$
- If $gcd(k, l) = 1$, then $GC_{k, l}$
(mod 3) and 4 otherwise.
For Truncated Icosidode $\iota_l(Cube)$ has 6 zigzags if $k\equiv l$ $mod 3$ and 4 otherwise.
- For Truncated Icosidodecahedron, possible [ZC]:

V. Parametrizing graphs

Parametrizing graphs q_n

Idea: the hexagons are of zero curvature, it suffices to give relative positions of faces of non-zero curvature.

- Goldberg (1937) All $3_n,\,4_n$ or 5_n of symmetry $(T,\,T_d),\,(O,$ (O_h) or (I, I_h) are given by Goldberg-Coxeter construction $GC_{\bm{k}}$
- !
}} Fowler and al. (1988) All 5_n of symmetry $D_5,\,D_6$ or T are described in terms of 4 parameters.
- Graver (1999) All 5_n can be encoded by 20 integer parameters.
- Thurston (1998) The 5_n are parametrized by 10 complex parameters.
- Sah (1994) Thurston's result implies that the Nrs of $3_n,$ $4_n, 5_n \sim n, n^3, n^9.$

The structure of graphs 3_n

The graph $3_{20}(D_{2d})$

and railroad-structure of graphs

All zigzags and railroads are simple.

The z -vector is of the form

 $(4s_1)^{m_1}, (4s_2)^{m_2}, (4s_3)^{m_3}$ with $s_i m_i = \frac{n_4}{4}$ oer of railroads is $m_1 + m_2 + m_3 - 3.$ $\frac{1}{4}$

the number of railroads is $m_1+m_2+m_3-3.$

- has ≥ 3 zigzags with equality if and only if it is tight.
- If G is tight, then $z(G) = n^3$ (so, each zigzag is a
Hamiltonian circuit).
All 3_n are tight if and only if $\frac{n}{4}$ is prime.
There exists a tight 3 if and only if $\frac{n}{2}$ is odd. Hamiltonian circuit).
- All 3_n are tight if and only if
- $\frac{n}{4}$ is prime.
I only if $\frac{n}{4}$ i There exists a tight 3_n if and only if $\frac{n}{4}$ is odd.
General theory

Extensions:

- \bullet 3-valent or 4-valent graphs.
- Classes of graphs with fixed $p_i, \, i \neq 6.$
- Classes with ^a fixed symetry.
- Maps on surfaces.

Dictionnary

Number of parameters

 If there is just one parameter, then this is Goldberg-Coxeter construction (of Octahedron, Tetrahedron, Cube, Dodecahedron for octahedrite, $3_n,\,4_n,\,5_n,$ respectively).

$\mathbf{Conjecture}$ on $4_n(D_{3h},D_{3d})$

 $A_n(D_2 \subset D_{2k} \cap D_{2k} \cap C_{2k})$ $_n(D_3 \subset D_{3h}, D_{3d}, D_6, D_{6h}, O, O_h)$ are described by two complex parameters. They exists if and only if $n \equiv 0, 2$ mod 6) and $n \ge 8$. complex parameters. They exists if and only if $n \equiv 0, 2$
(mod 6) and $n \ge 8$. $\mod 6$ and $n \geq 8$.

 $4_n(D_3)$ with one zigzag The defining triangles

- $\begin{aligned} &\eta(D_3) \ &\frac{(D_{3d} \infty)}{2} \leq 8. \end{aligned}$ $\frac{n(D_{3d} \subset B)}{n \text{ since}}$ $\left(p_h,D_{6h}\right)$ exists if and only if $n\equiv 0,8\pmod{12}$
es. then part of $4_n(D_3)$ amongst , \sim 0 .
- If n increases, then part of $4_n(D_3)$ amongst $4_n(D_{3h},D_{3d},D_3)$ goes to 100% $g_{n}(D_{3h}, D_{3d}, D_{3})$ goes to 100%

More conjectures

- All 4_n with only simple zigzags are:
	- ___
	- $_0(Cube)$, $GC_{k,\ \mathbf{amily\ of\ } 4_{n}(D;\ \Omega)$ with $_{n-1}$ $\frac{k(Cube)}{3}$ and
 $\frac{1}{3}$ C \ldots) with the family of $4_n(D_3 \subset ...)$ with parameters $(m,0)$ and $(i,m-2i)$ with $n=4m(2m-3i)$ and $z=(6m-6i)^{3m-3i}, (6m)^{m-2i}, (12m-18i)^i$ $m(D_3 \subset ...)$ with parameters $(m$
 $m = 4m(2m - 3i)$ and
 $m-3i$, $(6m)^{m-2i}$, $(12m - 18i)^i$ $(i,m-2i)$ with $n=4m(2m-3i)$ and $\epsilon = (6m - 6i)^{3m - 3i}$ $\frac{(6m)^{m-2i}}{D_{3d}}$ or O_h or
one zigzan i $e^{-2i}, (12m-18i)^i$ They have symmetry D_{3d} or O_h or D_{6h}
- Any $4\,$
- $_n(D_3\subset\ldots)$ with one zigzag is a $4_n(D_3)$.
ght graphs $4_n(D_3\subset\ldots)$ the z -vector is c
h $k\in\{1,2,3,6\}$ or a^k,b^l with $k,l\in\{1,3\}$ For tight graphs $4\,$ $\begin{array}{l} \displaystyle n(D_3\subset\ldots) \text{ the z-vector is of the form}\,, \displaystyle 6\} \text{ or a^k,b^l with $k,l\in\{1,3\}$}\, \displaystyle \end{array}$ it if and only if $n\equiv 0\pmod{12},$ they ar k with $1 - 1$
- with $k \in \{1, 2, 3, 6\}$ or a^k, b^l with k
ght $4_n(D_{3d})$ exist if and only if $n \equiv$
transitive with
 $z = (n/2)_{n/36,0}^6$ iff $n \equiv 24 \pmod{36}$, 2, 3, 6} or a^k , b^l with $k, l \in \{1, 3\}$
exist if and only if $n \equiv 0 \pmod{1}$
ith $\{a,b\}$ or a^k,b^l with $k,l\in\{1,2,3\}$
it if and only if $n\equiv 0\pmod{m}$ -
-
-
-
-Tight $4_n(D_{3d})$ exist if and only if $n\equiv 0\pmod{12}$, they are $\frac{n}{\mathsf{iii}}$ z-transitive with
	- $= (n/2)^6_{n/36,0}$ iff $n \equiv 24 \pmod{36}$ and, otherwise,
 $= (3n/2)^2_{n/4,0}$ iff $n \equiv 0,12 \pmod{36}$

$$
z = (3n/2)_{n/4,0}^2 \text{ iff } n \equiv 0, 12 \pmod{36}
$$

on

surfaces

Klein and Dyck map

- 1 Dyck map: $z=6^1$
tral circuits), being local notions, are
urface, even on non-orientable ones. Zigzags (and central circuits), being local notions, are defined on any surface, even on non-orientable ones.
- Goldberg-Coxeter and parameter constructions are defined only on oriented surfaces.

Lins trialities

Jones, Thornton (1987): those are only "good" dualities.

- 1. S. Lins, *Graph-Encoded Maps*, J. Combinatorial Theory Ser. B **³²** (1982) 171–181.
- 2. K. Anderson and D.B. Surowski, *Coxeter-Petrie Complexes* of Regular Maps, European J. of Combinatorics **23-8** (2002) 861–880.

Example: Tetrahedron

 $\frac{1}{2}$ $\frac{1}{\sqrt{1}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\sqrt{1}$ 1 1 1 two Lins maps on projective plane.

Bipartite skeleton case

Two representation of $skew(Cube)$: on Torus and as a Cube with cyclic orientation of vertices (marked by \cup) reversed.

Theorem

For bipartite graph embedded in oriented surface, the skew operation is, in fact, reversing orientation of one of the part of the bipartition.

Prisms and antiprisms

Let χ denotes the Euler characteristic. **Conjecture**

- $\begin{split} \mathit{skew}(Prism_m) \; \mathit{has} \; \chi = \mathit{gcd}(m,4) m \; \mathit{and} \; \mathit{is} \; \mathit{oriented} \; \ \mathit{iff} \; m \; \mathit{is} \; \mathit{even}; \ \ \mathit{phial}(Prism_m) \; \mathit{has} \; \chi = 2 + \mathit{gcd}(m,4) 2m \; \mathit{and} \; \mathit{is} \end{split}$ iff m is even;
- $phial(Prism_m)$ has $\chi = 2 + gcd(m, 4) 2m$ and is
non-oriented.
skew(A Prism) has $\chi = 1 + gcd(m, 3) 2m$ and non-oriented.
- $\begin{split} \mathit{skew}(APrism_m) \; \mathit{has}\; \chi &= 1 + \mathit{gcd}(m,3) 2m \; \mathit{and}\; \mathit{is} \ \mathit{non-oriented;} \ \mathit{phial}(APrism_m) \; \mathit{has}\; \chi &= 3 + \mathit{acd}(m,3) 2m \; \mathit{and}\; \mathit{is} \end{split}$) has $\chi=1$
) has $\chi=3$ non-oriented;
- $phial(APrism_m)$ has $\chi = 3 + gcd(m, 3) 2m$ and is oriented. oriented.

Removing 3 central circuits of $Med(GC_{11,4}(Cube)).$