Wythoff construction and -embedding

Michel Deza

Serguei Shpectorov

ENS/CNRS, Paris and ISM, Tokyo

Bowling Green State University

Mathieu Dutour-Sikiric

Hebrew University, Jerusalem

I. Wythoff kaleidoscope construction

W.A. Wythoff (1918) and H.S.M. Coxeter (1935)

Polytopes and their faces

- A polytope of dimension d is defined as the convex hull of a finite set of points in R^d
- .
C
ו A valid inequality on a polytope P is an inequality of the form $f(x) > 0$ on P with f linear. A face of P is the set of points satisfying to $f(x)=0$ on $P.$

A face of dimension $0,\,1,\,d-2,\,d-1$ is called, respectively, vertex, edge, ridge and facet.

Face-lattice

There is ^a natural inclusion relation between faces, which define ^a structure of partially ordered set on the set of faces.

- This define a lattice structure, i.e. every face is uniquely defined by the set of vertices, contained in it, or by the set of facets, in which it is contained.
- Given two faces $F_{i-1}\subset F_{i+1}$ of dimension $i-1$ and 1 $i+1,$ there are exactly two faces F of dimension $i,$ such that $F_{i-1}\subset F\subset F_{i+1}.$, This is a particular case of the Eulerian property satisfied by the lattice:

Nr. faces of even dimension=Nr. faces of odd dimension

Skeleton of polytope

- The skeleton is defined as the graph formed by vertices, with two vertices adjacent if they form an edge.
- The dual skeleton is defined as the graph formed by facets with two facets adjacent if their intersection is ^a ridge.

In the case of 3 -dimensional polytopes, the skeleton is a planar graph and the dual skeleton is its dual, as ^a plane graph.

Steinitz's theorem: a graph is the skeleton of a 3 -polytope if and only if it is planar and $3\hbox{-connected}.$

Complexes

We will consider mainly polytopes, but the Wythoff construction depends only on combinatorial information. Also not all properties of face-lattice of polytopes are necessary.

The construction will apply to complexes:

- which are partially ordered sets,
- which have a dimension function associated to its elements.

This concerns, in particular, the tilings of Euclidean d -space.

Wythoff construction

- Take a $(d-1)$ -dimensional complex ${\cal K}.$
- A flag is a sequence (f_i) of faces with

$$
f_0\subset f_1\subset\cdots\subset f_u.
$$

- The type of a flag is the sequence $\mathit{dim}(f_i).$
- vertex-set is the set of flags with fixed type $S.$ Given a non-empty subset S of $\{0,\ldots,d-1\},$ the $\frac{1}{5},d-1$
iype Wythoff construction is a complex $P(S)$, whose
- The other faces of $\mathcal{K}(S)$ are expressed in terms of flags of the original complex ${\cal K}.$

Formalism of faces of Withoffian

- Set $\Omega = \{ \emptyset \neq V \subset \{0, \dots \}$ $\{ ,d\}\}$ and fix an $S\in \Omega.$ For two iy that U' blocks U (from S) if, here is an $u'\in U'$ with subsets $U, U' \in \Omega$, we say that U' blocks U (from S) if,
for all $u \in U$ and $v \in S$, there is an $u' \in U'$ with
 $u \le u' \le v$ or $u \ge u' \ge v$. This defines a binary relation $U', U' \in \Omega,$ we say that U'
 U and $v \in S,$ there is a
 \circ or $u \geq u' \geq v.$ This def for all $u\in U$ and $v\in S,$ there is an $u'\in U'$ with
nary
ed by $v\leq u'\leq v$ or $u\geq u'\geq v.$ This defines a binary relation on Ω (i.e. on subsets of $\{0$
- , d}), denoted by $U' \leq U$.
 $\leq U'$, and write $U' < U$ if Write $U'\sim U$, if $U'\leq U$ and $U\leq U'$, and write $U'< U$ if
 $U'\leq U$ and $U\not\leq U'.$ Clearly, \sim is reflexive and transitive, i.e. an equivalenc $^{\prime}$ $<$ U and U \nless U^{\prime}
- .
م Clearly, \sim is reflexive and transitive, i.e. an equivalence. $\left[U\right]$ is equivalence class containing $U.$
- Minimal elements of equivalence classes are types of faces of $\mathcal{K}(S)$; vertices correspond to type $S,$ edges to "next closest" type S' with $S < S'$, etc.

Example: the case $S = \{0, 1\}$, vertices

One type of vertices for $Cube({0,1})$: ${0,1}$ (i.e. type S).

Example: the case $S = \{0, 1\}$, edges

Two types of edges for $Cube(\{0$ $(0,1)$: $\{1\}$ and $\{0$ $, 2\}$

Example: the case $S = \{0, 1\}$, faces

Two types of faces for $Cube(\{0$ $(1,1)$: $\{0\}$ and $\{2\}$

-dimensional complexes

- -dimensional Eulerian comple xes are identified with plane graphs.
- If ${\mathcal M}$ is a plane graph

 $Cube({0,2})=Med(Cuboctahedron) = Rhombicuboctahedron$

Properties of Wythoff construction

If ${\cal K}$ is a $(d-1)$ -dimensional complex, then:

$$
\bullet \ \mathcal{K}(\{0\}) = \mathcal{K}.
$$

- $\mathcal{K}(d-1) = \mathcal{K}^*$ (dual complex).
({1}) is median complex.
- $\{1\}$) is median complex.
- $\mathcal{L}(V) = \mathcal{K}^*(d-V)$, where $d-V = \{d-v|v \in V\}.$
- admits at most different 2^d Wythoff constructions.
- if ${\cal K}$ is self-dual, then it admits at most different \overline{d}
- $d-1+2^{\lceil\frac{d-2}{2}\rceil}-1$ Wythoff constructions.
 $(\{0,\ldots,d-1\})$ is called order comple

partite and the vertices are full flags. $\frac{1}{2}$ $i(\{0,\ldots,d-1\})$ is called order complex. Its skeleton is $\mathcal{K}(\{0,\ldots,d-1\})$ is called <mark>order comp</mark>
bipartite and the vertices are full flags
Edges are full flags minus some face. bipartite and the vertices are full flags. Flags with *i* faces correspond to faces of dim. $d - i$.

II. $l_1\text{-embedding}$

Hypercube and Half-cube

- The Hamming distance $d(x,y)$ between two points $r, y \in \{0, 1\}^m$ is $d(x, y) = |\{1 \le i \le m : x_i \ne y_i\}|$ $\{a,1\}^m$ is $d(x,y)=|\{y\}$ (where N_x deno size of symmetric d = $|N_x\Delta N_y|$ (where N_x denotes $\{1\leq i\leq m: x_i=1\}),$ $\displaystyle\frac{x\Delta}{t}$ hy i.e. the size of symmetric difference of N_x and $N_y.$
- The hypercube H_m is the graph with vertex-set $\{0$ $,1\}^m$ and with two vertices adjacent if $d(x,y)=1.$ The distance d is the path-distance on $H_m.$
-

The half-cube
$$
\frac{1}{2}H_m
$$
 is the graph with vertex-set
\n
$$
\{x \in \{0,1\}^m : \sum_i x_i \text{ is even}\}
$$

The distance d is twice the path-distance on $\frac{1}{2}H_m$. and with two vertices adjacent if $d(x,y)=2.$

Scale embedding into hypercubes

A scale λ embedding of a graph G into hypercube H_m is a vertex mapping $\phi: G \to \{0,1\}^m$, such that $d(\phi(x), \phi(y)) = \lambda d_G(x,y)$

 $,1$
= $d(\phi(x), \phi(u)) = \lambda d_{\phi}(x, u)$

 $, \phi$
-di with d_G being the path-distance between x and $y.$

a mapping $\phi: G \to G'$, such that $d_{G'}(\phi(x), \phi(y)) =$ An isometric embedding of a graph G into a graph G' is
a mapping $\phi: G \to G'$, such that
 $d_{G'}(\phi(x), \phi(y)) = d_G(x, y)$

$$
d_{G'}(\phi(x), \phi(y)) = d_G(x, y) .
$$

 $\frac{\phi}{\mathsf{y} \mathsf{p}}$ Scale 1 embedding is hypercube embedding, scale 2 embedding is half-cube embedding.

Examples of half-cube embeddings

Johnson and l_1 -embedding

- the Johnson graph $J(m,s)$ is the graph formed by all subsets of size s of $\{1,\ldots,m\}$ with two subsets S and T adjacent if $|S\Delta T| = 2$.
- e_m embeds in $J(2m,m),$ which embeds in $\frac{1}{2}$
- $\frac{H_{2m}}{\mathsf{m}$ etri k . A metric d is l_1 -embeddable if it embeds isometrically into the metric space l_1^k
- $\ddot{\nu}$ for some dimension k .
ble if and only if it is sca
-Deza). The scale is 1 d A graph is l_1 -embeddable if and only if it is scale embeddable (Assouad-Deza). The scale is 1 or even.

Further examples

 $_1H_9$, but not in any Johnson graph

twisted Rhombicuboctahedron is not 5-gonal

Hypermetric inequality

If $\begin{split} \mathcal{L}\in \mathbb{Z}^{n+1} \text{\ and\ } \sum_{i=1}^n \ \mathbf{q} \mathbf{u} \mathbf{a} \mathbf{li} \mathbf{t} \mathbf{y} \text{\ is\ \ } \ H(b) d \end{split}$ $i=$ $\epsilon_i=1,$ then the hypermetric inequality is

$$
H(b)d = \sum_{0 \le i < j \le n} b_i b_j d(i, j) \le 0 \; .
$$

- If a metric admits a scale λ embedding, then the hypermetric inequality is alw ays satisfied (Deza).
- J. . . . <u>,</u> U If $b=(1,1,-1,0,\ldots,0),$ then $H(b)$ is **Contract** \overline{a}), then $H(b)$ is triangular inequality

$$
d(x,y) \leq d(x,z) + d(z,y) .
$$

If **Contract** $\overline{}$ $\overline{}$), then $H(b)$ is called the -gonal inequality.

Embedding of graphs

- The problem of testing scale λ embedding for general metric spaces is NP-hard (Karzanov).
- Theorem(Jukovic-Avis): a graph G embeds into H_m if and only if:
	- is bipartite and
	- σ_G satisfies the 5 -gonal inequality.
- In particular, testing embedding of a graph G into H_m is polynomial.
- The problem of testing scale 2 embedding of graphs into H_m is also polynomial problem (Deza-Shpectorov).

III. $l_1\text{-embedding}$ of

Wythoff construction

Regular (convex) polytopes

A regular polytope is ^a polytope, whose symmetry group acts transitively on its set of flags. The list consists of:

There are 3 regular tilings of Euclidean plane: $44=\delta_2$, 36 and 3, and an infinity of regular tilings pq of hyperbolic plane. Here pa is shortened notation for (p^q) .

Columns and rows indicate vertex figures and facets, resp. Blue are elliptic (spheric), red are parabolic (Euclidean). $\mathring{A}^{\frac{3}{4}}$

All above tilings embed, since it holds:

- Hyperbolic tiling pq (i.e. $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$) embeds (for $q \leq \infty$) $\frac{1}{q} + \frac{1}{q} < \frac{1}{2}$) embeds (for $q \leq \infty$)
nto Z^{∞} if p is even or ∞ .
 $\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$) 2∞ and ∞ 2 embe into $\frac{1}{2}$
- $e_i Z^{\infty}$ if p is odd and into Z^{∞} if p is even or ∞ .
dean (parabolic, i.e. $\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$) 2∞ and ∞ 2 (
 H_1 and Z^1 , resp. Spheric (elliptic, i.e. $\frac{1}{p} + \frac{1}{q} >$ Euclidean (parabolic, i.e. $\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$) 2 ∞ and ∞ 2 embed
into H_1 and Z^1 , resp. Spheric (elliptic, i.e. $\frac{1}{p} + \frac{1}{q} > \frac{1}{2}$) 2 m
embeds into H_1 for any m , spheric m 2 embeds into $H_{$.
.
. into H_1 and Z^1 , resp. Spheric (elliptic, i.e. $\frac{1}{p} + \frac{1}{q} > \frac{1}{2}$) $2m$
embeds into H_1 for any m , spheric $m2$ embeds into $H_{\frac{m}{2}}$
and $\frac{1}{2}H_m$ for m even and odd, respectively.
 $\delta_2 = Z^2$, γ_3 embeds into H_1 for any m , spheric $m2$ embeds into $H_{\frac{m}{2}}$ and $\frac{1}{2}$
- H_m for m even and odd, respectively.
 Z^2 , $\gamma_3 = H_3$, $\beta_3 = J(4,2)$, $\alpha_2 = J(4,1)$;
hedron 35 and Dodecahedron 53 emk $\beta_2=Z^2,\, \gamma_3=H_3,\, \beta_3=J(4,2),\, \alpha_2=J(4,1);$ $\beta,\,\gamma_3=H_3,\,\beta_3=J(4,2),\,\alpha_2=J(4,1),$ edron 35 and Dodecahedron 53 en
espectively.
36 embed into Z^3 and $\frac{1}{2}Z^3$. respe Icosahedron 35 and Dodecahedron 53 embed into $\frac{1}{2}H_0$, respectively.
63 and 36 embed into Z^3 and $\frac{1}{2}Z^3$, respectively. H_{10} , respectively. 3 and 36 embed into Z^3 and $\frac{1}{2}Z^3$, respectively.

All emb. ones with $d \geq 3$ are, besides α_{d+1} and β_{d+1} : all bipartite ones (i.e. with cell γ_d , δ_{d-1} or 63): γ_{d+1} , δ_d and 8, 2, 1 hyperbolic tilings with $d = 4, 5, 6$. Last 11 embed into Z^{∞} .

Tilings 4335 and (non-compact) 4343 of hyperbolic 5-space embed into Z^∞ .
.
.

Four infinite series $\delta_d, \, \gamma_d, \, \alpha_d$ and β_d embed into Z^d , H_d , , H_d
ely.
ve p ${}_iH_{d+1}$ and (with scale $2t$ for $t = \lceil \frac{d}{4} \rceil$) H_{4t} , respectively.
Existence of Hadamard matrices and finite projective
lave equivalents in terms of variety of embed. of β_d al Existence of Hadamard matrices and finite projective planes have equivalents in terms of variety of embed. of β_d and $\alpha_d.$

Archimedean polytopes

- An Archimedean d -polytope is a d -polytope, whose symmetry group acts transitively on its set of vertices and whose facets are Archimedean $(d-1)$ -polytopes.
- They are classified in dimension 3 (Kepler: 5 (regular)+ $3 + Prisms + AntiPrisms$ and 4 (Conway and Guy).
- If ${\mathcal K}$ is a regular polytope, then ${\mathcal K}(S)$ is an Archimedean polytope.

We also will consider Wythoffians $\mathcal{K}(\mathcal{S}),$ where $\mathcal K$ is an infinite regular polytope, i.e. ^a regular tiling of Euclidean plane, -space, etc.

Embeddable Arch. Wythoffians for

Dodecahedron, m -prisms and m -antiprisms for any $m\geq 3.$ $\frac{1}{2}$, 1}) = $\alpha_3(\{0,1,2\})$ 24 | H

The polyhedra: snub Cube, snu Remaining semi-regular polyhedra: snub Cube, snub They embed into $\frac{1}{2}H_m$ for $m=9,15,m+2,m+1$, resp. fH_m for $m=9,1$
ה $m\geq 4,~m$ -pris
embeds into $J(n)$ Moreover, for even $m\geq 4$, m -prism embeds into $H_{\frac{m+2}{2}}$ and $(m-1)$ -antiprism embeds into $J(m,\frac{m}{2})$. $(m-1)$ -antiprism embeds into $J(m,\frac{m}{2})$.

Embeddable Arch. Wythoffians for $d = 4$

First general results

We say that a complex X embeds into H_m (and denote it by $X \to H_m$) if its skeleton embeds into hypercube H_m .

- 1 Trivial: $\beta_d(\{d-1\}) = \beta_d(\{0\})^* = \gamma_d$ is the hypercube graph $H_d.$ $\mathcal{E}_d(\{0\}) = \beta_d$ embeds in H_{4t} with scale $2t, t = \lceil \frac{d}{4} \rceil$
- 2 Easy: if $k\in\{0$, then α $\{k\}$ is $J(d+1)$.
- $\frac{d}{4}$].
- 1,
Od $,d-1$
 $-1\})$

It em $(k+1)$
dal 3 Theorem: α \sim $(d-1))^*$ is H_d :d. It embeds in
al Voronoi poly)^{*} is H_{d+1} with two antipodal vertices removed. It embeds into $H_{d+1}.$ It is the zonotopal Voronoi polytope of the root lattice . Moreover, the tiling $\mathit{Vo}(A_d)$ embeds into Z^{d+1} .

Embedding of Arch. order complexes

- 4 Theorem: α \sim $(d-1)$) embeds into $H_{\left(\frac{d+1}{2}\right)}.$
'oronoi polytope (called
the dual root lattice $A_d^*.$ It is the zonotopal Voronoi polytope (called permutahedron) of the dual root lattice $A_d^\ast.$ י
י
- Moreover, $Vo(A_d^*)$ embeds into $Z^{\binom{d+1}{2}}.$
Theorem: $\beta_d(\{0,\ldots,d-1\})$ embeds in
It is a zonotope, but not the Voronoi po י
.
. $\overline{\mathbf{S}}$ 5 Theorem: $\beta_d(\{0\})$ $\displaystyle{\frac{,d-1}{\tau}}$ not th) embeds into H_d . It is a zonotope, but not the Voronoi polytope of ^a lattice.
- 6 Computations: embeddings of the skeletons, of $4-cell({0}$ $, 1$ er $\{1,2,3\}$) into H_{20} and of 600
e found by computer. $-cell({0}$ $, 1$ $, 2, 3\})$ into $H_{\rm 60}$, were found by computer.

So (since $\mathit{Ico}(\{0$ $\{0,1,2\})$ embeds into H_{15}), all Arch. order
ed into an H_m (moreover, are zonotopes). complexes embed into an H_m (moreover, are zonotopes).

Other Wythoff Arch. embeddings

- **7** Theorem: $\beta_d({0}$ $\mu_{\rm max}$ $\mu = \lambda$) concerns the $\pi_{\rm 3G}$ $\{d, d-2\}$) embeds into H_d
t for $d > 3$ it is not a Voro $l{-}1)$. It is a zonotope, but for $d>3$ it is not a Voronoi polytope of a lattice.
- **8** Theorem: $\beta_d({0}$ $\frac{d}{d} - 1$
does r) is an ℓ_1 -graph for all $d.$ But for $d > 4$, it does not embed into a $\frac{1}{2}H_m$, i.e. embeds
into an H_m with some even scale ≥ 4 .
jecture: If Γ is the skeleton of the Wythoffian $P(S)$ or of into an H_{m} with some even scale $\geq 4.$

Conjecture: If Γ is the skeleton of the Wythoffian $P(S)$ or of its dual, where P is a regular polytope, and Γ embeds into a μ_H , then Γ belongs to either above Tables for dimension $3,$, or to one of 8 above infinite series.

IV. Some extensions of Wythoff construction and embedding

Cayley graph construction

If a group G is generated by $g_1, \ldots, g_t,$ then its \textbf{Cayley} graph is the graph with vertex-set G and edge-set

 (g, qq_i) for $q \in G$ and $1 \leq i \leq t$

is vertex-transitive; its path-distance is length of xy^{-1}

.
3
-If P is a regular d -polytope, then its symmetry group is a Coxeter group with canonical generators $g_0,\ldots,\, g_{d-1}$ and its order complex is:

$$
P({0, ..., d-1}) = Cayley(G, g_0, ..., g_{d-1}).
$$

 $,d-1$
 ${ayley}$ Problem: Do $Cayley(G, g_0, \ldots, g_{n-1})$ embeds into an H_m (moreover, a zonotope) for any finite Coxeter group G ? We got "yes" for $A_n,\,B_n,\,I_2(n),\,F_4,\,H_3,\,H_4$ (regular polytopes). The problem is open for E_6 , E_7 , E_8 , D_n .

Embeddings for tilings

- has the natural l_1 -metric $d(x,y) = |x-y|$.
- is embeddable into ∞ -dimensional hypercube $H_{|Z|}$ by

 $x \mapsto (x \dots 0, 0, 1, \dots, 1, \dots)$ \cdots

- $,0,0,1,\ldots,1$
inite), which Any graph (possibly, infinite), which embeds into Z^m , is
embeddable into Z^∞ .
The hvpermetric (including 5-gonal) inequalitv is again : embeddable into Z^∞
- .
.
. ▒▶ The hypermetric (including 5- gonal) inequality is again a necessary condition.
- For skeletons of infinite tilings, we consider (up to ^a scale) embedding into Z^m , $m \leq \infty$.

scale) embedding into $Z^m, \, m \leq \infty.$ There are 3 regular and 8 Archimedean (i.e. semi-regular) tilings of Euclidean plane.

Three regular plane tilings

Eight Archimedean plane tilings

Eight Archimedean plane tilings

 $(4.6.12)=36({0,1,2}) \rightarrow Z^6$

Mosaics 36 , $(3.4.6.4)$ and $(3^3.4^2)$ embed into $\frac{1}{2}Z^3$ $\frac{4}{1}$ \overline{Z}

Emb. Wythoffians of reg. plane tilings

 $\frac{2}{3})$)*
gs: (; $\frac{Z}{1.3}$ Other semi-regular plane tilings: $(3^4\,$ $(0.6), (3^3.4^2), (3^2.4.3.4);$
4) and $(3^3.4^2)$ into Z^3 see scale 2 embedding of $36, (3.4.6.4)$ and $(3^3.4^2)$ into Z^3 $.4$.

Wythoffians of reg. -space tilings

 $\frac{23}{23}$, $\frac{1}{23}$, $\frac{23}{23}$ non 5-gonal
vertex-transitive tilings of 3-space by re There are 28 vertex-transitive tilings of 3-space by regular and semi-regular polyhedra (Andreini, Johnson, Grunbaum, Deza–Shtogrin).

Exp.: not 5-gonal $\delta_3({0, 1}) = \delta_3({2, 3})$

Nr. 7 (of 28), tiled 1:4 by β_3 and tr. γ_3 ; boride CaB_6

Exp.: not 5-gonal $\delta_3({0, 2}) = \delta({1, 3})$

Nr. 18 (of 28), tiled 2:1:2 by γ_3 , Cbt and Rcbt

Some Wyth. of reg. *d*-space tilings, $d \geq 4$

Conjecture (holds for $d \leq 3$):

 $_d(\{0,\ldots,d\})$ and $\delta_d(\{0,\ldots,d-1\})$ embed into Z^{d^2}
Remind that $\beta_d(\{0,\ldots,d-1\})$ embeds into H_{d^2} . .

Remind that $\beta_d(\{0,\ldots,d-1\})$ embeds into $H_{d^2}.$