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I. Wythoff kaleidoscope

construction
W.A. Wythoff (1918) and H.S.M. Coxeter (1935)
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Polytopes and their faces

A polytope of dimension

�

is defined as the convex hull
of a finite set of points in

� �

.

A valid inequality on a polytope

�

is an inequality of the
form

� ��� � 	 


on

�

with

�

linear. A face of

�

is the set of
points satisfying to

� � � � � 


on
�

.

A face of dimension

�

,




,

� � �

,

� � 


is called, respectively,
vertex, edge, ridge and facet.
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Face-lattice

There is a natural inclusion relation between faces, which
define a structure of partially ordered set on the set of faces.

This define a lattice structure, i.e. every face is uniquely
defined by the set of vertices, contained in it, or by the
set of facets, in which it is contained.

Given two faces

����� � � ���� � of dimension

� 	 


and� � 


, there are exactly two faces

�

of dimension

�

, such
that

���� � � � � �� � � .
This is a particular case of the Eulerian property
satisfied by the lattice:

Nr. faces of even dimension=Nr. faces of odd dimension
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Skeleton of polytope

The skeleton is defined as the graph formed by
vertices, with two vertices adjacent if they form an edge.

The dual skeleton is defined as the graph formed by
facets with two facets adjacent if their intersection is a
ridge.

In the case of

�

-dimensional polytopes, the skeleton is a
planar graph and the dual skeleton is its dual, as a plane
graph.
Steinitz’s theorem: a graph is the skeleton of a

�

-polytope if
and only if it is planar and

�

-connected.
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Complexes

We will consider mainly polytopes, but the Wythoff
construction depends only on combinatorial information.
Also not all properties of face-lattice of polytopes are
necessary.
The construction will apply to complexes:

which are partially ordered sets,

which have a dimension function associated to its
elements.

This concerns, in particular, the tilings of Euclidean

�

-space.
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Wythoff construction

Take a

� � 	 
 �

-dimensional complex

�

.

A flag is a sequence

� � � �

of faces with

��� � � � ��� � � � ��
��

The type of a flag is the sequence
� � � � � � �

.

Given a non-empty subset
	

of

 
�
� � � � �

� 	 
 


, the
Wythoff construction is a complex

� � 	 �

, whose
vertex-set is the set of flags with fixed type

	

.

The other faces of
� � 	 �

are expressed in terms of flags
of the original complex

�

.
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Formalism of faces of Withoffian

Set

� � 
 � � � � � 
 
�
� � � � �

� 
 


and fix an

	 � �

. For two
subsets

�
�

� � � �

, we say that

� �

blocks
�

(from

	

) if,
for all � � �

and � � 	

, there is an � � � � �
with

� 	 � � 	 � or � 	 � � 	 �. This defines a binary relation
on

�

(i.e. on subsets of


 

� � � � �

� 


), denoted by

� � 	 �

.

Write

� �


 �

, if

� � 	 �

and

� 	 � �
, and write

� � � �

if

� � 	 �

and

� � 	 � �

.

Clearly, 
 is reflexive and transitive, i.e. an equivalence.

� � 


is equivalence class containing

�

.

Minimal elements of equivalence classes are types of
faces of

� � 	 �

; vertices correspond to type

	

, edges to
"next closest" type

	 �

with

	 � 	 �

, etc.
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Example: the case � �
�

, vertices

0,1

One type of vertices for

� � ��� � 
 

�


 
 �

:


 

�


 


(i.e. type

	

).
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Example: the case � �
�

, edges

1

0,2

Two types of edges for

� � � � � 
 

�


 
 �

:


 
 


and


 

�

� 
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Example: the case � �
�

, faces

0

2

Two types of faces for

� � ��� � 
 

�


 
 �

:


 
 


and


 � 
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-dimensional complexes

�

-dimensional Eulerian complexes are identified with
plane graphs.

If is a plane graph

set

	

plane graph
� 	 �


 
 


original map

� 	 �


 

�


 


truncated


 

�



�

� 


truncated

��� � � �


 

�

� 
 ��� � � ��� � � � �


 

�

� 

truncated

�


 
 
 ��� � � �


 � 
 �
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Wythoff on the cube

Cube(


 
 


)= � � � � � ��� � � � � ��� � ��� � � ��� � �
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Wythoff on the cube

Cube(


 � 


)=

� � ��� � � � � ��� � � ��� � �
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Wythoff on the cube

Cube(


 

�


 


)=

� � � � �� � � � � � ���
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Wythoff on the cube

Cube(


 

�

� 


)=

� � � � �� � � � � � �� � � ��� � �
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Wythoff on the cube

Cube(


 

�

� 


)= � � � � � �� � �� � � ��� � � � � � � � � � � � � �� � ��� � � ��� � �
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Wythoff on the cube

Cube(


 

�



�

� 


)=

� � � � �� � � � � � ��� � ��� � � ��� � �

– p.13/47



Properties of Wythoff construction

If

�

is a

� � 	 
 �

-dimensional complex, then:

� � 
 
 
 � � �

.

� � 
 � 	 
 
 � � � �

(dual complex).

� � 
 
 
 �

is median complex.

� � � � � � � � � 	 � �

, where

� 	 � � 
 � 	 � � � � � 


.

�

admits at most different
�
�
	 


Wythoff constructions.

if

�

is self-dual, then it admits at most different

�
�� � � �

� �
�

�
�

�

	 


Wythoff constructions.

� � 
 
�
� � � � �

� 	 
 
 �
is called order complex. Its skeleton is

bipartite and the vertices are full flags.
Edges are full flags minus some face.
Flags with

�
faces correspond to faces of dim.

� 	 �

.
– p.14/47



II. � -embedding
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Hypercube and Half-cube

The Hamming distance

� � � � � � between two points

� � � � 
 
�
�


 
 �

is

� � � � � � � � 
 
 	 � 	 �� � � � � � � 
 �

=

� ��
�

� ��
�

�

(where

��
� denotes


 
 	 � 	 � : � � � 
 


),
i.e. the size of symmetric difference of

�
� and

��
� .

The hypercube

�
� is the graph with vertex-set


 

�


 
 �

and with two vertices adjacent if
� � � � � � � 


.
The distance

�

is the path-distance on

�
�.

The half-cube

�
	

�
� is the graph with vertex-set


 � � 
 

�


 
 � �

�
� � is even




and with two vertices adjacent if

� � � � � � � �

.
The distance

�

is twice the path-distance on

�
	

�
�.
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Scale embedding into hypercubes

A scale

�

embedding of a graph

�

into hypercube

�
� is

a vertex mapping

�� � � 
 
�
�


 
 �

, such that

� � � � � �
�

� � � � � � � ��� ��� � � �

with

��� being the path-distance between � and �.

An isometric embedding of a graph

�

into a graph

� �

is
a mapping

�� � � � �

, such that

���� � � � � �
�

� � � � � � ��� � � � � ��

Scale




embedding is hypercube embedding,
scale

�

embedding is half-cube embedding.
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Examples of half-cube embeddings

45

34

4590

3489 1560

15

2378 1267

1223

15

12

1560

1267 2378

23

45

34

3489

4590

Dodecahedron
embeds into

�
	

� � �

23

2367

3458

3458

1456

1267

12
1256
1456

1458

3478

2378 3414

2378
3478

1458

14

1256

12

12672367

23

34

Rhombicuboctahedron
embeds into

�
	

� � �

(moreover, into

� � 
 

�

� �

: add

�

to vertex-addresses)
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Johnson and

�
� -embedding

the Johnson graph

� � �� � � is the graph formed by all
subsets of size � of


 

� � � � � � 
 with two subsets

	

and

�

adjacent if

� 	 � � � � �

.

�
� embeds in

� � � �� � � , which embeds in

�
	

� 	 �.

A metric

�

is

� �-embeddable if it embeds isometrically
into the metric space

� �
� for some dimension

�

.

A graph is

� �-embeddable if and only if it is scale
embeddable (Assouad-Deza). The scale is




or even.
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Further examples

279

67

46

2379

14 1245

1458

1259 25

27

3679

145

0

146

467

259

2

4

7
367

125

3467
1468

2579

snub Cube embeds into�
	

��
� , but not in any

Johnson graph

twisted
Rhombicuboctahedron is

not

�

-gonal
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Hypermetric inequality

If

� � � �� �

and

�
��� �

� � � 


, then the hypermetric
inequality is

� � � � � �
� � �� � � �

� � � � � � �
�

� � 	 

�

If a metric admits a scale

�

embedding, then the
hypermetric inequality is always satisfied (Deza).

If

� � � 

�



� 	 

�



� � � � �


 �

, then

� � � �

is triangular inequality

� � � � � � 	 � � � � � � � � � �� � ��

If

� � � 

�



�



� 	 

� 	 

�



� � � � �


 �

, then

� � � �

is called the

�

-gonal inequality.
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Embedding of graphs

The problem of testing scale

�

embedding for general
metric spaces is NP-hard (Karzanov).

Theorem(Jukovic-Avis): a graph

�

embeds into

�
� if

and only if:

�

is bipartite and

��� satisfies the

�

-gonal inequality.

In particular, testing embedding of a graph

�

into

�
� is

polynomial.

The problem of testing scale

�

embedding of graphs into�
	

�
� is also polynomial problem (Deza-Shpectorov).
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III. � -embedding

of

Wythoff construction
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Regular (convex) polytopes
A regular polytope is a polytope, whose symmetry group
acts transitively on its set of flags.
The list consists of:

regular polytope group
regular polygon

� � � 	 � � �

Icosahedron and Dodecahedron

���


 � 


-cell and

� 
 


-cell

���

� �

-cell

��

� �(hypercube) and

� �(cross-polytope)

	 �


 �(simplex)

� �=

	 � � � � � 
 �

There are

�

regular tilings of Euclidean plane:

� � � � 	 ,

� �

and

� �

, and an infinity of regular tilings 
� of hyperbolic plane.

Here 
� is shortened notation for

� 
 � � .
– p.24/47



2-dim. regular tilings and honeycombs
Columns and rows indicate vertex figures and facets, resp.
Blue are elliptic (spheric), red are parabolic (Euclidean). Å

�
�

2 3 4 5 6 7 m �

2 22 23 24 25 26 27 2m

� �

3 32 
 � � � Ico

� �

37 3m

� �

4 42 � � � 	 45 46 47 4m

� �

5 52 Do 54 55 56 57 5m

� �

6 62 63 64 65 66 67 6m

� �

7 72 73 74 75 76 77 7m

� �

m m2 m3 m4 m5 m6 m7 mm � �

� � � � � � � � � � � � � � � � �
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All above tilings embed, since it holds:

Hyperbolic tiling 
 � (i.e.

�
�

� �
�

�
�
	 ) embeds (for � 	 �)

into

�
	

� �

if 
 is odd and into

� �

if 
 is even or �.

Euclidean (parabolic, i.e.

�
�

� �
� � �
	 )

� � and � �

embed

into

� � and

� �

, resp. Spheric (elliptic, i.e.

�
�

� �
�

� �
	 )

� �

embeds into

� � for any �, spheric � �

embeds into

���
�

and

�
	

�
� for � even and odd, respectively.

� 	 � � 	

, � � � �� ,

� � � � � �
�

� �

, 
 	 � � � �
�


 �

;
Icosahedron

� �

and Dodecahedron

� �

embed into

�
	

��� ,�
	

� � � , respectively.

� �

and

� �

embed into

� �

and

�
	

� �

, respectively.
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3-dim. regular tilings and honeycombs

��� ��

�
� Do Ico

��
� 63 36

��� �
	 � �
	 � 600- 336

�
� 24- 344

�� �	 � �
� � 435* 436*

Ico 353

Do 120- 534 535 536

�
� 443* 444*

36 363

63 633* 634* 635* 636*

All emb. ones with
� 	 �

are, besides 
 �� � and

� �� � : all

bipartite ones (i.e. with cell � �,

� �� � or

� �

): � �� � ,

� � and

��
�

�
�




hyperbolic tilings with

� � �
�

�
�

�

. Last 11 embed into

� �

.
– p.27/47



4-dim. regular tilings and honeycombs

�
	 �	

�
	 24- 120- 600-

�
�

�
	 ��� � �� � � � ��

�
	 ��� � �	 �

�	 �� � �
	 � 	 � �� �

24-


�� � �	 � � 	 � 	

600-

120- 5333 5334 5335

�
� 	 � 	 � �

Tilings 4335 and (non-compact) 4343 of hyperbolic

�

-space
embed into

� �

.
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5-dim. regular tilings and honeycombs


� �� �� � � � � � � � � � � � � � �


 � 
 � � � � �

�� 33343

�� � � � �� �

� � � � � �

33433

� � � � � �

34333 34334

� � 43343*

Four infinite series

� �, � �, 
 � and

� � embed into

� �

,

� �,�
	

� �� � and (with scale
� �

for

� � � �
�

�

)

���� , respectively.

Existence of Hadamard matrices and finite projective planes

have equivalents in terms of variety of embed. of

� � and 
 �.
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Archimedean polytopes

An Archimedean

�

-polytope is a

�

-polytope, whose
symmetry group acts transitively on its set of vertices
and whose facets are Archimedean

� � 	 
 �
-polytopes.

They are classified in dimension

�

(Kepler:

�

(regular)+
 �

+

� � � � � � +

� � � � � � � � � �) and
�

(Conway and Guy).

If

�

is a regular polytope, then
� � 	 �

is an Archimedean
polytope.

We also will consider Wythoffians

� �� �

, where

�

is an infi-

nite regular polytope, i.e. a regular tiling of Euclidean plane,

�

-space, etc.
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Embeddable Arch. Wythoffians for �

Embeddable Wythoffian n embedding

Tetrahedron � � �
�� � � � � ���
�� � � �

4 � � � 	�
�

� �

; �
	

�



�

Octahedron � �
�

� � � � � � ���
�� � � �

6 � � � 	�
�

� �

Cube � �
�

�� � � � � �
�

�� � � ��

8 � 

�

Icosahedron � ��
 � �� � � �

12

	
�


��

Dodecahedron � ��
 � �� � � �

20

	
�


 	�

tr Cuboctahedron � �
�

�� �
�

�
�

� � �
48


��

tr Icosidodecahedron � ��
 � �� �
�

�
�

� � �

120


 	 �

Rhombicuboctahedron � �
�

�� �
�

� � �

24

� � � �
�

� �

Rhombicosidodecahedron � ��
 � �� �
�

� � �

60

	
�


 	 �

(tr Tetrahedron)

� � ���
� � �
�

� � �� � ���
� � �
�

� � ��

8

	
�


��
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Embeddable Wythoffian n embedding

(tr Icosahedron)

� � ��
 � � � �
�

� � ��

32
	

�


 	�

(tr Cube)

� � �
�

� � �
�

� � ��

14

� � � �
�

� �

(tr Dodecahedron)

� � ��
 � � � �
�

� � ��

32

	
�



� �

(Cuboctahedron)

� � �
�

�� � � �� � ��
� � �
�

� � ��
14


	

(Icosidodecahedron)

� � ��
 � �� � � ��
32


 �

tr Octahedron � �
�

� � �
�

� � � � ��
�� �
�

�
�

� � �

24


 �

Remaining semi-regular polyhedra: snub Cube, snub
Dodecahedron, �-prisms and �-antiprisms for any � 	 �

.
They embed into

�
	

�
� for � � �
�


 �
� � � �
� � � 


, resp.

Moreover, for even � 	 �

, �-prism embeds into

� � � �

�

and

� � 	 
 �

-antiprism embeds into

� � ��

�
	

�

.
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Embeddable Arch. Wythoffians for �

Embeddable Wythoffian n embedding

�	 � �	
�� � � � � �	
�� � � �

5 � � � �
�

� �

�	 � �
	

�� � � � � �
	

� � � � � �

16 � 
	

�
	 � �
	

� � � � �

8 �
	

�


	

�
	
� � �
�

�
�

�
�

� � �

120


 	�

�
	

� � �
�

�
�

�
�

� � �

384


 	 �

� 	
� 
 � � � �� �
�

�
�

�
�

� � �

1152



� �

�
	

� � �
�

�
�

� � � � � 	
� 
 � � � �� �
�

� � � � � 	
� 
 � � � �� �
�

� � �

192


 	 �

�	
�� �
�

� � ��
30


�

�
	

�� �
�

� � �
64

	
�


 	 �

�
	
�� � � � � �
	
�� � � �

=

� � 	 10 � � � �
�

� �

� � �
� 
 � � � �� �
�

�
�

�
�

� � �

14400


 � �
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First general results

We say that a complex

�

embeds into

�
� (and denote it by

� � �
�) if its skeleton embeds into hypercube
�
�.

1 Trivial:

� � � 
 � 	 
 
 � � � � � 
 
 
 � � � � � is the hypercube
graph

� �.

� � � 
 
 
 � � � � embeds in

���� with scale

� �

,

� � � �
�

�

.

2 Easy: if

� � 
 

� � � � �

� 	 
 


, then 
 � � 
 � 
 �

is

� � � � 

�

� � 
 �

.

3 Theorem: 
 � � 
 

�

� 	 
 
 � �

is
� �� � with two antipodal

vertices removed. It embeds into

� �� � .
It is the zonotopal Voronoi polytope of the root lattice

� �. Moreover, the tiling

� � � � � � embeds into

� �� �

.
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Embedding of Arch. order complexes

4 Theorem: 
 � � 
 

� � � � �

� 	 
 
 �

embeds into

� � � � �

�

� .

It is the zonotopal Voronoi polytope (called
permutahedron) of the dual root lattice

� � �.

Moreover,

� � � � � �
�

embeds into

� � � � �

�

�
.

5 Theorem:

� � � 
 

� � � � �

� 	 
 
 �

embeds into

� � � .
It is a zonotope, but not the Voronoi polytope of a lattice.

6 Computations: embeddings of the skeletons, of

� � 	 �� � � � 
 
�
�



�

�
�

� 
 �

into
� 	 � and of

� 
 
 	 �� � � � 
 

�



�

�
�

� 
 �

into

� � � , were found by computer.

So (since

� �� � 
 

�



�

� 
 �
embeds into

� � � ), all Arch. order

complexes embed into an

�
� (moreover, are zonotopes).

– p.35/47



Other Wythoff Arch. embeddings

7 Theorem:

� � � 
 

� � � � �

� 	 � 
 �

embeds into

� � � �� � � .
It is a zonotope, but for

� � �

it is not a Voronoi polytope
of a lattice.

8 Theorem:

� � � 
 

�

� 	 
 
 �

is an

� �-graph for all

�

.
But for

� � �

, it does not embed into a

�
	

�
�, i.e. embeds

into an

�
� with some even scale

	 �

.

Conjecture: If

�

is the skeleton of the Wythoffian

� � 	 �

or of
its dual, where

�

is a regular polytope, and

�

embeds into a�
	

�
�, then

�

belongs to either above Tables for dimension

�

,

�

, or to one of

�

above infinite series.

– p.36/47



IV. Some extensions of

Wythoff construction

and embedding

– p.37/47



Cayley graph construction
If a group

�

is generated by � � ,. . . , �� , then its Cayley
graph is the graph with vertex-set

�

and edge-set

� �� � � � �

for � � �

and


 	 � 	 ���

�

is vertex-transitive; its path-distance is length of � �� �

.

If

�

is a regular

�

-polytope, then its symmetry group is a
Coxeter group with canonical generators � � ,. . . , � �� �

and its order complex is:

� � 
 

� � � � �

� 	 
 
 � � �� � � � � � �
� � � � � � � � � �� � ��

Problem: Do

�� � � � � � �
� � � � � � � � � �� � � embeds into an

�
�

(moreover, a zonotope) for any finite Coxeter group

�

?
We got "yes" for

� �,

	 �,

� 	 � � � ,

�� ,

�� ,

�� (regular
polytopes). The problem is open for

� � ,

��� ,

��� ,

� �.
– p.38/47



Embeddings for tilings

�

has the natural

� �-metric

� � � � � � � � � 	 � �

.

�

is embeddable into �-dimensional hypercube

��
� � � by

� � � �
� � � �



�



�



� � � � �



� � � �

�
�

Any graph (possibly, infinite), which embeds into

� �

, is
embeddable into

� �

.

➠ The hypermetric (including
�

-gonal) inequality is again a
necessary condition.

For skeletons of infinite tilings, we consider (up to a
scale) embedding into

� �

, � 	 �.

There are 3 regular and 8 Archimedean (i.e. semi-regular)

tilings of Euclidean plane.
– p.39/47



Three regular plane tilings

� �

=

��� =

��� �� �
	

=

��� �� � 	


�
=

� � �� � 	 � � �

��
=

��� �� � � � �
� � �

– p.40/47



Eight Archimedean plane tilings

� �
�

�
�

�
�

� �

=

� � � 
 
 
 �

;
dual � � �

� �
�


 �
	 �

=

� � � 
 

�

� 
 �

;
dual � �

	
� �

� �
�

� 	 �

=

� � � 
 

�



�

� 
 � � � � � � �
�

�
�

�
�

� � � �
�
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Eight Archimedean plane tilings

� � �
� � ��� � 	
� 
 � � �� �� �� �� � � � �
� � � �� � 	
� 
 �

� �� �� � ��

=

� � �
 � � � � � �� � 
 � � � �
� �� � 	
� 
 �

– p.41/47



Mosaics
� �

,
� �� �� �� ��

and

� � �
� � ���

embed into

	
� 
 �

– p.42/47



Emb. Wythoffians of reg. plane tilings

Wythoffian embedding

� � � � � �
 � �� � � � �
 � �� � � � �
 � �� � � � �
 � � � �� 
 �

� � � � � �
� �� 	
� 
 �

� � � � � �
 � �� � � � �
� � � �� 
 �

� �� � �� � � � �
� � � �� � � � �
 � � � � � � � �
� � � � � � 
 �

� �� �� � �� � � � �
� � � � � �� 
 �

� �� �� �� �� � � � �
 � � � �� 	
� 
 �

� �� �� �� �� � � � � � �
 � �� � � 
 �

� �� � � ��� � � � � � �
 � � � �� � � 	
� 
 �

Other semi-regular plane tilings:

� � �
� ��

,

� � �
� � ��

,

� � �
� �� �� ��

;

see scale

�

embedding of

� �

,

� �� �� �� ��

and

� � �
� � ���

into


 �

.
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Wythoffians of reg. -space tilings

Wythoffian Nr. embbedding?

��� � � � �� � �� � � � �� 	 �� � ��� �� ��
 	 ��

1
� �

��� �� 
 
 � �� � ��� �� �� � 2

� �

��� �� ��
 
 
 � �� � ��� �� 
 
 � 
 	 ��

=zeolit Linde 16

� �

��� �� ��
 
 
 � 
 	 ��

=zeolit � 9

� �

��� �� 
 �� � ��� �� � �� � ��� �� � �� �� �� �� 8 non 5-gonal

��� �� � 
 
 �� � ��� �� � 
 	 ��

=boride
 "! # � 7 non 5-gonal

� � �� ��
 � � � � ��� �� 
 
 	 ��
18 non 5-gonal

��� �� ��
 
 
 	 �� � ��� �� � 
 � 
 	 ��

23 non 5-gonal

There are 28 vertex-transitive tilings of

�

-space by regular

and semi-regular polyhedra (Andreini, Johnson, Grunbaum,

Deza–Shtogrin).

– p.44/47



Exp.: not 5-gonal � �
� � � �

Nr. 7 (of 28), tiled 1:4 by

� � and tr. � �; boride

��� 	 �

– p.45/47



Exp.: not 5-gonal � � � �
�

Nr. 18 (of 28), tiled 2:1:2 by � �, �� �

and

��� � �

– p.46/47



Some Wyth. of reg. -space tilings,

Wythoffian tiles embbedding?

��� � �� �� � �� � ��� �� � �� � �� �� ��
 � �� �� � �

��� �� ��
 
 ��

=tr

��� ��� , tr �� non 5-gonal

�� � ��� � � ��� � � � � �� � �� � 	 � �� � �

non 5-gonal

��� � � � � � � �� � �
� � �� 	 �� �� non 5-gonal

��� � � � � �� 
 �� � �� � � �� � � � � � �� ,
�� � � � 	 � �� � ��

non 5-gonal

��� � � � � �� ��
 
 ��

=tr

�� � � � � �� , tr

� 	 � �� � � � �


Conjecture (holds for

�� �
):

��� �
� � � � � � � ��

and

� � �
 � � � � � � ��� � ��

embed into


 � �

.

Remind that

��� �
� � � � � � ��� � ��

embeds into

�� � .
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