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|. Lattices and

Gram matrices



Lattice packings

» A lattice L C R” is a set of the form L = Zvy + - - - + Zv,, with
(vl,...,v,) independent.

» A packing is a family of balls B,(x;,r), i € I of the same
radius r and center x; such that their interiors are disjoint.
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» If L is a lattice, the lattice packing is the packing defined by
taking the maximal value of o > 0 such that L + B,(0, ) is a
packing.

» The maximum « is called A(L) and the determinant of
(vi,...,vp) is det L.



Gram matrix and lattices

» Denote by S” the vector space of real symmetric n X n
matrices, SZ the convex cone of real symmetric positive
definite n x n matrices and SZ, the convex cone of real
symmetric positive semidefinite n X n matrices.

» Take a basis (v1,...,Vv,) of a lattice L and associate to it the
Gram matrix Gy, = ((vi, vj))1<ij<n € SZ.

» Example: take the hexagonal lattice generated by v; = (1,0)
and Vo = (%, §>



[sometric lattices

» Take a basis (vi,...,v,) of a lattice L with
vi = (Vi1,...,Vin) € R" and write the matrix
V171 e V,,71
V =
V17n N Vn,n
and G, = VT V.

The matrix G, is defined by w variables as opposed to n

for the basis V.

» If M € S7,, then there exists V such that M = VT V (Gram
Schmidt orthonormalization)

» If M=V Vi =V, Vp, then Vj = OV, with OT O = |,
(i.e. O corresponds to an isometry of R").
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» Also if L is a lattice of R” with basis v and u an isometry of
R", then G, = Gu(v)-



Arithmetic minimum

v

For A€ S" and x € R” we write A[x] = x" Ax.

The arithmetic minimum of A € S is

v

» The minimal vector set of A € SZ is

Min(A) = {x € Z" | A[x] = min(A)}

v

Both min(A) and Min(A) can be computed using some
programs (for example SV by Vallentin)

v

The matrix Apex = ( i ; ) has

Min(Apex) = {£(1,0), £(0, 1), £(1, —1)}.



Changing basis

» If v and v/ are two basis of a lattice L then V/ = VP with
P € GL,(Z). This implies

Gy = VTV =(vP)TVvP = PT{VTV}P = PTG,P

» If A, B € S, they are called arithmetically equivalent if there
is at least one P € GL,(Z) such that

A=PTBpP

> Lattices up to isometric equivalence correspond to SZ, up to
arithmetic equivalence.

» In practice, Plesken/Souvignier wrote a program ISOM for
testing arithmetic equivalence and a program AUTO for
computing automorphism group of lattices.

All such programs take Gram matrices as input.



lI. Computational

techniques



Dual description problem

> A vertex of a polytope P is a point v € P, which cannot be
expressed as v = Av! + (1 — A)v? with 0 < A < 1 and
vi£v2 e P,

» A polytope is the convex hull of its vertices and this is the
minimal set defining it.

» A facet of a polytope is an inequality f(x) — b > 0, which
cannot be expressed as
f(x) — b= Af(x) — b1) + (1 — A)(f2(x) — b2) with
fi(x) — bi > 0 on P.

» A polytope is defined by its facet inequalities. and this is the
minimal set of linear inequalities defining it.

» The dual-description problem is the problem of passing from
one description to another.

> There are several programs CDD, LRS for computing
dual-description computations.

> In case of large problems, we can use the symmetries for
faster computation.



Linear programs

» A linear program is the problem of maximizing a linear
function f(x) over a set P defined by linear inequalities.

P ={xecR? suchthat fi(x)> b;}

with f; linear and b; € R.
» The solution of linear programs is attained at vertices of P.
» There are two classes of solution methods:

Gptimal solution vertex Gptimal solution vertex
Simplex method Interior point method
» Simplex methods use exact arithmetic but have bad
theoretical complexity
> Interior point methods have good theoretical complexity but
only gives an approximate vertex.



[1l. Perfect forms

and domains



Perfect forms

v

A form A is extreme if it is a local maximum of the packing
density.

A matrix A € SZ, is perfect (Korkine & Zolotarev) if the
equation

B € S" and B[x] = min(A) for all x € Min(A)

implies B = A.

Theorem: (Korkine & Zolotarev) If a form is extreme then it
is perfect.

Up to a scalar multiple, perfect forms are rational.

All root lattices are perfect, many other families are known.



Perfect domains and arithmetic closure

v

If v € Z" then the corresponding rank 1 form is p(v) = w .

If Ais a perfect form, its perfect domain is

Dom(A) = 5 Rip(v)

vEMin(A)

If A has m shortest vectors then Dom(A) has 7' extreme rays.
So actually, the perfect domains realize a tessellation not of
524, nor Sgo but of the rational closure Slgt,EO'

The rational closure S/, - has a number of descriptions:

> Sies0 = 2yez Rip(v)
> If A€ 5%, then A€ 57, -, if and only if Ker A is defined by

rational equations.

So, actually, the stabilizers of some faces of the polyhedral
complex are infinite.



Finiteness

» Theorem:(Voronoi) Up to arithmetic equivalence there is only
finitely many perfect forms.

» The group GL,(Z) acts on SZ:
Q— P'QP

and we have Min(PtQP) = P~ Min(Q)
> Dom(PTQP) = ¢(P)" Dom(Q)c(P) with c(P) = (P~1)"
» For n = 2, we get the classical picture:




Known results on lattice packing density maximization

o
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Nr. of perfect forms

Best lattice packing

N
£

O 00O ~NOOCTL P~ WN

1 (Lagrange)
1 (Gauss)

2 (Korkine & Zolotarev)
3 (Korkine & Zolotarev)
7 (Barnes)

33 (Jaquet)
10916 (DSV)
>500000

?

Es (Blichfeldt & Watson)

E; (Blichfeldt & Watson)

Es (Blichfeldt & Watson)
Ao?

Leech (Cohn & Kumar)

» The enumeration of perfect forms is done with the Voronoi

algorithm.

» The number of orbits of faces of the perfect domain
tessellation is much higher but finite (Known for n <7)

» Blichfeldt used Korkine-Zolotarev reduction theory.

» Cohn & Kumar used Fourier analysis and Linear programming.




V. Ryshkov polyhedron
and the Voronoi algorithm



The Ryshkov polyhedron

» The Ryshkov polyhedron R, is defined as

R,={A€ S"st. Alx] > 1forall xeZ"—{0}}

v

The cone is invariant under the action of GL,(Z).

v

The cone is locally polyhedral, i.e. for a given A € R,
{x € Z" st. Alx] =1}

is finite

v

Vertices of R, correspond to perfect forms.

v

For a form A € R, we define the local cone

Loc(A) ={Q € S" s.t. Q[x] > 0if x € Min(A)}



The Voronoi algorithm

» Find a perfect form (say A,), insert it to the list £ as undone.

> lterate
» For every undone perfect form A in £, compute the local cone
Loc(A) and then its extreme rays.
» For every extreme ray r of Loc(A) realize the flipping, i.e.
compute the adjacent perfect form A’ = A+ ar.
» If A’ is not equivalent to a form in £, then we insert it into £
as undone.

» Finish when all perfect forms have been treated.

The sub-algorithms are:

» Find the extreme rays of the local cone Loc(A) (use CDD or
LRS or any other program)

» For any extreme ray r of Loc(A) find the adjacent perfect
form A’ in the Ryshkov polyhedron R,

» Test equivalence of perfect forms using ISOM



Flipping on an edge |

Min(AheX) = {:l:(]-a 0)7 i(oa 1)7 :l:(]-’ _1)}

with




Flipping on an edge Il

Min(B) = {=(1,0),£(0,1)}




Flipping on an edge Il

Min(Asqr) = {£(1,0),£(0,1)}
with
10

Ahex

sqr




Flipping on an edge IV

Min(A~hex) = {:I:(la 0)7 :I:(O, 1)7 :l:(lv 1)}

ANhex = < L _1/2 > = Ahex+ D

-1/2 1
. Ahex

with

. Khex



The Ryshkov polyhedron R,
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Well rounded forms and retract

v

A form Q is said to be well rounded if it admits vectors vq,
., Vp such that

» (v1,...,Vv,) form a R-basis of R" (not necessarily a Z-basis)
> Vvi,...,V, are shortest vectors of Q.
» Well rounded forms correspond to bounded faces of R,,.

» Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of R, onto a
polyhedral complex WR,, of dimension @

» Every face of WR,, has finite stabilizer.

» Actually, in term of dimension, we cannot do better:

» A. Pettet and J. Souto, Minimality of the well rounded retract,
Geometry and Topology, 12 (2008), 1543-1556.

» We also cannot reduce ourselves to lattices whose shortest
vectors define a Z-basis of Z" for n > 5.



Topological applications

>

The fact that we have finite stabilizers for all faces means that
we can compute rational homology/cohomology of GL,(Z)
efficiently.

This has been done for n <7

» P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory
and the cohomology of modular groups, Adv. Math 245
(2013) 587-624.

As an application, we can compute K,(Z) for n < 8.
By using perfect domains, we can compute the action of
Hecke operators on the cohomology.

This has been done for n < 4:

» P.E. Gunnells, Computing Hecke Eigenvalues Below the
Cohomological Dimension, Experimental Mathematics 9-3
(2000) 351-367.

The above can, in principle, be extended to the case of
GL,(R) with R a ring of algebraic integers.



V. Tessellations



Linear Reduction theories for S, -,
Decompositions related to perfect forms:

» The perfect form theory (Voronoi |) for lattice packings (full
face lattice known for n < 7, perfect domains known for
n<8)

» The central cone compactification (Igusa & Namikawa)
(Known for n < 6)

Decompositions related to Delaunay polytopes:

» The L-type reduction theory (Voronoi Il) for Delaunay
tessellations (Known for n <5)

» The C-type reduction theory (Ryshkov & Baranovski) for
edges of Delaunay tessellations (Known for n <'5)

Fundamental domain constructions:

» The Minkowski reduction theory (Minkowski) it uses the
successive minima of a lattice to reduce it (Known for n < 7)
not face-to-face

» Venkov's reduction theory also known as Igusa’s fundamental
cone (finiteness proved by Venkov and Crisalli)



Self-dual cones

> For an open cone C in R” the dual cone is
C*={xeR"st. (x,y) >0fory e C}

» Such cones are classified by Euclidean Jordan algebras and the
classification gives:
» S The cone of positive definite real quadratic forms
H". The cone of positive definite Hermitian quadratic forms
Q": The cone of positive definite quaternionic quadratic forms
The cone of 3 x 3 positive definite octonion matrices.
The hyperbolic cone H,

vV vyvyy

Hy={(x1,..., %) st.xa >0and x; —x3 — -+ —x3 >0}

> References
» A. Ash, D. Mumford, M. Rapoport, Y. Tai Smooth
compactifications of locally symmetric varieties, Cambridge
University Press
» M. Koecher, Beitrage zu einer Reduktionstheorie in
Positivtitsbereichan 1/1l, Math. Annalen 141, 384-432, 144,
175-182



T-space theory

» A T-space F is a vector space in 5" with Foo = F N SZ,
being non-empty.

» All above reduction theories apply to that case.

» But some dead ends exist to the polyhedral tessellations.

» Relevant group is Aut(F) = {g € GL,(Z) s.t. gFg" = F}.

» For a finite group G C GL,(Z) of space

F(G) = {A €S"st. gAgT = Afor g e G}

we have Aut(F(G)) = Norm(G, GL,(Z)) (Zassenhaus) and a
finite number of F-perfect forms.

» There exist some T-spaces having a rational basis and an
infinity of perfect forms.

» Another finiteness case is for spaces obtained from GL,(R)
with R number ring.



Non-polyhedral reduction theories

» Some works with non-polyhedral, but still manifold domains:

» R. MacPherson and M. McConnel, Explicit reduction theory for
Siegel modular threefolds, Invent. Math. 111 (1993) 575-625.

» D. Yasaki, An explicit spine for the Picard modular group over
the Gaussian integers, Journal of Number Theory, 128 (2008)
207-234.

» Other works in complex hyperbolic space using Poincaré
polyhedron theorem:
» M. Deraux, Deforming the R-fuchsian (4,4, 4)-lattice group
into a lattice.
» E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups
in complex hyperbolic geometry, Topology 39 (2000)
1209-1223.

» Other works for non-manifold setting would be:

» T. Brady, The integral cohomology of Out, (F3), Journal of
Pure and Applied Algebra 87 (1993) 123-167.

» K.N. Moss, Cohomology of SL(n,Z[1/p]), Duke Mathematical
Journal 47-4 (1980) 803-818.



VI. Central cone

compactification



Central cone compactification
» We consider the space of integral valued quadratic forms:
In={Ae Sys.t. Alx] € Z for all x € Z"}

All the forms in [, have integral coefficients on the diagonal
and half integral outside of it.

» The centrally perfect forms are the elements of /, that are
vertices of conv /,.

» For A€ I, we have A[x] > 1. So, I, C R,

» Any root lattice gives a vertex both of R, and conv /,.

» The centrally perfect forms are known for n < 6:

dim. Centrally perfect forms
2 A, (lgusa)
3 Az (lgusa)
4 A4, Dy (lgusa)
5 As, Ds (Namikawa)
6 Ae, Dg, Eg (Dutour Slklrlé)

> By taking the dual we get tessellations of 57, ~o.



Enumeration of centrally perfect forms

» Suppose that we have a conjecturally correct list of centrally
perfect forms A1, ..., Am. Suppose further that for each form
A; we have a conjectural list of neighbors N(A;).

» We form the cone
C(A)) = {X — A, for X € N(A))}

and we compute the orbits of facets of C(A;).

» For each orbit of facet of representative f we form the
corresponding linear form f and solve the Integer Linear
Problem

fopt = min (X

opt = 2l (X)
We have to use GLPK program for that. It is done iteratively
since I, is defined by an infinity of inequalities.

> If fopr = f(A;) always then the list is correct. If not then the
X realizing f(X) < f(A;) need to be added to the full list.



VII. Perfect form

complex



Known number of orbits of faces for n <9

» Each orbit of face corresponds to a vector configuration.
» The rank rk(V) of a vector configuration V = {vy,..., vy} is
the rank of the matrix family {p(v;) = v v;}.
» The complex is fully known for n < 7. Number of orbits by
rank:
» n=4.1,3,4,4,2, 2, 2.
» n=>5: 2,5, 10, 16, 23, 25, 23, 16, 9, 4, 3.
» n=06: 3, 10, 28, 71, 162, 329, 589, 874, 1066, 1039, 775,
425, 181, 57, 18, 7
» n=17: 6, 28, 115, 467, 1882, 7375, 26885, 87400, 244029,
569568, 1089356, 1683368, 2075982, 2017914, 1523376,
876385, 374826, 115411, 24623, 3518, 352, 33
» For n = 8 the following is known:
» Number of perfect forms is 10916
» Number of orbits of low rank faces is: 13 (Zahareva &
Martinet), 106, 783, 6167, 50645
» For n =9 the following is known:
» Number of orbits of low rank faces is: 44 (Keller, Martinet &
Schiirmann), 759, 13437



Testing realizability of vector families

>

Problem: Suppose we have a configuration of vector V. Does
there exist a matrix A € 52 such that Min(A) = V?

Consider the linear program
minimize A
with A = A[v] forveV
Alv] > 1forveZ"—{0} -V

If Aopt < 1 then V is realizable, otherwise no.

In practice one replaces Z" by a finite set and iteratively
increases it until a conclusion is reached.

The number of iterations can unfortunately be very high.

We use integral symmetries of the configuration of vectors in
order to make the linear program simpler.

A related problem is to find the smallest configuration W such
that there exist a A € SZ,y with V C W = Min(A) and

rk(V) = rk(W).



Simpliciality results

» Theorem: If V = {v1,...,vn} is a configuration of shortest
vectors in dimension n such that rk()) = r with
re{n,n+1,n+2} Then m=r.

» The proof of this is relatively elementary and use simple
matrix arguments. See:

» M. Dutour Sikiri¢, K. Hulek, A. Schiirmann, Smoothness and
singularities of the perfect form compactification of Ag,
Algebraic Geometry 2(5) (2015) 642-653.

» Conjecture: The equality m = r also holds if
re{n+3,n+4}.

It is true for n < 8.

» For Eisenstein or Gaussian integers similar results hold only for

r=n.



Enumeration of vector configurations for r = n+ 1,
r=n-+2

Suppose we know the configuration of shortest vectors in
dimension n of rank r = n.
» Let V = {v1,...,vp} be a short vector configuration with n
vectors.
» We search for the vectors v such that W =V U {v}is a
vector configuration.
» We can assume that V has maximum determinant in the
n + 1 subvector configurations with n vectors of WW. Thus

|det(vi, ..., Vie1, Vitl,-- ., Vi, V)| < |det(ve,..., vp)]|

forl1 <ij<n.
» The above inequalities determine a n-dim. polytope.
» We enumerate all the integer points by exhaustive
enumeration.
» We then check for realizability of the vector families.

For rank r = n+ 2, we proceed similarly.



Enumeration of vector configurations for r > n + 2

We assume that we know all the realizable vector configurations of
rank r —1 and r — 2.

» We enumerate all pairs (V, W) with V C W, rk(V) =r —2
and rk(W) =r—1.

» If we have a configuration of rank r, then it contains a
configuration V of rank r — 2 and dimension n which is

contained in two configurations W; and W5 of rank r — 2
such that V C W; and V C Wh.

» So, we combine previous enumeration and obtain a set of
configurations Wy U Wh

» We check for each of them if there exist a realizable vector
configuration W such that Wy UW, C W and rk(W) =r.



Enumerating the configurations of rank r = n

» This is in general a very hard problem with no satisfying
solution.

» One would expect that the number of realizable vector
configurations in dimension 10, 11 and 12 not be too high.

> It does not seem possible to use the polyhedral structure in
order to enumerate them.

» The only known upper bound on the possible determinant of
realizable configurations V is

det(V)| < ||

» For dimension 9 and 10 the bound combined with known
upper bound on 7, gives 30 and 59 as upper bound.

» Those are quite large bounds.



The case of cyclic lattices

» For an index d € N we consider a lattice L spanned by
e =(1,0,...,0),...,e,=(0,...,0,1) and

1
€ént1 = 3(317 ...,an),a €L

such that (e,. .., e,) is the configuration of shortest vectors
of a lattice.
» By standard reductions, we can assume that
»ap<a<---<apn
» 1< a < |d/2].
» For n =10 at present one can only state d < 59 and d prime.
» This case is important for two reasons:

> |t exemplifies the difficulty of the problem.
> It shows up when enumerating the minimal configuration of
shortest vectors.

> For n =9, the largest feasible prime d is 7.
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