Topological application of Perfect form theory

Mathieu Dutour Sikirić

Institute Rudjer Bošković, Zagreb Croatia

November 21, 2016

I. Lattices and Gram matrices

Lattice packings

- ► A lattice $L \subset \mathbb{R}^n$ is a set of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ with $(v1, \ldots, v_n)$ independent.
- ► A packing is a family of balls $B_n(x_i, r)$, $i \in I$ of the same radius r and center x_i such that their interiors are disjoint.

- If L is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha > 0$ such that $L + B_n(0, \alpha)$ is a packing.
- \blacktriangleright The maximum α is called $\lambda(L)$ and the determinant of (v_1, \ldots, v_n) is det L.

Gram matrix and lattices

- Denote by S^n the vector space of real symmetric $n \times n$ matrices, $S_{>0}^n$ the convex cone of real symmetric positive definite $n \times n$ matrices and $S_{\geq 0}^n$ the convex cone of real symmetric positive semidefinite $n \times n$ matrices.
- \blacktriangleright Take a basis (v_1, \ldots, v_n) of a lattice L and associate to it the Gram matrix $G_v = (\langle v_i, v_j \rangle)_{1 \le i,j \le n} \in S^n_{>0}$.
- Example: take the hexagonal lattice generated by $v_1 = (1, 0)$ and $v_2 = \left(\frac{1}{2}\right)$ $\frac{1}{2}$, √ 3 $\frac{\sqrt{3}}{2}$

Isometric lattices

 \blacktriangleright Take a basis (v_1, \ldots, v_n) of a lattice L with $v_i = (v_{i,1}, \ldots, v_{i,n}) \in \mathbb{R}^n$ and write the matrix

$$
V = \left(\begin{array}{ccc} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{array}\right)
$$

and $G_{\mathbf{v}} = V^{\mathcal{T}} V$. The matrix G_v is defined by $\frac{n(n+1)}{2}$ variables as opposed to n^2 for the basis V.

- ► If $M \in S^n_{>0}$, then there exists V such that $M = V^T$ V (Gram Schmidt orthonormalization)
- If $M = V_1^T V_1 = V_2^T V_2$, then $V_1 = OV_2$ with $O^T O = I_n$ (i.e. O corresponds to an isometry of \mathbb{R}^n).
- Also if L is a lattice of \mathbb{R}^n with basis **v** and u an isometry of \mathbb{R}^n , then $G_{\mathbf{v}} = G_{u(\mathbf{v})}$.

Arithmetic minimum

- For $A \in S^n$ and $x \in \mathbb{R}^n$ we write $A[x] = x^T A x$.
- ► The arithmetic minimum of $A \in S^n_{>0}$ is

$$
\min(A) = \min_{x \in \mathbb{Z}^n - \{0\}} A[x]
$$

► The minimal vector set of $A \in S^n_{>0}$ is

$$
Min(A) = \{x \in \mathbb{Z}^n \mid A[x] = min(A)\}
$$

 \triangleright Both min(A) and Min(A) can be computed using some programs (for example SV by Vallentin)

• The matrix
$$
A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$
 has

 $\text{Min}(A_{hex}) = \{\pm (1, 0), \pm (0, 1), \pm (1, -1)\}.$

Changing basis

If **v** and **v**' are two basis of a lattice L then $V' = VP$ with $P \in GL_n(\mathbb{Z})$. This implies

$$
G_{v'} = V'^T V' = (VP)^T VP = P^T \{ V^T V \} P = P^T G_v P
$$

If $A, B \in S^n_{>0}$, they are called arithmetically equivalent if there is at least one $P \in GL_n(\mathbb{Z})$ such that

$$
A = P^T B P
$$

- \blacktriangleright Lattices up to isometric equivalence correspond to $S_{>0}^n$ up to arithmetic equivalence.
- \triangleright In practice, Plesken/Souvignier wrote a program ISOM for testing arithmetic equivalence and a program AUTO for computing automorphism group of lattices. All such programs take Gram matrices as input.

II. Computational techniques

Dual description problem

- A vertex of a polytope P is a point $v \in P$, which cannot be expressed as $v=\lambda v^1+(1-\lambda)v^2$ with $0<\lambda< 1$ and $v^1 \neq v^2 \in P$.
- \triangleright A polytope is the convex hull of its vertices and this is the minimal set defining it.
- A facet of a polytope is an inequality $f(x) b \ge 0$, which cannot be expressed as $f(x) - b = \lambda (f_1(x) - b_1) + (1 - \lambda)(f_2(x) - b_2)$ with

$$
f_i(x)-b_i\geq 0 \text{ on } P.
$$

- \triangleright A polytope is defined by its facet inequalities. and this is the minimal set of linear inequalities defining it.
- \triangleright The dual-description problem is the problem of passing from one description to another.
- \triangleright There are several programs CDD, LRS for computing dual-description computations.
- \blacktriangleright In case of large problems, we can use the symmetries for faster computation.

Linear programs

 \triangleright A linear program is the problem of maximizing a linear function $f(x)$ over a set $\mathcal P$ defined by linear inequalities.

 $\mathcal{P} = \{x \in \mathbb{R}^d \text{ such that } f_i(x) \geq b_i\}$

with f_i linear and $b_i \in \mathbb{R}$.

- \blacktriangleright The solution of linear programs is attained at vertices of P .
- \triangleright There are two classes of solution methods:

optimal solution vertex

Simplex method

Interior point method

- \triangleright Simplex methods use exact arithmetic but have bad theoretical complexity
- Interior point methods have good theoretical complexity but only gives an approximate vertex.

III. Perfect forms and domains

Perfect forms

- \triangleright A form A is extreme if it is a local maximum of the packing density.
- ► A matrix $A \in S^n_{>0}$ is perfect (Korkine & Zolotarev) if the equation

 $B \in S^n$ and $B[x] = min(A)$ for all $x \in Min(A)$

implies $B = A$.

- \triangleright Theorem: (Korkine & Zolotarev) If a form is extreme then it is perfect.
- \triangleright Up to a scalar multiple, perfect forms are rational.
- \triangleright All root lattices are perfect, many other families are known.

Perfect domains and arithmetic closure

- If $v \in \mathbb{Z}^n$ then the corresponding rank 1 form is $p(v) = vv^T$.
- If A is a perfect form, its perfect domain is

$$
\mathsf{Dom}(A) = \sum_{v \in \mathsf{Min}(A)} \mathbb{R}_+ p(v)
$$

- If A has m shortest vectors then Dom(A) has $\frac{m}{2}$ extreme rays.
- \triangleright So actually, the perfect domains realize a tessellation not of $S_{>0}^n$, nor $S_{\geq 0}^n$ but of the rational closure $S_{rat,\geq 0}^n$.
- ► The rational closure $S_{rat,\geq 0}^n$ has a number of descriptions:

$$
\blacktriangleright S_{rat,\geq 0}^n = \sum_{v\in\mathbb{Z}^n} \mathbb{R}_+ p(v)
$$

- ► If $A \in S_{\geq 0}^n$ then $A \in S_{rat,\geq 0}^n$ if and only if Ker A is defined by rational equations.
- \triangleright So, actually, the stabilizers of some faces of the polyhedral complex are infinite.

Finiteness

- \triangleright Theorem: (Voronoi) Up to arithmetic equivalence there is only finitely many perfect forms.
- \blacktriangleright The group $GL_n(\mathbb{Z})$ acts on $S^n_{>0}$:

 $Q \mapsto P^t Q P$

and we have $\mathsf{Min}(P^t Q P) = P^{-1} \mathsf{Min}(Q)$

- ▶ Dom $(P^{\mathsf{T}} Q P) = c(P)^{\mathsf{T}}$ Dom $(Q) c(P)$ with $c(P) = (P^{-1})^{\mathsf{T}}$
- For $n = 2$, we get the classical picture:

Known results on lattice packing density maximization

- \blacktriangleright The enumeration of perfect forms is done with the Voronoi algorithm.
- \triangleright The number of orbits of faces of the perfect domain tessellation is much higher but finite (Known for $n \le 7$)
- Blichfeldt used Korkine-Zolotarev reduction theory.
- \triangleright Cohn & Kumar used Fourier analysis and Linear programming.

IV. Ryshkov polyhedron and the Voronoi algorithm

The Ryshkov polyhedron

 \blacktriangleright The Ryshkov polyhedron R_n is defined as

$$
R_n = \{A \in S^n \text{ s.t. } A[x] \ge 1 \text{ for all } x \in \mathbb{Z}^n - \{0\}\}
$$

- \blacktriangleright The cone is invariant under the action of $GL_n(\mathbb{Z})$.
- ► The cone is locally polyhedral, i.e. for a given $A \in R_n$

$$
\{x\in\mathbb{Z}^n \text{ s.t. } A[x]=1\}
$$

is finite

- \triangleright Vertices of R_n correspond to perfect forms.
- ► For a form $A \in R_n$ we define the local cone

 $Loc(A) = \{ Q \in S^n \text{ s.t. } Q[x] \geq 0 \text{ if } x \in \text{Min}(A) \}$

The Voronoi algorithm

 \blacktriangleright Find a perfect form (say A_n), insert it to the list $\mathcal L$ as undone.

 \blacktriangleright Iterate

- For every undone perfect form A in \mathcal{L} , compute the local cone $Loc(A)$ and then its extreme rays.
- For every extreme ray r of $Loc(A)$ realize the flipping, i.e. compute the adjacent perfect form $A'=A+\alpha r$.
- If A' is not equivalent to a form in $\mathcal L$, then we insert it into $\mathcal L$ as undone.
- \blacktriangleright Finish when all perfect forms have been treated.

The sub-algorithms are:

- \triangleright Find the extreme rays of the local cone $Loc(A)$ (use CDD or LRS or any other program)
- For any extreme ray r of $Loc(A)$ find the adjacent perfect form A' in the Ryshkov polyhedron R_n
- \triangleright Test equivalence of perfect forms using ISOM

Flipping on an edge I

Min(
$$
A_{hex}
$$
) = { \pm (1, 0), \pm (0, 1), \pm (1, -1)}

with

$$
A_{hex} = \left(\begin{array}{cc} 1 & 1/2 \\ 1/2 & 1 \end{array}\right) \text{ and } D = \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)
$$

Flipping on an edge II

 $Min(B) = {\pm(1,0), \pm(0,1)}$

with

$$
B=\left(\begin{array}{cc}1&1/4\\1/4&1\end{array}\right)=A_{hex}+D/4
$$

Flipping on an edge III

$$
\mathsf{Min}(\mathcal{A}_{\mathsf{sqr}}) = \{\pm(1,0), \pm(0,1)\}
$$

with

$$
A_{\mathit{sqr}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) = A_{\mathit{hex}} + D/2
$$

Flipping on an edge IV

with

 ${\sf Min}(\tilde A_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,1)\}$ $\tilde{A}_{hex}=\left(\begin{array}{cc} 1 & -1/2 \ -1/2 & 1 \end{array}\right)=A_{hex}+D$

The Ryshkov polyhedron R_2

Well rounded forms and retract

- A form Q is said to be well rounded if it admits vectors v_1 , \ldots , v_n such that
	- \blacktriangleright (ν_1, \ldots, ν_n) form a \mathbb{R} -basis of \mathbb{R}^n (not necessarily a \mathbb{Z} -basis)
	- $\blacktriangleright \ \nu_1, \ldots, \nu_n$ are shortest vectors of Q.
- \triangleright Well rounded forms correspond to bounded faces of R_n .
- \triangleright Every form can be continuously deformed to a well rounded form and this defines a retracting homotopy of R_n onto a polyhedral complex WR_n of dimension $\frac{n(n-1)}{2}$.
- Every face of WR_n has finite stabilizer.
- \triangleright Actually, in term of dimension, we cannot do better:
	- \triangleright A. Pettet and J. Souto, Minimality of the well rounded retract, Geometry and Topology, 12 (2008), 1543-1556.
- \triangleright We also cannot reduce ourselves to lattices whose shortest vectors define a \mathbb{Z} -basis of \mathbb{Z}^n for $n \geq 5$.

Topological applications

- \blacktriangleright The fact that we have finite stabilizers for all faces means that we can compute rational homology/cohomology of $GL_n(\mathbb{Z})$ efficiently.
- ► This has been done for $n \leq 7$
	- ▶ P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory and the cohomology of modular groups, Adv. Math 245 (2013) 587–624.
- As an application, we can compute $K_n(\mathbb{Z})$ for $n \leq 8$.
- \triangleright By using perfect domains, we can compute the action of Hecke operators on the cohomology.
- ► This has been done for $n < 4$:
	- ▶ P.E. Gunnells, Computing Hecke Eigenvalues Below the Cohomological Dimension, Experimental Mathematics 9-3 (2000) 351–367.
- \triangleright The above can, in principle, be extended to the case of $GL_n(R)$ with R a ring of algebraic integers.

V. Tessellations

Linear Reduction theories for $S_{r_{c}}^{n}$ rat, \geq 0

Decompositions related to perfect forms:

- \triangleright The perfect form theory (Voronoi I) for lattice packings (full face lattice known for $n \le 7$, perfect domains known for $n < 8$
- \triangleright The central cone compactification (Igusa & Namikawa) (Known for $n \leq 6$)

Decompositions related to Delaunay polytopes:

- \triangleright The L-type reduction theory (Voronoi II) for Delaunay tessellations (Known for $n \leq 5$)
- \triangleright The C-type reduction theory (Ryshkov & Baranovski) for edges of Delaunay tessellations (Known for $n \leq 5$)

Fundamental domain constructions:

- \blacktriangleright The Minkowski reduction theory (Minkowski) it uses the successive minima of a lattice to reduce it (Known for $n < 7$) not face-to-face
- \triangleright Venkov's reduction theory also known as Igusa's fundamental cone (finiteness proved by Venkov and Crisalli)

Self-dual cones

For an open cone C in \mathbb{R}^n the dual cone is

$$
C^* = \{x \in \mathbb{R}^n \text{ s.t. } \langle x, y \rangle > 0 \text{ for } y \in C\}
$$

- \triangleright Such cones are classified by Euclidean Jordan algebras and the classification gives:
	- \triangleright S^n : The cone of positive definite real quadratic forms
	- \blacktriangleright Hⁿ: The cone of positive definite Hermitian quadratic forms
	- \blacktriangleright Qⁿ: The cone of positive definite quaternionic quadratic forms
	- \blacktriangleright The cone of 3 \times 3 positive definite octonion matrices.
	- \blacktriangleright The hyperbolic cone H_n

$$
H_n = \{(x_1, \ldots, x_n) \text{ s.t. } x_1 > 0 \text{ and } x_1^2 - x_2^2 - \cdots - x_n^2 > 0\}
$$

\blacktriangleright References

- A. Ash, D. Mumford, M. Rapoport, Y. Tai Smooth compactifications of locally symmetric varieties, Cambridge University Press
- ▶ M. Koecher, Beiträge zu einer Reduktionstheorie in Positivtätsbereichan I/II, Math. Annalen 141, 384–432, 144, 175–182

T-space theory

- ► A T-space $\mathcal F$ is a vector space in S^n with $\mathcal F_{>0} = \mathcal F \cap S^n_{>0}$ being non-empty.
- \triangleright All above reduction theories apply to that case.
- \triangleright But some dead ends exist to the polyhedral tessellations.
- ► Relevant group is $Aut(\mathcal{F}) = \{g \in GL_n(\mathbb{Z}) \text{ s.t. } g\mathcal{F}g^\mathcal{T} = \mathcal{F}\}.$
- ► For a finite group $G \subset GL_n(\mathbb{Z})$ of space

$$
\mathcal{F}(G) = \left\{ A \in S^n \text{ s.t. } gAg^T = A \text{ for } g \in G \right\}
$$

we have $Aut(\mathcal{F}(G)) = \text{Norm}(G, GL_n(\mathbb{Z}))$ (Zassenhaus) and a finite number of F -perfect forms.

- \triangleright There exist some T-spaces having a rational basis and an infinity of perfect forms.
- Another finiteness case is for spaces obtained from $GL_n(R)$ with R number ring.

Non-polyhedral reduction theories

- \triangleright Some works with non-polyhedral, but still manifold domains:
	- \triangleright R. MacPherson and M. McConnel, Explicit reduction theory for Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.
	- \triangleright D. Yasaki, An explicit spine for the Picard modular group over the Gaussian integers, Journal of Number Theory, 128 (2008) 207–234.
- \triangleright Other works in complex hyperbolic space using Poincaré polyhedron theorem:
	- \blacktriangleright M. Deraux, Deforming the \mathbb{R} -fuchsian (4, 4, 4)-lattice group into a lattice.
	- \triangleright E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups in complex hyperbolic geometry, Topology 39 (2000) 1209–1223.
- \triangleright Other works for non-manifold setting would be:
	- \blacktriangleright T. Brady, The integral cohomology of Out₊(F_3), Journal of Pure and Applied Algebra 87 (1993) 123–167.
	- \triangleright K.N. Moss, Cohomology of SL(n, $\mathbb{Z}[1/p]$), Duke Mathematical Journal 47-4 (1980) 803–818.

VI. Central cone compactification

Central cone compactification

 \triangleright We consider the space of integral valued quadratic forms:

$$
I_n = \{A \in S^n_{>0} \text{ s.t. } A[x] \in \mathbb{Z} \text{ for all } x \in \mathbb{Z}^n\}
$$

All the forms in I_n have integral coefficients on the diagonal and half integral outside of it.

- \blacktriangleright The centrally perfect forms are the elements of I_n that are vertices of conv I_n .
- For $A \in I_n$ we have $A[x] \geq 1$. So, $I_n \subset R_n$
- Any root lattice gives a vertex both of R_n and conv I_n .
- ► The centrally perfect forms are known for $n \leq 6$:

► By taking the dual we get tessellations of $S_{rat, \geq 0}^n$.

Enumeration of centrally perfect forms

- \triangleright Suppose that we have a conjecturally correct list of centrally perfect forms A_1, \ldots, A_m . Suppose further that for each form A_i we have a conjectural list of neighbors $N(A_i)$.
- \blacktriangleright We form the cone

$$
C(A_i) = \{X - A_i \text{ for } X \in N(A_i)\}
$$

and we compute the orbits of facets of $C(A_i)$.

 \blacktriangleright For each orbit of facet of representative f we form the corresponding linear form f and solve the Integer Linear Problem

$$
f_{\text{opt}} = \min_{X \in I_n} f(X)
$$

We have to use GLPK program for that. It is done iteratively since I_n is defined by an infinity of inequalities.

If $f_{opt} = f(A_i)$ always then the list is correct. If not then the X realizing $f(X) < f(A_i)$ need to be added to the full list.

VII. Perfect form complex

Known number of orbits of faces for $n \leq 9$

- \triangleright Each orbit of face corresponds to a vector configuration.
- \triangleright The rank rk(V) of a vector configuration $V = \{v_1, \ldots, v_m\}$ is the rank of the matrix family $\{p(v_i) = v_i^T v_i\}.$
- \blacktriangleright The complex is fully known for $n \leq 7$. Number of orbits by rank:
	- $n = 4: 1, 3, 4, 4, 2, 2, 2$
	- $n = 5: 2, 5, 10, 16, 23, 25, 23, 16, 9, 4, 3.$
	- $n = 6: 3, 10, 28, 71, 162, 329, 589, 874, 1066, 1039, 775,$ 425, 181, 57, 18, 7
	- $n = 7: 6, 28, 115, 467, 1882, 7375, 26885, 87400, 244029,$ 569568, 1089356, 1683368, 2075982, 2017914, 1523376, 876385, 374826, 115411, 24623, 3518, 352, 33
- For $n = 8$ the following is known:
	- \blacktriangleright Number of perfect forms is 10916
	- In Number of orbits of low rank faces is: 13 (Zahareva & Martinet), 106, 783, 6167, 50645
- For $n = 9$ the following is known:
	- ▶ Number of orbits of low rank faces is: 44 (Keller, Martinet & Schürmann), 759, 13437

Testing realizability of vector families

- \triangleright Problem: Suppose we have a configuration of vector $\mathcal V$. Does there exist a matrix $A\in S^n_{>0}$ such that $\mathsf{Min}(A)=\mathcal{V}$?
- \blacktriangleright Consider the linear program

$$
\begin{array}{ll}\text{minimize} & \lambda\\ \text{with} & \lambda = A[v] \text{ for } v \in \mathcal{V}\\ & A[v] \ge 1 \text{ for } v \in \mathbb{Z}^n - \{0\} - \mathcal{V}\end{array}
$$

If λ_{opt} < 1 then V is realizable, otherwise no.

- In practice one replaces \mathbb{Z}^n by a finite set and iteratively increases it until a conclusion is reached.
- \blacktriangleright The number of iterations can unfortunately be very high.
- \triangleright We use integral symmetries of the configuration of vectors in order to make the linear program simpler.
- A related problem is to find the smallest configuration W such that there exist a $A\in S^n_{>0}$ with $\mathcal{V}\subseteq\mathcal{W}=\mathsf{Min}(A)$ and $rk(V) = rk(W)$.

Simpliciality results

- \triangleright Theorem: If $V = \{v_1, \ldots, v_m\}$ is a configuration of shortest vectors in dimension *n* such that $rk(V) = r$ with $r \in \{n, n+1, n+2\}$. Then $m = r$.
- \triangleright The proof of this is relatively elementary and use simple matrix arguments. See:
	- ▶ M. Dutour Sikirić, K. Hulek, A. Schürmann, Smoothness and singularities of the perfect form compactification of Ag, Algebraic Geometry 2(5) (2015) 642-653.
- \triangleright Conjecture: The equality $m = r$ also holds if $r \in \{n+3, n+4\}.$ It is true for $n \leq 8$.
- \triangleright For Eisenstein or Gaussian integers similar results hold only for $r = n$

Enumeration of vector configurations for $r = n + 1$, $r = n + 2$

Suppose we know the configuration of shortest vectors in dimension *n* of rank $r = n$.

- In Let $V = \{v_1, \ldots, v_n\}$ be a short vector configuration with n vectors.
- ► We search for the vectors v such that $W = V \cup \{v\}$ is a vector configuration.
- \triangleright We can assume that V has maximum determinant in the $n+1$ subvector configurations with *n* vectors of W. Thus

$$
|\det(v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_n,v)|\leq |\det(v_1,\ldots,v_n)|
$$

for $1 \leq i \leq n$.

- \blacktriangleright The above inequalities determine a *n*-dim. polytope.
- \triangleright We enumerate all the integer points by exhaustive enumeration.
- \triangleright We then check for realizability of the vector families.

For rank $r = n + 2$, we proceed similarly.

Enumeration of vector configurations for $r > n + 2$

We assume that we know all the realizable vector configurations of rank $r - 1$ and $r - 2$.

- \triangleright We enumerate all pairs (V, W) with $V \subset W$, $rk(V) = r 2$ and $rk(\mathcal{W}) = r - 1$.
- If we have a configuration of rank r, then it contains a configuration V of rank $r - 2$ and dimension *n* which is contained in two configurations W_1 and W_2 of rank $r - 2$ such that $V \subset W_1$ and $V \subset W_2$.
- \triangleright So, we combine previous enumeration and obtain a set of configurations $W_1 \cup W_2$
- \triangleright We check for each of them if there exist a realizable vector configuration W such that $W_1 \cup W_2 \subset W$ and $rk(W) = r$.

Enumerating the configurations of rank $r = n$

- \triangleright This is in general a very hard problem with no satisfying solution.
- \triangleright One would expect that the number of realizable vector configurations in dimension 10, 11 and 12 not be too high.
- It does not seem possible to use the polyhedral structure in order to enumerate them.
- \triangleright The only known upper bound on the possible determinant of realizable configurations V is

$$
|\det(V)| \leq \left\lfloor \gamma_n^{n/2} \right\rfloor
$$

- \triangleright For dimension 9 and 10 the bound combined with known upper bound on γ_n gives 30 and 59 as upper bound.
- \blacktriangleright Those are quite large bounds.

The case of cyclic lattices

► For an index $d \in \mathbb{N}$ we consider a lattice L spanned by $e_1 = (1, 0, \ldots, 0), \ldots, e_n = (0, \ldots, 0, 1)$ and

$$
e_{n+1}=\frac{1}{d}(a_1,\ldots,a_n), a_i\in\mathbb{Z}
$$

such that (e_1, \ldots, e_n) is the configuration of shortest vectors of a lattice.

- \triangleright By standard reductions, we can assume that
	- \blacktriangleright a₁ \lt a₂ $\lt \cdots \lt a_n$.
	- \blacktriangleright 1 $\le a_i \le |d/2|$.

► For $n = 10$ at present one can only state $d \leq 59$ and d prime.

- \blacktriangleright This case is important for two reasons:
	- \blacktriangleright It exemplifies the difficulty of the problem.
	- \blacktriangleright It shows up when enumerating the minimal configuration of shortest vectors.
- For $n = 9$, the largest feasible prime d is 7.

THANK YOU