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I. Lattices and

Gram matrices



Lattice packings

I A lattice L ⊂ Rn is a set of the form L = Zv1 + · · ·+ Zvn with
(v1, . . . , vn) independent.

I A packing is a family of balls Bn(xi , r), i ∈ I of the same
radius r and center xi such that their interiors are disjoint.

I If L is a lattice, the lattice packing is the packing defined by
taking the maximal value of α > 0 such that L + Bn(0, α) is a
packing.

I The maximum α is called λ(L) and the determinant of
(v1, . . . , vn) is det L.



Gram matrix and lattices

I Denote by Sn the vector space of real symmetric n × n
matrices, Sn

>0 the convex cone of real symmetric positive
definite n × n matrices and Sn

≥0 the convex cone of real
symmetric positive semidefinite n × n matrices.

I Take a basis (v1, . . . , vn) of a lattice L and associate to it the
Gram matrix Gv = (〈vi , vj〉)1≤i ,j≤n ∈ Sn

>0.

I Example: take the hexagonal lattice generated by v1 = (1, 0)

and v2 =
(
1
2 ,
√
3
2

)
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v
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1 2

)



Isometric lattices

I Take a basis (v1, . . . , vn) of a lattice L with
vi = (vi ,1, . . . , vi ,n) ∈ Rn and write the matrix

V =

 v1,1 . . . vn,1
...

. . .
...

v1,n . . . vn,n


and Gv = V T V .
The matrix Gv is defined by n(n+1)

2 variables as opposed to n2

for the basis V .

I If M ∈ Sn
>0, then there exists V such that M = V T V (Gram

Schmidt orthonormalization)

I If M = V T
1 V1 = V T

2 V2, then V1 = OV2 with OT O = In
(i.e. O corresponds to an isometry of Rn).

I Also if L is a lattice of Rn with basis v and u an isometry of
Rn, then Gv = Gu(v).



Arithmetic minimum

I For A ∈ Sn and x ∈ Rn we write A[x ] = xTAx .

I The arithmetic minimum of A ∈ Sn
>0 is

min(A) = min
x∈Zn−{0}

A[x ]

I The minimal vector set of A ∈ Sn
>0 is

Min(A) = {x ∈ Zn | A[x ] = min(A)}

I Both min(A) and Min(A) can be computed using some
programs (for example SV by Vallentin)

I The matrix Ahex =

(
2 1
1 2

)
has

Min(Ahex) = {±(1, 0),±(0, 1),±(1,−1)}.



Changing basis

I If v and v′ are two basis of a lattice L then V ′ = VP with
P ∈ GLn(Z). This implies

Gv′ = V ′
T
V ′ = (VP)TVP = PT{V TV }P = PTGvP

I If A,B ∈ Sn
>0, they are called arithmetically equivalent if there

is at least one P ∈ GLn(Z) such that

A = PTBP

I Lattices up to isometric equivalence correspond to Sn
>0 up to

arithmetic equivalence.

I In practice, Plesken/Souvignier wrote a program ISOM for
testing arithmetic equivalence and a program AUTO for
computing automorphism group of lattices.
All such programs take Gram matrices as input.



II. Computational

techniques



Dual description problem
I A vertex of a polytope P is a point v ∈ P, which cannot be

expressed as v = λv1 + (1− λ)v2 with 0 < λ < 1 and
v1 6= v2 ∈ P.

I A polytope is the convex hull of its vertices and this is the
minimal set defining it.

I A facet of a polytope is an inequality f (x)− b ≥ 0, which
cannot be expressed as
f (x)− b = λ(f1(x)− b1) + (1− λ)(f2(x)− b2) with
fi (x)− bi ≥ 0 on P.

I A polytope is defined by its facet inequalities. and this is the
minimal set of linear inequalities defining it.

I The dual-description problem is the problem of passing from
one description to another.

I There are several programs CDD, LRS for computing
dual-description computations.

I In case of large problems, we can use the symmetries for
faster computation.



Linear programs
I A linear program is the problem of maximizing a linear

function f (x) over a set P defined by linear inequalities.

P = {x ∈ Rd such that fi (x) ≥ bi}

with fi linear and bi ∈ R.
I The solution of linear programs is attained at vertices of P.
I There are two classes of solution methods:

optimal solution vertex

Simplex method

optimal solution vertex

Interior point method
I Simplex methods use exact arithmetic but have bad

theoretical complexity
I Interior point methods have good theoretical complexity but

only gives an approximate vertex.



III. Perfect forms

and domains



Perfect forms

I A form A is extreme if it is a local maximum of the packing
density.

I A matrix A ∈ Sn
>0 is perfect (Korkine & Zolotarev) if the

equation

B ∈ Sn and B[x ] = min(A) for all x ∈ Min(A)

implies B = A.

I Theorem: (Korkine & Zolotarev) If a form is extreme then it
is perfect.

I Up to a scalar multiple, perfect forms are rational.

I All root lattices are perfect, many other families are known.



Perfect domains and arithmetic closure

I If v ∈ Zn then the corresponding rank 1 form is p(v) = vvT .

I If A is a perfect form, its perfect domain is

Dom(A) =
∑

v∈Min(A)

R+p(v)

I If A has m shortest vectors then Dom(A) has m
2 extreme rays.

I So actually, the perfect domains realize a tessellation not of
Sn
>0, nor Sn

≥0 but of the rational closure Sn
rat,≥0.

I The rational closure Sn
rat,≥0 has a number of descriptions:

I Sn
rat,≥0 =

∑
v∈Zn R+p(v)

I If A ∈ Sn
≥0 then A ∈ Sn

rat,≥0 if and only if Ker A is defined by
rational equations.

I So, actually, the stabilizers of some faces of the polyhedral
complex are infinite.



Finiteness
I Theorem:(Voronoi) Up to arithmetic equivalence there is only

finitely many perfect forms.
I The group GLn(Z) acts on Sn

>0:

Q 7→ PtQP

and we have Min(PtQP) = P−1 Min(Q)

I Dom(PTQP) = c(P)T Dom(Q)c(P) with c(P) =
(
P−1

)T
I For n = 2, we get the classical picture:

(0,1)

(1,1)

(1,2)

(3,2) (2,3)

(1,3)

(−1,2)

(−2,3)

(−1,3)

(2,1)

(3,1)

(1,0)

(−3,1)

(−2,1)

(−3,2)

(−1,1)



Known results on lattice packing density maximization

dim. Nr. of perfect forms Best lattice packing
2 1 (Lagrange) A2

3 1 (Gauss) A3

4 2 (Korkine & Zolotarev) D4

5 3 (Korkine & Zolotarev) D5

6 7 (Barnes) E6 (Blichfeldt & Watson)
7 33 (Jaquet) E7 (Blichfeldt & Watson)
8 10916 (DSV) E8 (Blichfeldt & Watson)
9 ≥500000 Λ9?

24 ? Leech (Cohn & Kumar)

I The enumeration of perfect forms is done with the Voronoi
algorithm.

I The number of orbits of faces of the perfect domain
tessellation is much higher but finite (Known for n ≤ 7)

I Blichfeldt used Korkine-Zolotarev reduction theory.

I Cohn & Kumar used Fourier analysis and Linear programming.



IV. Ryshkov polyhedron
and the Voronoi algorithm



The Ryshkov polyhedron

I The Ryshkov polyhedron Rn is defined as

Rn = {A ∈ Sn s.t. A[x ] ≥ 1 for all x ∈ Zn − {0}}

I The cone is invariant under the action of GLn(Z).

I The cone is locally polyhedral, i.e. for a given A ∈ Rn

{x ∈ Zn s.t. A[x ] = 1}

is finite

I Vertices of Rn correspond to perfect forms.

I For a form A ∈ Rn we define the local cone

Loc(A) = {Q ∈ Sn s.t. Q[x ] ≥ 0 if x ∈ Min(A)}



The Voronoi algorithm

I Find a perfect form (say An), insert it to the list L as undone.
I Iterate

I For every undone perfect form A in L, compute the local cone
Loc(A) and then its extreme rays.

I For every extreme ray r of Loc(A) realize the flipping, i.e.
compute the adjacent perfect form A′ = A + αr .

I If A′ is not equivalent to a form in L, then we insert it into L
as undone.

I Finish when all perfect forms have been treated.

The sub-algorithms are:

I Find the extreme rays of the local cone Loc(A) (use CDD or
LRS or any other program)

I For any extreme ray r of Loc(A) find the adjacent perfect
form A′ in the Ryshkov polyhedron Rn

I Test equivalence of perfect forms using ISOM



Flipping on an edge I

Min(Ahex) = {±(1, 0),±(0, 1),±(1,−1)}

with

Ahex =

(
1 1/2

1/2 1

)
and D =

(
0 −1
−1 0

)

v
1

v
2

A
hex



Flipping on an edge II

Min(B) = {±(1, 0),±(0, 1)}

with

B =

(
1 1/4

1/4 1

)
= Ahex + D/4

v
1

v
2

A

B

hex



Flipping on an edge III

Min(Asqr ) = {±(1, 0),±(0, 1)}

with

Asqr =

(
1 0
0 1

)
= Ahex + D/2

v
1

v
2

Ahex

Asqr



Flipping on an edge IV

Min(Ãhex) = {±(1, 0),±(0, 1),±(1, 1)}

with

Ãhex =

(
1 −1/2

−1/2 1

)
= Ahex + D

v
1

v
2

A
hex

A
hex



The Ryshkov polyhedron R2
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Well rounded forms and retract

I A form Q is said to be well rounded if it admits vectors v1,
. . . , vn such that

I (v1, . . . , vn) form a R-basis of Rn (not necessarily a Z-basis)
I v1, . . . , vn are shortest vectors of Q.

I Well rounded forms correspond to bounded faces of Rn.

I Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of Rn onto a
polyhedral complex WRn of dimension n(n−1)

2 .

I Every face of WRn has finite stabilizer.
I Actually, in term of dimension, we cannot do better:

I A. Pettet and J. Souto, Minimality of the well rounded retract,
Geometry and Topology, 12 (2008), 1543-1556.

I We also cannot reduce ourselves to lattices whose shortest
vectors define a Z-basis of Zn for n ≥ 5.



Topological applications

I The fact that we have finite stabilizers for all faces means that
we can compute rational homology/cohomology of GLn(Z)
efficiently.

I This has been done for n ≤ 7
I P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory

and the cohomology of modular groups, Adv. Math 245
(2013) 587–624.

I As an application, we can compute Kn(Z) for n ≤ 8.

I By using perfect domains, we can compute the action of
Hecke operators on the cohomology.

I This has been done for n ≤ 4:
I P.E. Gunnells, Computing Hecke Eigenvalues Below the

Cohomological Dimension, Experimental Mathematics 9-3
(2000) 351–367.

I The above can, in principle, be extended to the case of
GLn(R) with R a ring of algebraic integers.



V. Tessellations



Linear Reduction theories for Sn
rat,≥0

Decompositions related to perfect forms:
I The perfect form theory (Voronoi I) for lattice packings (full

face lattice known for n ≤ 7, perfect domains known for
n ≤ 8)

I The central cone compactification (Igusa & Namikawa)
(Known for n ≤ 6)

Decompositions related to Delaunay polytopes:
I The L-type reduction theory (Voronoi II) for Delaunay

tessellations (Known for n ≤ 5)
I The C -type reduction theory (Ryshkov & Baranovski) for

edges of Delaunay tessellations (Known for n ≤ 5)

Fundamental domain constructions:
I The Minkowski reduction theory (Minkowski) it uses the

successive minima of a lattice to reduce it (Known for n ≤ 7)
not face-to-face

I Venkov’s reduction theory also known as Igusa’s fundamental
cone (finiteness proved by Venkov and Crisalli)



Self-dual cones
I For an open cone C in Rn the dual cone is

C ∗ = {x ∈ Rn s.t. 〈x , y〉 > 0 for y ∈ C}
I Such cones are classified by Euclidean Jordan algebras and the

classification gives:
I Sn: The cone of positive definite real quadratic forms
I Hn: The cone of positive definite Hermitian quadratic forms
I Qn: The cone of positive definite quaternionic quadratic forms
I The cone of 3× 3 positive definite octonion matrices.
I The hyperbolic cone Hn

Hn =
{

(x1, . . . , xn) s.t. x1 > 0 and x21 − x22 − · · · − x2n > 0
}

I References
I A. Ash, D. Mumford, M. Rapoport, Y. Tai Smooth

compactifications of locally symmetric varieties, Cambridge
University Press

I M. Koecher, Beiträge zu einer Reduktionstheorie in
Positivtätsbereichan I/II, Math. Annalen 141, 384–432, 144,
175–182



T -space theory

I A T -space F is a vector space in Sn with F>0 = F ∩ Sn
>0

being non-empty.

I All above reduction theories apply to that case.

I But some dead ends exist to the polyhedral tessellations.

I Relevant group is Aut(F) = {g ∈ GLn(Z) s.t. gFgT = F}.
I For a finite group G ⊂ GLn(Z) of space

F(G ) =
{
A ∈ Sn s.t. gAgT = A for g ∈ G

}
we have Aut(F(G )) = Norm(G ,GLn(Z)) (Zassenhaus) and a
finite number of F-perfect forms.

I There exist some T -spaces having a rational basis and an
infinity of perfect forms.

I Another finiteness case is for spaces obtained from GLn(R)
with R number ring.



Non-polyhedral reduction theories

I Some works with non-polyhedral, but still manifold domains:
I R. MacPherson and M. McConnel, Explicit reduction theory for

Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.
I D. Yasaki, An explicit spine for the Picard modular group over

the Gaussian integers, Journal of Number Theory, 128 (2008)
207–234.

I Other works in complex hyperbolic space using Poincaré
polyhedron theorem:

I M. Deraux, Deforming the R-fuchsian (4, 4, 4)-lattice group
into a lattice.

I E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups
in complex hyperbolic geometry, Topology 39 (2000)
1209–1223.

I Other works for non-manifold setting would be:
I T. Brady, The integral cohomology of Out+(F3), Journal of

Pure and Applied Algebra 87 (1993) 123–167.
I K.N. Moss, Cohomology of SL(n,Z[1/p]), Duke Mathematical

Journal 47-4 (1980) 803–818.



VI. Central cone

compactification



Central cone compactification
I We consider the space of integral valued quadratic forms:

In = {A ∈ Sn
>0 s.t. A[x ] ∈ Z for all x ∈ Zn}

All the forms in In have integral coefficients on the diagonal
and half integral outside of it.

I The centrally perfect forms are the elements of In that are
vertices of conv In.

I For A ∈ In we have A[x ] ≥ 1. So, In ⊂ Rn

I Any root lattice gives a vertex both of Rn and conv In.
I The centrally perfect forms are known for n ≤ 6:

dim. Centrally perfect forms
2 A2 (Igusa)
3 A3 (Igusa)
4 A4, D4 (Igusa)
5 A5, D5 (Namikawa)
6 A6, D6, E6 (Dutour Sikirić)

I By taking the dual we get tessellations of Sn
rat,≥0.



Enumeration of centrally perfect forms

I Suppose that we have a conjecturally correct list of centrally
perfect forms A1, . . . , Am. Suppose further that for each form
Ai we have a conjectural list of neighbors N(Ai ).

I We form the cone

C (Ai ) = {X − Ai for X ∈ N(Ai )}

and we compute the orbits of facets of C (Ai ).

I For each orbit of facet of representative f we form the
corresponding linear form f and solve the Integer Linear
Problem

fopt = min
X∈In

f (X )

We have to use GLPK program for that. It is done iteratively
since In is defined by an infinity of inequalities.

I If fopt = f (Ai ) always then the list is correct. If not then the
X realizing f (X ) < f (Ai ) need to be added to the full list.



VII. Perfect form

complex



Known number of orbits of faces for n ≤ 9
I Each orbit of face corresponds to a vector configuration.
I The rank rk(V) of a vector configuration V = {v1, . . . , vm} is

the rank of the matrix family {p(vi ) = vTi vi}.
I The complex is fully known for n ≤ 7. Number of orbits by

rank:
I n = 4: 1, 3, 4, 4, 2, 2, 2.
I n = 5: 2, 5, 10, 16, 23, 25, 23, 16, 9, 4, 3.
I n = 6: 3, 10, 28, 71, 162, 329, 589, 874, 1066, 1039, 775,

425, 181, 57, 18, 7
I n = 7: 6, 28, 115, 467, 1882, 7375, 26885, 87400, 244029,

569568, 1089356, 1683368, 2075982, 2017914, 1523376,
876385, 374826, 115411, 24623, 3518, 352, 33

I For n = 8 the following is known:
I Number of perfect forms is 10916
I Number of orbits of low rank faces is: 13 (Zahareva &

Martinet), 106, 783, 6167, 50645
I For n = 9 the following is known:

I Number of orbits of low rank faces is: 44 (Keller, Martinet &
Schürmann), 759, 13437



Testing realizability of vector families

I Problem: Suppose we have a configuration of vector V. Does
there exist a matrix A ∈ Sn

>0 such that Min(A) = V?

I Consider the linear program

minimize λ
with λ = A[v ] for v ∈ V

A[v ] ≥ 1 for v ∈ Zn − {0} − V

If λopt < 1 then V is realizable, otherwise no.

I In practice one replaces Zn by a finite set and iteratively
increases it until a conclusion is reached.

I The number of iterations can unfortunately be very high.

I We use integral symmetries of the configuration of vectors in
order to make the linear program simpler.

I A related problem is to find the smallest configuration W such
that there exist a A ∈ Sn

>0 with V ⊆ W = Min(A) and
rk(V) = rk(W).



Simpliciality results

I Theorem: If V = {v1, . . . , vm} is a configuration of shortest
vectors in dimension n such that rk(V) = r with
r ∈ {n, n + 1, n + 2}. Then m = r .

I The proof of this is relatively elementary and use simple
matrix arguments. See:

I M. Dutour Sikirić, K. Hulek, A. Schürmann, Smoothness and
singularities of the perfect form compactification of Ag,
Algebraic Geometry 2(5) (2015) 642-653.

I Conjecture: The equality m = r also holds if
r ∈ {n + 3, n + 4}.
It is true for n ≤ 8.

I For Eisenstein or Gaussian integers similar results hold only for
r = n.



Enumeration of vector configurations for r = n + 1,
r = n + 2

Suppose we know the configuration of shortest vectors in
dimension n of rank r = n.

I Let V = {v1, . . . , vn} be a short vector configuration with n
vectors.

I We search for the vectors v such that W = V ∪ {v} is a
vector configuration.

I We can assume that V has maximum determinant in the
n + 1 subvector configurations with n vectors of W. Thus

| det(v1, . . . , vi−1, vi+1, . . . , vn, v)| ≤ | det(v1, . . . , vn)|

for 1 ≤ i ≤ n.
I The above inequalities determine a n-dim. polytope.
I We enumerate all the integer points by exhaustive

enumeration.
I We then check for realizability of the vector families.

For rank r = n + 2, we proceed similarly.



Enumeration of vector configurations for r > n + 2

We assume that we know all the realizable vector configurations of
rank r − 1 and r − 2.

I We enumerate all pairs (V,W) with V ⊂ W, rk(V) = r − 2
and rk(W) = r − 1.

I If we have a configuration of rank r , then it contains a
configuration V of rank r − 2 and dimension n which is
contained in two configurations W1 and W2 of rank r − 2
such that V ⊂ W1 and V ⊂ W2.

I So, we combine previous enumeration and obtain a set of
configurations W1 ∪W2

I We check for each of them if there exist a realizable vector
configuration W such that W1 ∪W2 ⊂ W and rk(W) = r .



Enumerating the configurations of rank r = n

I This is in general a very hard problem with no satisfying
solution.

I One would expect that the number of realizable vector
configurations in dimension 10, 11 and 12 not be too high.

I It does not seem possible to use the polyhedral structure in
order to enumerate them.

I The only known upper bound on the possible determinant of
realizable configurations V is

|det(V )| ≤
⌊
γ
n/2
n

⌋
I For dimension 9 and 10 the bound combined with known

upper bound on γn gives 30 and 59 as upper bound.

I Those are quite large bounds.



The case of cyclic lattices

I For an index d ∈ N we consider a lattice L spanned by
e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) and

en+1 =
1

d
(a1, . . . , an), ai ∈ Z

such that (e1, . . . , en) is the configuration of shortest vectors
of a lattice.

I By standard reductions, we can assume that
I a1 ≤ a2 ≤ · · · ≤ an.
I 1 ≤ ai ≤ bd/2c.

I For n = 10 at present one can only state d ≤ 59 and d prime.
I This case is important for two reasons:

I It exemplifies the difficulty of the problem.
I It shows up when enumerating the minimal configuration of

shortest vectors.

I For n = 9, the largest feasible prime d is 7.
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