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I. Problem
setting



Group Homology

▶ Take G a group, suppose that:
▶ X is a contractible space.
▶ G act fixed point free on X .

Then we define the group homologies of G to be
Hp(G ) = Hp(X/G ).

▶ The space X is then a classifying space.
▶ Examples:

▶ The bar construction gives a classifying space which can be
used to compute with general groups.

▶ If G is a Bieberbach group (acts fixed point free on Rn) then
Rn is the classifying space and the homology is the one of a
flat manifold.

▶ Getting workable classifying space for a group is not easy:
▶ If G is finite then Hi (G ) ̸= 0 for an infinity of i and thus X is

infinite dimensional.
▶ Thus one hopes to work out some “approximate classifying

space” and obtain the homology by perturbation arguments.



II. The case of GLn(Z)



The case of GLn(Z)

▶ The group GLn(Z) acts on Rn.

▶ So a priori, it would seem that the approximate classifying
space would be Rn. But the stabilizer of a point x ∈ Rn can
be infinite or GLn(Z) itself.

▶ So, we would like another space X on which GLn(Z) could
act. Our wishes are for:
▶ X to be contractible.
▶ X to admit a cell decomposition (polyhedral tesselation)

invariant under GLn(Z).
▶ That every face F of the tesselation has finite stabilizer under

GLn(Z).



Positive definite quadratic forms

▶ A matrix Q is called positive definite, respectively positive
semidefinite, if for every x ∈ Rn − {0} we have

x tQx > 0, respectively x tQx ≥ 0.

▶ Denote by Sn
>0, respectively Sn

≥0 the cones of positive definite,
respectively positive semidefinite n × n-matrices.

▶ The group GLn(Z) acts on Sn
>0 by the relation

(P,Q) 7→ PtQP

▶ For any Q ∈ Sn
>0 the automorphism group

Aut(Q) = {P ∈ GLn(Z) such that PtQP = Q}

is finite.



Perfect form

▶ If A ∈ Sn
>0 then define min(A) = minv∈Zn ̸=0 A[v ] and

Min(A) = {x ∈ Zn such that A[x ] = min(A)}

▶ The group GLn(Z) acts on Sn
>0:

Q 7→ PtQP

and we have Min(PtQP) = P−1Min(Q).

▶ A form is called perfect (Korkine & Zolotarev) if the equation
in B

B[v ] = min(A) for all v ∈ Min(A)

implies B = A.

▶ A perfect form is necessarily rational and thus up to a
multiple integral.



Perfect domains and arithmetic closure

▶ If v ∈ Zn then the corresponding rank 1 form is p(v) = vvT .

▶ If A is a perfect form, its perfect domain is

Dom(A) =
∑

v∈Min(A)

R+p(v)

▶ If A has m shortest vectors then Dom(A) has m
2 extreme rays.

▶ So actually, the perfect domains realize a tessellation not of
Sn
>0, nor S

n
≥0 but of the rational closure Sn

rat,≥0.

▶ The rational closure Sn
rat,≥0 has a number of descriptions:

▶ Sn
rat,≥0 =

∑
v∈Zn R+p(v)

▶ If A ∈ Sn
≥0 then A ∈ Sn

rat,≥0 if and only if Ker A is defined by
rational equations.

▶ So, actually, the stabilizers of some faces of the polyhedral
complex are infinite.



Finiteness
▶ Theorem:(Voronoi) Up to arithmetic equivalence there is only

finitely many perfect forms.

▶ The group GLn(Z) acts on Sn
>0:

Q 7→ PtQP

and we have Min(PtQP) = P−1Min(Q)

▶ Dom(PTQP) = c(P)T Dom(Q)c(P) with c(P) =
(
P−1

)T
▶ For n = 2, we get the classical picture:
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Enumeration of Perfect forms (and domains)

dim Nr of forms forms Authors
1 1 A1

2 1 A2 Lagrange
3 1 A3 Gauss
4 2 D4, A4 Korkine & Zolotareff
5 3 D5, A5, . . . Korkine & Zolotareff
6 7 E6, E

∗
6 , . . . Barnes

7 33 E7, . . . Jaquet
8 10916 E8, . . . Dutour Sikirić, Schürmann & Vallentin
9 2237251040 Λ9, . . . Dutour Sikirić & van Woerden

▶ The enumeration of perfect forms is done with the Voronoi
algorithm.

▶ The number of orbits of faces of the perfect domain
tessellation is much higher but finite (Known for n ≤ 7)



Well rounded forms and retract

▶ A form Q is said to be well rounded if it admits vectors v1,
. . . , vn such that
▶ (v1, . . . , vn) form a R-basis of Rn (not necessarily a Z-basis)
▶ v1, . . . , vn are shortest vectors of Q.

▶ Well rounded forms correspond to bounded faces of Rn.

▶ Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of Rn onto a
polyhedral complex WRn of dimension n(n−1)

2 .

▶ Every face of WRn has finite stabilizer.
▶ Actually, in term of dimension, we cannot do better:

▶ A. Pettet and J. Souto, Minimality of the well rounded retract,
Geometry and Topology, 12 (2008), 1543-1556.

▶ We also cannot reduce ourselves to lattices whose shortest
vectors define a Z-basis of Zn for n ≥ 5.



Topological applications

▶ The fact that we have finite stabilizers for all faces means that
we can compute rational homology/cohomology of GLn(Z)
efficiently.

▶ This has been done for n ≤ 7
▶ P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory

and the cohomology of modular groups, Adv. Math 245
(2013) 587–624.

▶ As an application, we can compute Kn(Z) for n ≤ 8.

▶ By using perfect domains, we can compute the action of
Hecke operators on the cohomology.

▶ This has been done for n ≤ 4:
▶ P.E. Gunnells, Computing Hecke Eigenvalues Below the

Cohomological Dimension, Experimental Mathematics 9-3
(2000) 351–367.

▶ The above can, in principle, be extended to the case of
GLn(R) with R a ring of algebraic integers.



III. Related
tesselations and

groups



Linear Reduction theories for Sn
rat,≥0

Decompositions related to perfect forms:
▶ The perfect form theory (Voronoi I) for lattice packings (full

face lattice known for n ≤ 7, perfect domains known for
n ≤ 8)

▶ The central cone compactification (Igusa & Namikawa)
(Known for n ≤ 6)

Decompositions related to Delaunay polytopes:
▶ The L-type reduction theory (Voronoi II) for Delaunay

tessellations (Known for n ≤ 5)
▶ The C -type reduction theory (Ryshkov & Baranovski) for

edges of Delaunay tessellations (Known for n ≤ 5)

Fundamental domain constructions:
▶ The Minkowski reduction theory (Minkowski) it uses the

successive minima of a lattice to reduce it (Known for n ≤ 7)
not face-to-face

▶ Venkov’s reduction theory also known as Igusa’s fundamental
cone (finiteness proved by Venkov and Crisalli)



T -space of forms

▶ A T -space F is a vector space in Sn with F>0 = F ∩ Sn
>0

being non-empty.

▶ Relevant group is Aut(F) = {g ∈ GLn(Z) s.t. gFgT = F}.
▶ For a finite group G ⊂ GLn(Z) of space

F(G ) =
{
A ∈ Sn s.t. gAgT = A for g ∈ G

}
we have Aut(F(G )) = Norm(G ,GLn(Z)) (Zassenhaus) and a
finite number of F-perfect forms.

▶ For most of the reduction theories that exist for Sn
>0, there

exist an analog in T -spaces.

▶ The preference is for the perfect form theory. It is reasonably
simple, and while it explodes in complexity like others it
explode less fast than other reduction theories.



Perfect forms on T -spaces

▶ The definition of perfect forms is straightforward: The linear
equations defining

▶ Voronoi algorithm works and gets all the perfect forms.

▶ The well rounded retract can be defined and its cells have
finite stabilizer

▶ Finiteness questions:
▶ There exist some T -spaces having a rational basis and an

infinity of perfect forms.
▶ For a finite subgroup G of GLn(Z), the space of invariant

forms has a finite number of perfect forms.
▶ Another finiteness case is for spaces obtained from GLn(R)

with R number ring.



Case of GLn(R)

▶ (Ash) If R is a ring of algebraic integers with r real
embedding and s complex embeddings then we can make
GLn(R) act on (Sn

>0)
r × (Hn

>0)
s with Hn

>0 the cone of positive
definite Hermitian forms.

▶ Due to the finiteness and the interest for algebraic groups,
there is a lot of study for those groups.

▶ Example papers:
▶ Dutour Sikirić M., Gangl H., Gunnells P., Hanke J.,

Schürmann A., Yasaki D., On the cohomology of linear groups
over imaginary quadratic fields, J. Pure Appl. Algebra 220
(2016) 2564–2589.

▶ Yasaki D., Hyperbolic tessellations associated to Bianchi
groups, Algorithmic Number theory, 2010, 385–396.

▶ Among those examples, the real quadratic, imaginary
quadratic and totally real have the advantage of being
rational.



Embedding GLn(R) in GLnd(Z)

▶ For simplicity assume that R = Z[α] for α a generating
element of the ring.

▶ So, if we have a basis (ei )1≤i≤n of Rn then the basis of Znd is

eiα
j−1 for 1 ≤ i ≤ n, 1 ≤ j ≤ d

▶ From this we get an injective homomorphism

ϕ : GLn(R) 7→ GLnd(Z)

▶ The multiplication by α gives an element A of GLnd(Z)
▶ We then have the characterization

Im(ϕ) = {M ∈ GLnd(Z) s.t. AM = MA}



Real quadratic rings I

▶ Let us take a ring R = Z[α] with α2 − Sα+ P = 0. We
define σ the conjugation of the ring, which gets us
S = α+ ασ and P = αασ.

▶ The quadratic form that we have on Rn for v = x + αy with
x , y ∈ Zn.

Tr(v) = A1[x + αy ] + A2[x + ασy ]

▶ We can write A1 = A+ ασB and A2 = A+ αB with
A,B ∈ Sn.

▶ After expanding we get

Tr(v) = xT (2A+ SB)x
+ yT

(
(S2 − P)A+ PSB

)
y

+ xT (2SA+ 4PB)y



Real quadratic rings II

▶ So, this defines the following space of quadratic forms SP(R)(
2A+ SB SA+ 2PB
SA+ 2PB (S2 − P)A+ PSB

)
▶ For A,B ∈ Sn.

▶ The dimension of the T -space in S2n is n(n + 1).



Imaginary quadratic rings I

▶ If the ring R is imaginary quadratic then we take an Hermitian
matrix A ∈ Hn and write A = U + V with U a symmetric
matrix and V an antisymmetric matrix and get

Tr(v) = A[x + αy ] = (x + αy)σtA(x + αy)
= xTUx + Py tUy + x tSUy
+ αxTVy + ασyTVx

▶ The last line is simplified with yTVx = −xTVy .

▶ So, we write W = (α− ασ)V /2 and the last line becomes

xT2Wy



Imaginary quadratic rings II

▶ The space in question becomes SP(R) with the matrices(
U (S/2)U +W

(S/2)U +W PU

)
with

U ∈ Sn and W ∈ ASn

▶ The dimension of the T -space in S2n is n2.

▶ Define t the dimension of the T -space so defined.



Embedding GLn(R) in GLt(Z)

▶ The action of GLn(R) embeds into GLnd(Z).
▶ For the T -space SP(R), the action is

(P,A) 7→ PAPT

and so this embeds into GLt(Z) for a good basis of SP(R).

▶ The kernel is non-trivial. At least ±In is part of it.

▶ For R an imaginary quadratic ring the kernel is the ring of
units of the ring.

▶ So, we get an embedding of PSLn(Z[i ]) into GLn2(Z).



IV. Computational
techniques



Isomorphism and Automorphism computation I

▶ Let us consider first the computation of the automorphism of
a quadratic form Q.

▶ We need to have a family of vectors (vi )1≤i≤N which is
invariant under any automorphism of Q and is generating Zn

as a Z-lattice:
▶ Since we are with perfect forms computing the shortest vectors

is a good bet.
▶ But we are in a T -space, so there are some T -perfect forms for

which the set of shortest vectors is not even full-dimensional.
▶ Also, we do need to consider forms which are not perfect.
▶ One strategy is to take the short vectors, that is vectors v such

that Q[v ] ≤ λ.



Isomorphism and Automorphism computation II

▶ We consider the edge-weighted graph G with edge weights
wi ,j = viQv

T
j .

▶ We can compute the automorphism group of this graph. The
graph automorphism map to matrix automorphism and this
defines a group G1 of GLn(Z).

▶ However, there are 3 groups:
▶ The group G1 in question.
▶ The subgroup G2 of G1 stabilizing the T -space
▶ The subgroup G3 of G2 that belongs to the image of GLn(R).

▶ For computing the group G3, the trick is to use the
vector-valued edge-weights wi ,j = (viQv

T
j , viPQv

T
j ) with P

the matrix element corresponding to the multiplication by α.

▶ For the group G2, there is no good algorithm for doing the
computation. What we use is single-coset iteration and plan is
to use double coset iteration.


