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|. Problem
setting



Group Homology

>

Take G a group, suppose that:
» X is a contractible space.
» G act fixed point free on X.

Then we define the group homologies of G to be
Hp(G) = Hp(X/G).
The space X is then a classifying space.
Examples:
» The bar construction gives a classifying space which can be
used to compute with general groups.
> If G is a Bieberbach group (acts fixed point free on R") then

R" is the classifying space and the homology is the one of a
flat manifold.

Getting workable classifying space for a group is not easy:
» If G is finite then H;(G) # 0 for an infinity of i and thus X is
infinite dimensional.
» Thus one hopes to work out some “approximate classifying
space” and obtain the homology by perturbation arguments.



Il. The case of GL,(Z)



The case of GL,(Z)

» The group GL,(Z) acts on R".

» So a priori, it would seem that the approximate classifying
space would be R". But the stabilizer of a point x € R" can
be infinite or GL,(Z) itself.

» So, we would like another space X on which GL,(Z) could
act. Our wishes are for:
> X to be contractible.
»> X to admit a cell decomposition (polyhedral tesselation)
invariant under GL,(Z).

» That every face F of the tesselation has finite stabilizer under
GL,(Z).



Positive definite quadratic forms

> A matrix Q is called positive definite, respectively positive
semidefinite, if for every x € R” — {0} we have

x'Qx > 0, respectively x*Qx > 0.

» Denote by SZ,, respectively SZ the cones of positive definite,
respectively positive semidefinite n x n-matrices.

» The group GL,(Z) acts on SZ, by the relation
(P,Q) — P'QP
» For any Q € SZ, the automorphism group
Aut(Q) = {P € GL,(Z) such that P'QP = Q}

is finite.



Perfect form

> If A SZ, then define min(A) = min, 70+ A[v] and
Min(A) = {x € Z" such that A[x] = min(A)}
» The group GL,(Z) acts on SZ:
Q— P'QP

and we have Min(PtQP) = P~1 Min(Q).
» A form is called perfect (Korkine & Zolotarev) if the equation
in B
B[v] = min(A) for all v € Min(A)
implies B = A.

P> A perfect form is necessarily rational and thus up to a
multiple integral.



Perfect domains and arithmetic closure

v

If v € Z" then the corresponding rank 1 form is p(v) = w'.

If Ais a perfect form, its perfect domain is

Dom(A) = 3 R.p(v)

veMin(A)

If A has m shortest vectors then Dom(A) has 7' extreme rays.

So actually, the perfect domains realize a tessellation not of

n n H n
52, nor 52, but of the rational closure 57, .

The rational closure S/, -, has a number of descriptions:

> S;Zat,ZO = ZveZ" R_,_p(v)
> If A€ S5, then A€ ST, -, if and only if Ker A is defined by
rational equations.
So, actually, the stabilizers of some faces of the polyhedral
complex are infinite.



Finiteness

» Theorem:(Voronoi) Up to arithmetic equivalence there is only
finitely many perfect forms.

» The group GL,(Z) acts on SZ:
Q— P'QP

and we have Min(Pt*QP) = P~1 Min(Q)
> Dom(PTQP) = ¢(P)T Dom(Q)c(P) with ¢(P) = (P~1)"
> For n = 2, we get the classical picture:




Enumeration of Perfect forms (and domains)

dim | Nr of forms forms Authors
1 1 Aq
2 1 A, Lagrange
3 1 A3 Gauss
4 2 Dy, A4 Korkine & Zolotareff
5 3 Ds, As, Korkine & Zolotareff
6 7 Es, Eg. Barnes
7 33 E;, .. Jaquet
8 10916 Eg, Dutour Sikiri¢, Schiirmann & Vallentin
9 2237251040 Ao, Dutour Sikiri¢ & van Woerden

» The enumeration of perfect forms is done with the Voronoi

algorithm.

» The number of orbits of faces of the perfect domain
tessellation is much higher but finite (Known for n <7)




Well rounded forms and retract

» A form Q is said to be well rounded if it admits vectors vq,
., Vp such that

» (vq,...,Vv,) form a R-basis of R" (not necessarily a Z-basis)
> vi,...,v, are shortest vectors of Q.
» Well rounded forms correspond to bounded faces of R,,.

» Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of R, onto a
n—1)

polyhedral complex WR,, of dimension H(T

» Every face of WR, has finite stabilizer.
> Actually, in term of dimension, we cannot do better:
» A. Pettet and J. Souto, Minimality of the well rounded retract,
Geometry and Topology, 12 (2008), 1543-1556.
> We also cannot reduce ourselves to lattices whose shortest
vectors define a Z-basis of Z" for n > 5.



Topological applications

> The fact that we have finite stabilizers for all faces means that
we can compute rational homology/cohomology of GL,(Z)
efficiently.
» This has been done for n <7
» P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory

and the cohomology of modular groups, Adv. Math 245
(2013) 587-624.

» As an application, we can compute K,(Z) for n < 8.
» By using perfect domains, we can compute the action of
Hecke operators on the cohomology.
» This has been done for n < 4:
» P.E. Gunnells, Computing Hecke Eigenvalues Below the
Cohomological Dimension, Experimental Mathematics 9-3
(2000) 351-367.
> The above can, in principle, be extended to the case of
GL,(R) with R a ring of algebraic integers.



[1l. Related

tesselations and
groups



Linear Reduction theories for S, -,
Decompositions related to perfect forms:

» The perfect form theory (Voronoi |) for lattice packings (full
face lattice known for n < 7, perfect domains known for
n <8)

» The central cone compactification (Igusa & Namikawa)
(Known for n < 6)

Decompositions related to Delaunay polytopes:

» The L-type reduction theory (Voronoi Il) for Delaunay
tessellations (Known for n <5)

» The C-type reduction theory (Ryshkov & Baranovski) for
edges of Delaunay tessellations (Known for n <5)

Fundamental domain constructions:

» The Minkowski reduction theory (Minkowski) it uses the
successive minima of a lattice to reduce it (Known for n < 7)
not face-to-face

» Venkov's reduction theory also known as Igusa’s fundamental
cone (finiteness proved by Venkov and Crisalli)



T-space of forms

>

| 4

A T-space F is a vector space in §” with 5o = F N SZ,
being non-empty.

Relevant group is Aut(F) = {g € GL,(Z) s.t. gFg" = F}.
For a finite group G C GL,(Z) of space

F(G) = {A €S"st. gAgT =Aforge G}

we have Aut(F(G)) = Norm(G, GL,(Z)) (Zassenhaus) and a
finite number of F-perfect forms.

For most of the reduction theories that exist for SZ, there

exist an analog in T-spaces.

The preference is for the perfect form theory. It is reasonably
simple, and while it explodes in complexity like others it
explode less fast than other reduction theories.



Perfect forms on T-spaces

» The definition of perfect forms is straightforward: The linear
equations defining

» Voronoi algorithm works and gets all the perfect forms.

» The well rounded retract can be defined and its cells have
finite stabilizer
» Finiteness questions:
» There exist some T-spaces having a rational basis and an
infinity of perfect forms.
» For a finite subgroup G of GL,(Z), the space of invariant
forms has a finite number of perfect forms.
> Another finiteness case is for spaces obtained from GL,(R)
with R number ring.



Case of GL,(R)

» (Ash) If R is a ring of algebraic integers with r real
embedding and s complex embeddings then we can make
GL,(R) act on (5Z,)" x (HZ,)® with HZ, the cone of positive
definite Hermitian forms.

» Due to the finiteness and the interest for algebraic groups,
there is a lot of study for those groups.

» Example papers:

» Dutour Sikiri¢ M., Gangl H., Gunnells P., Hanke J.,
Schiirmann A., Yasaki D., On the cohomology of linear groups
over imaginary quadratic fields, J. Pure Appl. Algebra 220
(2016) 2564-2589.

» Yasaki D., Hyperbolic tessellations associated to Bianchi
groups, Algorithmic Number theory, 2010, 385-396.

> Among those examples, the real quadratic, imaginary
quadratic and totally real have the advantage of being
rational.



Embedding GL,(R) in GL,4(Z)

» For simplicity assume that R = Z[a] for « a generating
element of the ring.

» So, if we have a basis (€;)1<j<p of R" then the basis of zn s
e,-oz/_lforlgign,lgjgd
» From this we get an injective homomorphism
¢ : GLn(R) — GLpg(Z)

» The multiplication by « gives an element A of GL,4(Z)

» We then have the characterization

Im(¢) = {M € GLng(Z) s.t. AM = MA}



Real quadratic rings |

> Let us take a ring R = Z[a] with a® — Sa.+ P = 0. We
define o the conjugation of the ring, which gets us
S=a+a’ and P = aa’.

» The quadratic form that we have on R" for v = x + ay with
X,y € Z".

Tr(v) = A1[x + ay] + Az[x + a%y]
» We can write Ay = A+ a’B and Ay = A+ aB with

A BeS"
> After expanding we get

Tr(v) = xT(2A+ SB)x
+ y"((S*-P)A+PSB)y
_|_

xT(2SA + 4PB)y



Real quadratic rings |l

» So, this defines the following space of quadratic forms SP(R)

2A+ SB SA+2PB
SA+2PB (S%2-P)A+ PSB

» For A,B e S".
» The dimension of the T-space in S is n(n + 1).



Imaginary quadratic rings |

» If the ring R is imaginary quadratic then we take an Hermitian
matrix A € H" and write A= U + V with U a symmetric
matrix and V' an antisymmetric matrix and get

Tr(v) = Alx+ay] = (x +ay)" A(x + ay)
= xTUx+ PytUy + xtSUy
+ ax"Wy+a%y T Vx

» The last line is simplified with y 7 Vx = —xT Vy.

» So, we write W = (o — a?)V//2 and the last line becomes

xT2Wy



Imaginary quadratic rings Il

» The space in question becomes SP(R) with the matrices

U (S/2)U+ W
(S/2)Uu+w PU
with
UeS"and W € AS"

» The dimension of the T-space in S2" is n?.

» Define t the dimension of the T-space so defined.



Embedding GL,(R) in GL.(Z)

» The action of GL,(R) embeds into GL,4(Z).
» For the T-space SP(R), the action is

(P,A) — PAPT

and so this embeds into GL(Z) for a good basis of SP(R).
» The kernel is non-trivial. At least £/, is part of it.

» For R an imaginary quadratic ring the kernel is the ring of
units of the ring.

> So, we get an embedding of PSL,(Z[i]) into GL2(Z).



V. Computational
techniques



Isomorphism and Automorphism computation |

> Let us consider first the computation of the automorphism of
a quadratic form Q.
» We need to have a family of vectors (v;)1<i<n which is

invariant under any automorphism of @ and is generating Z"
as a Z-lattice:

>

>

Since we are with perfect forms computing the shortest vectors
is a good bet.

But we are in a T-space, so there are some T-perfect forms for
which the set of shortest vectors is not even full-dimensional.
Also, we do need to consider forms which are not perfect.

One strategy is to take the short vectors, that is vectors v such
that Q[v] < .



Isomorphism and Automorphism computation Il

>

>

We consider the edge-weighted graph G with edge weights
wij = V,'QVJ-T.
We can compute the automorphism group of this graph. The
graph automorphism map to matrix automorphism and this
defines a group G; of GL,(Z).
However, there are 3 groups:

» The group G; in question.

» The subgroup G, of G; stabilizing the T-space

» The subgroup Gs of G, that belongs to the image of GL,(R).
For computing the group Gz, the trick is to use the
vector-valued edge-weights w; ; = (v;Qv;", v;PQv,") with P
the matrix element corresponding to the multiplication by «.
For the group G, there is no good algorithm for doing the
computation. What we use is single-coset iteration and plan is
to use double coset iteration.



