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I. Problem set up



Sigma coordinate systems
I One way to deal with varying bathymetry: use σ-coordinates

(Phillips 1957)

I On every cell e of bathymetry h(e), choose a number N of
vertical levels h(e, k) for 1 ≤ k ≤ N with h(e, 0) = −h(e) and
h(e,N) = 0.

I The differentiation rule of functions in σ-coordinate is
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I This creates a problem for horizontal derivatives, which
become a difference of two terms. The wrong computation of
the horizontal pressure gradient creates artificial currents.

I Smagorinsky 1967, Janjić 1977, Mesinger 1982, Haney 1991



The slope factors

I If e and e ′ are two adjacent wet cells, then

rx0(h, e, e ′) =
|h(e)− h(e ′)|
h(e) + h(e ′)

The maximum over all such pairs is rx0(h), i.e. the Beckman
& Haidvogel number.

I If the vertical levels of the bathymetries are h(e, k) for
1 ≤ k ≤ N then

rx1(h, e, e ′, k) =
|h(e, k)− h(e ′, k) + h(e, k − 1)− h(e ′, k − 1)|
h(e, k) + h(e ′, k)− h(e, k − 1)− h(e ′, k − 1)

.

The maximum over k and pairs e, e ′ of adjacent wet cells is
rx1(h).
This number is named hydrostatic inconsistency number or
Haney number.



Hydrostatic consistency

I Denote by Ck(e) the parallelepiped of water between depth
h(e, k − 1) and depth h(e, k).

I Hydrostatic consistency means that if e and e ′ are any two
adjacent cells, then Ck(e) and Ck(e ′) share a level.

h(e’, k−1)

h(e’, k)

h(e, k)

h(e, k−1)

I To impose that Ck(e) and Ck(e ′) share a level is equivalent to
rx1(h, e, e ′, k) ≤ 1 (Rousseau and Pham 1971, Mesinger 1982,
Haney 1991).

I This requirement is very strong and almost impossible to
fulfill.



What are the right values of rx1, rx0

There is no general agreement on this question

I The factor which matters for the horizontal pressure gradient
is the Haney number rx1(h).

I It is extremely difficult to achieve rx1(h) ≤ 1.

I In Mellor-Ezer-Oey, 1994 it is argued that the HPG error is
not very important and disappears after running the model for
some time.

I Kliem-Pietrzak, 1999 contests this for the Skagerrak region.

I Sasha Shchepetkin, 2008 says that rx1(h) ≤ 3 is “safe”,
rx1(h) ' 5 is “common” and rx1(h) ≥ 8 is “insane”.

I Kate Hedström, 2008 reported no problem with rx1(h) ' 16.

I We experienced blow ups with grids with rx1(h) ≥ 9.

I We call a grid numerically stable if rx1(h) ≤ 6.



The ROMS model

I ROMS is an hydrostatic regional σ-coordinate ocean model
with several advection scheme.

I There are three versions of ROMS
I ROMS AGRIF maintained by Debreu (public).
I ROMS UCLA maintained by Shchepetkin (non public).
I ROMS Rutgers maintained by Arango (public, main version).

I ROMS Rutgers has possibility of coupling with the SWAN
model, adjoint and tangent linear functionalities for strong
4dvar, weak 4dvar.

I ROMS AGRIF and ROMS UCLA have built in nesting
capabilities. ROMS UCLA has the highest speed and there
exists a non hydrostatic version of ROMS UCLA.



Vertical parametrization in ROMS
I The ROMS vertical parametrization depends on three

parameters hc , θs , θb

h(e, k) = sw (k)hc + (h(e)− hc)cw (k).

hc is the thermocline parameter and it is lower than the
minimal depth of the model.

I The vertical parametrization function depends on θs and θb
and is sw (k) = − k

N .

cw (k) = (1−θb)
sinh θssw (k)

sinh θs
+θb

{
tanh θs(sw (k) + 1

2)

2 tanh θs
2

− 1

2

}
This formula is relatively arbitrary (Song, 1994) and another
one may work just as well.

I If hc = 0 then we have h(e, k) = h(e)cw (k) and we get

rx1(h) = max
1≤k≤N

cw (k) + cw (k − 1)

cw (k)− cw (k − 1)
rx0(h)



Choice of vertical stratification

I If one wants only to minimize rx1, then the choice is θb = 0
and θs high, i.e. concentrate the vertical levels on the surface.
But we cannot concentrate the levels too much on the surface
so it is recommended to have θs at most 7.

I If the bottom boundary layers is a zone of interest, then a
nonzero value of θb has to be chosen.

I The number of vertical levels is the main constraints. It limits
the computational possibilities and the error pressure gradient.
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Possible ways to deal with the problem

If the bathymetry is too steep then this causes instabilities and
inaccuracies. Some possible ways to deal with it:

I Use a high order pressure gradient scheme (Chu & Fan, 1997,
1998, 2003) (computational price)

I Adjust the vertical stratification, i.e. sw , cw and in case of
ROMS θs , θb (modelling choices).

I Decrease the number N of vertical levels (less realistic)

I Make the horizontal grid finer (computational price).

I Smooth the bathymetry (less realistic).

I Use a z- or generalized coordinate system (change of model).

We consider the smoothing methods to reduce the magnitude of
the problem.



II. Solution approaches



The goal

I The grid is build in the following way:
I Build an initial grid using coastline informations.
I Choose the parameters N, θs , θb and hc .
I Find the initial bathymetry hobs from existing data set (NOAA,

Gshhs, Gebco, etc.)
I Determine the smoothed bathymetry h.

I Requirements:
I rx0(h) and rx1(h) low.
I The “distance” between h and hobs small.
I h should have the same physical characteristics as hobs .

I For a given r and hobs , we will present methods to get h with
rx0(h) ≤ r .

I The analysis for rx1 works similarly.



Why optimize with rx0?

I It is less expensive computationally than optimizing with rx1.

I If the depth is sufficiently large then the relation

rx1(h) = max
1≤k≤N

cw (k) + cw (k − 1)

cw (k)− cw (k − 1)
rx0(h)

is almost exact.

I For the interesting domain rx1 ≤ 6, the result of optimization
with rx1 is at most 5% different from optimizing with respect
to rx0.

I The error pressure gradient is more important in region of
high density differences. Those are typically regions of
moderate to high depth.



The grid problem

I The observed bathymetry is available on a grid different from
the one of the model.

I We have two possible situations:
I The observations are sparser than the model bathymetry.
I The resolution of the observations is better than the resolution

of the model.

I In the first situation, the solution is necessarily to interpolate
the bathymetry from the available observations to the model
grid. If the observations have no regular structure (ship, ...)
then the best is to use natural neighbor interpolation (Sibson
1981) with the program nnbathy by Pavel Sakov, 2006.

I In the Adriatic, actually we have high resolution bathymetry
and we are in the latter situation.



The averaging procedure

I When we have more bathymetry observations than necessary
for the model, then we take the average over wet cells of the
observations that belong to them.

I Another strategy is to use the Shapiro filter several times and
then to interpolate to the grid of the model.

I The problem is that by doing this we smooth the bathymetry
and reduce the slope factor even when this is not needed.

I The HPG problem is a model problem and so it should be
treated at level of grid of the model.

I The right method is thus:
I First compute of the model at the grid level.
I Then smooth it, to reduce the HPG error.



The Shapiro filter

I It is a filter designed to smooth out fast waves in finite
difference models (Shapiro 1975).

I It was not designed for smoothing out the bathymetry but it
is still frequently used to smooth out bathymetry variations.

I Every ROMS version has its own version of the filter.
I ROMS AGRIF has a Shapiro filter applied to the logarithm of

the bathymetry first in x-direction and then in y -directions.
I ROMS UCLA has a Shapiro filter applied to the logarithm of

the bathymetry with a more complex stencil.
I ROMS Rutgers has a Shapiro filter applied in x- and

y -directions only to the points where the slope factor is not
correct.

I The POM model has its own filter named “Gaussian filter”.



The Shapiro filter of ROMS Rutgers

I It is applied to the bathymetry in the following way:

h←hobs

while rx0(h) > r do
h′← Shapiro filtering of h on x direction.
for e in wet cells do

if rxo(h, e) > r then
h(e)←h′(e)

end if
end for
Do the same in y direction

end do

I For some bathymetries the Shapiro filter converges to h with
rx0(h) > r and thus the program never ends.

I The best Shapiro filter of all 3 is the one of ROMS UCLA.



Laplacian filter

I It works in the following way:
I start with h = hobs .
I If rx0(h, e) > r we do:

h(e)←h(e) +
1

2N(e)

∑
e′∈N(e)

{h(e′)− h(e)}

with N(e) the set of wet cells adjacent to the wet cell e.
I Iterate until rx0(h) ≤ r .

I This filter is more stable than Shapiro filter, but there is a still
a problem of having the program end.

I Shapiro filter and Laplacian filter are very frequently used but
they are not very good methods.



The Martinho & Batteen (MB) scheme

I Whenever the slope is not correct the chosen solution
(Martinho & Batteen 2006) is to increase the bathymetry.

I Start with h = hobs

I If
h(e)− h(e′)

h(e) + h(e′)
> r then h(e′)←1− r

1 + r
h(e)

I All pairs (e, e′) are considered iteratively until the slope factor
is correct. The result is independent of the order of operations.

I They also proposed to preserve the volume by replacing the
bathymetry h obtained by their method by

h←h
vol hobs

vol h
.

This method works because rx0(αh) = rx0(h).



The bathymetry decreasing scheme

I Whenever the slope is not correct the chosen solution is to
decrease the bathymetry.

I Start with h = hobs

I If
h(e)− h(e′)

h(e) + h(e′)
> r then h(e)←1 + r

1− r
h(e′)

I All pairs (e, e′) are considered iteratively until the slope factor
is correct. The result is independent of the order of operations.

I This filter can help for initialization problems when the initial
state has to be taken from measured or initial values and not
from extrapolated values from a nearest point.



The Mellor-Ezer-Oey (MEO) scheme

I (Mellor 1994) If we want to preserve volume, then another
scheme is possible.

I If we have
h(e)− h(e′)

h(e) + h(e′)
> r

then we write

h(e)←h(e)− V (e, e′)

A(e)
and h(e′)←h(e′) +

V (e, e′)

A(e′)

with V (e, e′) adjusted so that h(e)−h(e′)
h(e)+h(e′) = r and A(e), A(e′)

the area of wet cell e, e′.
I All pairs (e, e′) of adjacent wet cells are considered iteratively

until the bathymetry is correct.

I A priori, the final bathymetry depends from the order of the
operations.



Definition of linear programs

I A linear program is the problem of maximizing a linear
function f (x) over a set P defined by linear inequalities.

P = {x ∈ Rd such that fi (x) ≥ bi}

with fi linear and bi ∈ R.

I The solution of linear programs is attained at vertices of P.

I There are two classes of solution methods:

optimal solution vertex

Simplex method

optimal solution vertex

Interior point method



Linear programming methods

I The inequality rx0(h, e, e ′) ≤ r corresponds to:

−r(h(e) + h(e ′)) ≤ h(e)− h(e ′) ≤ r(h(e) + h(e ′))

I We introduce some auxiliary variable δ(e) with

|h(e)− hobs(e)| ≤ δ(e) i.e. ± (h(e)− hobs(e)) ≤ δ(e)

I And we minimize∑
e

δ(e) that is
∑
e

|h(e)− hobs(e)|.

I There are many possible variants, which are still in the linear
programming paradigm:

I Preserve the total volume of the basin.
I Have a different objective function.
I Impose only positive/negative corrections at some points.
I Impose maximum amplitude condition.
I Fix some points (nested applications)



Linearized Mellor-Ezer-Oey (LMEO) scheme

I For all pair (e, e ′) of adjacent wet cells e, e ′ consider the
operations.

h(e)←h(e)− V (e, e ′)

A(e)
and h(e ′)←h(e ′) +

V (e, e ′)

A(e ′)

I For a set of volumes V (e, e ′), consider the resulting
bathymetry h obtained from have .

I The objective function is∑
(e,e′)

|V (e, e ′)|

I This method is supposed to be a reformulation of
Mellor-Ezer-Oey where we minimize the volumes V (e, e ′)
involved.



III. Comparison
of selected methods



Idealized cases: Sill
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Shapiro filter
Decreasing method
Laplacian filter
Observed bathymetry
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I We should avoid the bathymetry decreasing method.



Idealized cases: Pit

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Pit idealised case

 

 

Shapiro filter
Decreasing method
Laplacian filter
Observed bathymetry

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Pit idealised case

 

 

Linear Prog. method
Martinho−Batteen method
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I The Martinho & Batteen method is good for preserving the
depth of the pits.



Idealized cases: Shelf break
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Linear Prog. method
Martinho−Batteen method
Observed bathymetry

I LP does a better job of preserving the shelf break.



Idealized cases (volume preserving): Sill
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Linear Prog. method
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I MEO (Mellor-Ezer-Oey) gives the same result as LMEO
(Linearized Mellor-Ezer-Oey).

I MB method spread the perturbation globally.



Idealized cases (volume preserving): Pit
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Linear Prog. method
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Observed bathymetry
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I The MB method is again better for the pits but the
perturbation is global to the basin.



Idealized cases (volume preserving): Shelf break
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Linear Prog. method
Martinho Batteen method
Observed bathymetry
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I The Linearized Mellor-Ezer-Oey method gives a worse result
than the MEO method. We should avoid LMEO.

I LP is very near to the MEO method.



The Adriatic Sea
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I The bathymetry is highly varying and the coastline is diverse.

I We chose three grids 160× 60, 127× 368, 271× 751



Hydrostatic consistency & numerical stability

  

60× 160

  

127× 368

  

271× 751

The regions of hydrostatic consistency & numerical stability
(rx1(h, e) ≤ 1 in light blue), hydrostatic inconsistency & numerical
stability (1 ≤ rx1(h, e) ≤ 5 in dark blue) and hydrostatic
inconsistency & numerical instability (rx1(h, e) ≥ 5 in red)



Average amplitude of bathymetry modification

60× 160 127× 368

The average amplitude of bathymetry modification (m) in terms
for bathymetry smoothing methods



Average variation of bathymetry

60× 160 127× 368

The average variation of the bathymetry (m) from wet cell to wet
cell for bathymetry smoothing methods in terms of rx0(h)



Average amplitude of bathymetry modification

60× 160 127× 368

The average amplitude of bathymetry modification (m) in term of
rx0 for volume preserving smoothing methods



Average variation of the bathymetry

60× 160 127× 368

The average variation of the bathymetry (m) from wet cell to wet
cell for bathymetry smoothing methods preserving volume in terms
of rx0



Effect of smoothing

I The need for smoothing decrease when the horizontal grid is
finer:

grid volume perturbed

60× 160 322km3

127× 368 20km3

271× 751 7.2km3

I Time runs:
I Heuristic methods take at most 20 seconds for smoothing.
I Shapiro and Laplacian do not take more than a few minutes in

general.
I Linear programming takes more time 5 min for 60× 160, 1

hour for 127× 368 and 1 day for 271× 751.

I Having the right bathymetry in the model can be the key to
correct modelization:

à Batteen et al., 2007. A process oriented modelling study of the
coastal Canary and Iberian Current system. Ocean modelling
18, 1–36.



Stability of solutions

What happens if one perturb by an infinitesimal quantity the
observed bathymetry and/or the slope factor?

I Heuristic methods (MEO, MB) are continuous.

I Shapiro filter and Laplacian filter methods are not continuous.

I Linear programming methods are not continuous since there
are possible hoppings from one vertex to an adjacent one.

In practice during 0.01 increments to rx0 for the 127× 368 grid,

method average change maximal change

MB 5.4cm 7.8m
LP 5.2cm 13.8m

Laplacian 6.4cm 23m
Shapiro 40cm 28m



Nested grid situations

I Suppose we have a grid of say 2km of resolution, another grid
of 700m around Rovinj region is embedded in it in a 1-way
coupling situation. We want the bathymetry of the embedded
grid to coincide with the bathymetry of the embedded grid on
the boundaries.

I The method is the following.

1. Compute the raw bathymetry hraw of the embedded grid using
averaging operations.

2. Interpolate the bathymetry of the 2km grid to the 700m grid.
3. Fix the boundary values of the bathymetry of the 700m grid to

be interpolated values.
4. Smooth hraw by specifying no change of boundary values.



Conclusions

I Shapiro and Laplacian filter should be avoided since they
create large perturbation of the bathymetry.

I Heuristic methods like Martinho-Batteen, Mellor-Ezer-Oey
work relatively well.

I If rx0(h) ≤ 0.2 is needed, then linear programming might be
what you need.

I All programs (in matlab) for optimizing over rx0 or rx1 are
available from

http://drobilica.irb.hr/~mathieu/Bathymetry/index.html

http://drobilica.irb.hr/~mathieu/Bathymetry/index.html

