Sphere packingsand

lattice sphere packings

Mathieu Dutour Sikirić

Institut Rudjer Bošković, Zagreb andInstitute of Statistical Mathematics, Tokyo I. Introduction

Norms, balls and spheres

On the vector space \mathbf{R}^n , we define the Euclidean norm

$$
||x|| = \sqrt{x_1^2 + \dots + x_n^2}
$$
 with $x = (x_1, \dots, x_n)$

The Euclidean distance on \mathbf{R}^n is $d(x,y) = ||x - y||$ A ball $B(c,r)$ of center c and radius r is defined by $y||$

$$
B(c,r) = \{x \in \mathbf{R}^n \text{ with } ||x - c|| \le r\}
$$

The interior of $B(c,r)$ is $\{x \in \mathbf{R}^n \;$ with $\; || x$ $c|| < r$

The sphere $S(c,r)$ of center c and radius r is defined as

$$
S(c,r) = \{x \in \mathbf{R}^n \text{ with } ||x - c|| = r\}
$$

Packings

A packing in \mathbf{R}^n is a set of balls of the same radius, whose interiors are non-overlapping.

- For historical reasons, those packings are called sphere packings, instead of ball packings.
- We will consider only infinite sphere packings.

Density of packing

The density of a sphere packing \mathcal{SP} is the fraction of space covered. It is defined by

 $\delta(\mathcal{S}\mathcal{P}) = \lim_{m\to\infty} \frac{\text{vol}(\mathcal{S}\mathcal{P}\cap R_m)}{\mathcal{S}\mathcal{P}\cap R_m}$ w $\delta(\mathcal{SP})=\lim$ $m{\to}\infty$ $\textbf{vol}(\mathcal{SP}\cap$ $\,R$ $\frac{\mathrm{d}(\mathcal{SP} \cap R_m)}{\mathrm{vol}(R_m)}$ with $R_m \to \mathbf{R}^n$

The limit does not necessarily exist. We will alwaysassume this limit exists.

Density of packing

The density of a sphere packing \mathcal{SP} is the fraction of space covered. It is defined by

 $\delta(\mathcal{S}\mathcal{P}) = \lim_{m\to\infty} \frac{\text{vol}(\mathcal{S}\mathcal{P}\cap R_m)}{\mathcal{S}\mathcal{P}\cap R_m}$ w $\delta(\mathcal{SP})=\lim$ $m{\to}\infty$ $\textbf{vol}(\mathcal{SP}\cap$ $\,R$ $\frac{\mathrm{d}(\mathcal{SP} \cap R_m)}{\mathrm{vol}(R_m)}$ with $R_m \to \mathbf{R}^n$

The limit does not necessarily exist. We will alwaysassume this limit exists.

Density of packing

The density of a sphere packing \mathcal{SP} is the fraction of space covered. It is defined by

 $\delta(\mathcal{S}\mathcal{P}) = \lim_{m\to\infty} \frac{\text{vol}(\mathcal{S}\mathcal{P}\cap R_m)}{\mathcal{S}\mathcal{P}\cap R_m}$ w $\delta(\mathcal{SP})=\lim$ $m{\to}\infty$ $\textbf{vol}(\mathcal{SP}\cap$ $\,R$ $\frac{\mathrm{d}(\mathcal{SP} \cap R_m)}{\mathrm{vol}(R_m)}$ with $R_m \to \mathbf{R}^n$

The limit does not necessarily exist. We will alwaysassume this limit exists.

Packing problem

- Denote by δ_n $\overline{}_n$ the highest density of sphere packings in \mathbf{R}^n .
- The packing problem in dimension n is:

	- Determine the value of $\delta_n.$
	- Describe packings of density $\delta_n.$
- In dimension $3,$ the problem is sometimes called Kepler problem.
- Removing one sphere in ^a packing does not change itsdensity!
- A "reasonable" problem is to describe all periodic n -dimensional packings having highest constant.

Lattice packings

A lattice L is a subgroup of \mathbf{R}^d of the form $L = \mathbf{Z}v_1 + \cdots + \mathbf{Z}v_d.$

If L is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha >0$ such that $L+B(0,\alpha)$ is a packing.

Lattice packings

A lattice L is a subgroup of \mathbf{R}^d of the form $L = \mathbf{Z}v_1 + \cdots + \mathbf{Z}v_d.$

If L is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha >0$ such that $L+B(0,\alpha)$ is a packing.

Lattice packings

A lattice L is a subgroup of \mathbf{R}^d of the form $L = \mathbf{Z}v_1 + \cdots + \mathbf{Z}v_d.$

If L is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha >0$ such that $L+B(0,\alpha)$ is a packing.

Density of lattice packings

Take the lattice packing defined by a lattice $L\mathrm{:}$

• The packing density has the expression

$$
\delta(L) = \frac{\lambda(L)^n \kappa_n}{\det L} \quad \text{with} \quad \lambda(L) = \frac{1}{2} \min_{v \in L - \{0\}} ||v||,
$$

 $\kappa_{\bm n}$ volume of an unit cell. $_n$ the volume of the unit ball $B(0,1)$ and $\det L$ the

Denote by δ_n^* $\, n \,$ $_n^\ast$ the highest density of lattice packings.

Known results

We do not know if δ_n sphere packing of higher density than any lattice sphere $n > \delta_n^*$ $\, n \,$ $\stackrel{*}{n}$ for some n , i.e. an example of a
coloresty there are dettice exhange packing.

Plan of the presentation

We will present:

- Those results
- Methods of their proof
- Some conjectures
- Some new techniques

Subjects not covered:

- Finite packings
- Asymptotic theory as the dimension goes to $\infty.$
- Description of remarkable lattices $Leech, \, E_8,\, \ldots$
- Random packing.

II. Voronoi polytope

technique

Voronoi domain

Suppose X is a locally finite set in ${\bf R}^n,$ for any $x\in X,$ define

 $N(x) = \{v \in \mathbf{R}^n \mid ||v |x| \leq ||v$ $y||,$ for all $y \in X - \{x\}\}\$

also known as "Nearest neighbor region", "Brillouinzone", "Wigner Seitz cell".

They form a face to face tiling of \mathbf{R}^n

Results

- Take a subset X in \mathbf{R}^n and assume that for every $x, x' \in X$, $x \neq x'$, we have $||x - x'|| \geq 2.$ Then one defines
	- the sphere packings with balls $B(x,1)$ of radius 1 and center in $X,$
	- the Voronoi domain region $N(x)$

and gets for any $x\in X$, the inclusion $B(x,1)\subset N(x).$

Denote by α_n the smallest value of α such that for every sphere packing with balls $B(x,1)$, one has $\alpha \textbf{vol}(N(x)) \geq \textbf{vol}(B(x,1)).$

• One has
$$
\delta_n \leq \alpha_n
$$
.

Dimension ²

It is proved that the Voronoi cell of minimal volume in ^a packing by sphere of radius ¹ is regular hexagon. So, $\alpha_2 = \frac{\pi}{\sqrt{12}}$ and $\delta_2 \leq \alpha_2$.

- Regular hexagon realizes a face-to-face packing of \mathbb{R}^2 , so in fact $\delta_2=\alpha_2=\frac{\pi}{\sqrt{12}}$ (Lagrange)
- Hexagonal packing is the unique periodic packing of highest density.

Voronoi polytope in dimension3

- **•** The Voronoi region of minimal volume is the Dodecahedron(Thomas Hales & Sean McLaughlin, proved by computer computations)
- There is no set X in ${\bf R}^3$, whose Voronoi region are
Dedeeshedren. So, S Dodecahedron. So, $\delta_3 < \alpha_3$

Configuration of sphereswith minimal Voronoi

Configuration of sphereswith maximal density

Sphere packing in dimension3

Hales & Ferguson proved that there is no packing of density higher than the one by A_3 $_3$ lattice (cannon ball packing).

- The method is computer based, extremely long, extraordinarily complicated, unchecked.
- It uses a decomposition of the space intermediate between Voronoi and Delaunay decomposition.
- It uses global optimization, branch & bound and interval arithmetic.

Packings with highest density in dimension 3 are formed by lamination on the hexagonal packing:

The above "Cannon ball" packing is when the choice of layer is uniform.

Other dimensions

Conjecture It seems likely that

$$
\delta_4 = \alpha_4, \quad \delta_8 = \alpha_8 \quad \text{and} \quad \delta_{24} = \alpha_{24}
$$

And that the equality is realized only by the Voronoi domain of $D_4,\,E_8$ $_{8}$ and $Leech$ lattice

- This would prove that they are best packings indimension $4, 8$ and 24
- Problem Find Voronoi cell of "small" volume in
dimension 5 to 24 dimension 5 to 24 .

III. Latticesand

Gram matrices

Gram matrix and lattices

- Denote by S^n the vector space of real symmetric $n\times n$ and $C\%$ the convoy cone of real cymmetri matrices and $S^n_{>}$ int ita ${>}0$ $_{\rm 0}$ the convex cone of real symmetric positive definite $n\times n$ matrices.
- Take a lattice $L = \mathbf{Z} v_1 + \cdots + \mathbf{Z} v_n$ Gram matrix $G_{\textbf{v}}=(\langle v_i,v_j\rangle)_{1\leq i,j},$ $_n$ and associate to it the $\mathbf{v} = (\langle v_i, v_j \rangle)_{1 \leq i,j \leq n} \in S^n_{>}$ ${>}0$.
- Example: take the hexagonal lattice generated by v_{1} $v_1 = (1, 0)$ and v_2 $_2=(\frac{1}{2}$ $2^{\,},$ $\sqrt{3}$ $\left(\frac{3}{2}\right)$

Isometric lattices

Take a lattice $L=\mathbf{Z}v_1+\cdots+\mathbf{Z}v_n$ $v_i = (v_{i,1}, \ldots, v_{i,n}) \in \mathbf{R}^n$ and write n with $\boldsymbol{v}_i = (v_{i,1}, \dots, v_{i,n}) \in \mathbf{R}^n$ and write the matrix

$$
V = \left(\begin{array}{cccc} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{array}\right)
$$

and $G_{\textbf{v}}=V^T\ V$

- If $M \in S^n$ $_{>0}^n$, then there exists V such that $M=V^T$ $1/V$
- If $M=V_1^T$ $V_1=V_2^T$ V_2 , then $V_1=OV_2$ with (i.e. O corresponds to an isometry of \mathbf{R}^n). $\iota_1^T\ V_1=V_2^T$ \mathbb{Z}^T V_2 , then $V_1=$ $=$ OV_2 with O^T T $O=I_n$
- Also if L is a lattice of ${\bf R}^n$ with basis ${\bf v}$ and u an
is see the of ${\bf R}^n$ there G isometry of ${\bf R}^n$, then $G_{\bf v}=G$ $u(\mathbf{v})$.

Arithmetic minimum

The arithmetic minimum of $A\in S^n_{\gt}$ ${>}0$ $_0$ is

$$
min(A) = \min_{x \in \mathbf{Z}^n - \{0\}} x^T A x
$$

The minimal vector set of $A\in S^n_{\gt}$ $>\!\!0$ $_0$ is

$$
Min(A) = \{x \in \mathbf{Z}^n \mid x^T A x = min(A)\}
$$

Both $min(A)$ and $Min(A)$ can be computed using some \bullet 160 α α programs (for example sv by Vallentin)

• The matrix
$$
A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$
 has
\n $Min(A_{hex}) = {\pm(1,0), \pm(0,1), \pm(1,-1)}$.

Reexpression of previous definitions

• Take a lattice
$$
L = \mathbf{Z}v_1 + \cdots + \mathbf{Z}v_n
$$
. If $x \in L$,

$$
x = x_1v_1 + \dots + x_nv_n \text{ with } x_i \in \mathbf{Z}
$$

we associate to it the column vector $\,X\,$ = $\bigg($ \setminus $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ 1. . . $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ $\, n \,$ $\left\{\right\}$

We get $\vert\vert x \vert\vert^2$ $^{2} = X^{T}$ $^{T}G_{\mathbf{v}}X$ and

$$
\det L = \sqrt{\det G_{\mathbf{v}}} \text{ and } \lambda(L) = \frac{1}{2} \sqrt{\min(G_{\mathbf{v}})}
$$

• For
$$
A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$
, $det A_{hex} = 3$ and $min(A_{hex}) = 2$

Changing basis

If ${\bf v}$ and ${\bf v}$ $P \in GL_n$ $^\prime$ are two basis of a lattice L then $V^\prime = \mathbf{Z}^\backprime$. This implies $= VP$ with $_n(\mathbf{Z})$. This implies

$$
G_{\mathbf{v}'} = V'^T V' = (VP)^T VP = P^T \{V^T V\} P = P^T G_{\mathbf{v}} P
$$

If $A,B\in S^n_{\gt}$ n in nt $_{>0}^n$, they are called arithmetically equivalent if there is at least one $P\in GL$ $_n(\mathbf{Z})$ such that

$$
A = P^T B P
$$

- Lattices up to isometric equivalence correspond to S^n_{\gt} ${>}0$ up to arithmetic equivalence.
- In practice, Plesken wrote a program isom for testing
arithmetic equivalence arithmetic equivalence.

An example

Take the hexagonal lattice and two basis in it.

Hermite constant

The Hermite function is defined on S^n_{\gt} $>\!\!0$ $_0$ as

$$
\gamma(A) = \frac{\min(A)}{(\det A)^{1/n}}
$$

The Hermite constant is:

$$
\gamma_n = \max_{A \in S^n_{>0}} \gamma(A)
$$

The density of the lattice packing associated to A is

$$
\sqrt{\gamma(A)^n}\frac{\kappa_n}{2^n}
$$

• Finding lattice packings with highest packing density is the same as maximizing the Hermite function.

Extreme lattices

- The function γ is continuous on S^n_{\gt} ${>}0$.
- The expression of the lattice packing problem in form of ^a matrix problem allows to use analytical tools.
- A form $A\in S^n_{\gt}$ $\Omega \cap \Omega$ ${>}0$ $_{0}$ is extreme if the Hermite function γ attains a <mark>local maximum</mark> at A .
- **If one determines all the extreme lattices, then by** computing the value of γ for all of them, one would get the absolute maximum at A .
IV. Lattice packings, perfect latticesand Voronoi algorithm

Perfect lattices

A matrix $A\in S^n_{\gt}$ equation $>\!\!0$ $_{\rm 0}$ is perfect (Korkine & Zolotarev) if the

 $B \in S^n$ and ${}^t x B x = min(A)$ for all $x \in Min(A)$

implies $B=A.$

- A lattice is perfect if it has a basis (v_1,\ldots,v_n) with $G_{\bf v}$ being perfect.
- Since $x\in\mathbf{Z}^n$, we have a linear system with integral coefficient so perfect matrices are rational.
- $dim(S^n)=\frac{n(n+1)}{2}$ $\{v,-v\}$. $\frac{a+1j}{2}$ and shortest vector comes into pairs $-v$ }. So one has $|Min(A)| \geq n(n+1)$.
- A extreme $\Rightarrow A$ perfect. (Korkine & Zolotarev)

A perfect lattice

\n- \n
$$
A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$
\n corresponds to the lattice:\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \cdot\n \end{array}
	$$
	\n
	\n- \n
	$$
	\begin{array}{c}\n \cdot \\
	 \cdot \\
	 \cdot \\
	 \
	$$

A non-perfect lattice

•
$$
A_{sqr} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$
 has $Min(A_{sqr}) = {\pm (0, 1), \pm (1, 0)}$.

See below two lattices L associated to matrices $B\in S^2_{\leq 0}$ with $Min(B)$ ${>}0$ $_0$ with $Min(B) = Min(A_{sqr})$:

A non-perfect lattice

•
$$
A_{sqr} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$
 has $Min(A_{sqr}) = {\pm (0, 1), \pm (1, 0)}$.

See below two lattices L associated to matrices $B\in S^2_{\leq 0}$ with $Min(B)$ ${>}0$ $_0$ with $Min(B) = Min(A_{sqr})$:

Perfect domains

If $A\in S^{n}_{\leq}$ $>\!\!0$ $_{\rm 0}$ is a perfect matrix then the perfect domain is

$$
Dom(A) = \{ \sum_{v \in Min(A)} \lambda_v v v^T \text{ with } \lambda_v \ge 0 \}
$$

- A perfect implies that $Dom(A)$ is full-dimensional in S^n .
- Thm. (Voronoi): Perfect domains form ^a face-to-facetesselation of $S^n_{>}$ ${>}0$.
- Thm. (Voronoi): In a fixed dimension n , there exist a finite number of perfect matrices A_1,\ldots , $A_r\in S^n_{>0}$ s Cn thorogy in ${>}0$ $_{\rm 0}$ such that for every perfect matrix $A\in S^n_{>}$ $P \in GL_n({\bf Z})$ and $1 \leq i \leq r$ such that $_{>0}^n$, there exists $_n(\mathbf{Z})$ and $1\leq i\leq r$ such that $A=P^T$ ${}^{T}A_{i}P$

Enumeration of Perfect lattices

We will explain Voronoi algorithm that allows theclassification up to dimension 8 (but for dimension up to 5 Korkine-Zolotarev methods are sufficient).

We cut by the plane $\mathrm{u}+\mathrm{w}=1$ and get a circle representation.

The rank 1 matrices $(a, b)(a, b)^T$ with $a, b \in \mathbf{Z}$ lie on the boundary of S^2_{\geq} ${>}0$.

 S^2 \mathbf{r} $>\!\!0$ $_0$ partition: every triangle corresponds to a perfect domain $\mathit{Dom}(B)$ with B arithmetically equivalent to A_{hex}

Voronoi algorithm

- Find ^a perfect matrix, insert it to the list as undone.
- **Iterate**
	- For every undone perfect matrix, compute the perfect domain and then its facets.
	- For every facet realize the flipping, i.e. compute theadjacent perfect domain (and perfect lattice).
	- If the perfect lattice is new, then we insert it into the list of perfect lattices as undone.
- Finish when all perfect domains have been treated.

$$
A_{hex} = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)
$$

 $Min(A_{hex}) =$ \bullet $\sqrt{2}$ $\{\pm(0,1),\pm(1,0),\pm($ $1,1)\}.$

 $Dom(\overline{A_{hex}})$ has three facets.

\n- \n
$$
B_1 = \n \begin{pmatrix}\n 2 & 3 \\
 3 & 6\n \end{pmatrix}
$$
\n
\n- \n
$$
Min(B_1) = \n \{\pm (1, 0), \pm (-2, 1), \pm (-1, 1)\}.
$$
\n
\n- \n
$$
Dom(A_{hex})
$$
 and
$$
Dom(B_1)
$$
 share a facet.\n
\n- \n
$$
B_1 = P^T A_{hex} P
$$
 with
$$
P = \n \begin{pmatrix}\n 0 & -1 \\
 -1 & -1\n \end{pmatrix}
$$
\n
\n

\n- \n
$$
B_2 = \begin{pmatrix} 6 & 3 \\ 3 & 2 \end{pmatrix}
$$
\n
\n- \n
$$
\begin{aligned}\n\text{Min}(B_2) &= \\
\{\pm (0, 1), \pm (-1, 2), \pm (-1, 1)\}.\n\end{aligned}
$$
\n
\n- \n
$$
\begin{aligned}\n\text{Dom}(A_{hex}) &\text{and} \\
\text{Dom}(B_2) &\text{share a facet.} \\
B_2 &= P^T A_{hex} P \text{ with } P = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}\n\end{aligned}
$$
\n
\n

This completes the enumeration of perfect form indimension $2:$ matrices arithmetically equivalent to $A_{hex}.$

V. Korkine

Zolotarev

method

Korkine Zolotarev reduction

A matrix $A\in S^n_{\gt}$ nocood $>\!\!0$ $_0$ is called KZ -reduced if $f(x) = x^TAx$ can be expressed as

$$
f(x) = A_1(x_1 - \alpha_{12}x_2 \pm \cdots \pm \alpha_{1n}x_n)^2
$$

+
$$
A_2(x_2 - \alpha_{23}x_3 \pm \cdots \pm \alpha_{2n}x_n)^2
$$

+
$$
\cdots + A_{n-1}(x_{n-1} - \alpha_{n-1n}x_n)^2 + A_nx_n^2
$$

with the following properties:

- $0\leq\alpha_{ij}\leq\frac{1}{2}$ 2
- A_1 $_1$ is the minimum of the matrix A .
- If we put x_n $_{n}=$ 0, then the above is KZ -reduced.

Properties

- Every matrix $A\in S^n_{>0}$ is arithmetically equivalent to a K^r KZ-reduced one.
- Due to the invariance of γ by arithmetic equivalence, it suffices to solve the packing problem for $KZ\text{-reduced}$ matrices.
- A_1 is the minimum of A .
- $A_1 \dots A_n$ is the determinant of A .
- The Hermite constant is expressed as

$$
\gamma_n^n = \max_{A \ KZ \text{-reduced}} \frac{A_1^n}{A_1 \dots A_n}
$$

In dimension2

We have $f(x_1, x_2) = A_1(x_1 - \alpha_{12}x_2)^2$ x^2+A_2x 2 2 $f(0,1)\geq A_1$ $_1$ implies:

$$
\begin{cases}\nA_1(0 - \alpha_{12} \times 1)^2 + A_2 1^2 > A_1 \\
A_1 \alpha_{12}^2 + A_2 > A_1 \\
A_2 > A_1 (1 - \alpha_{12}^2)\n\end{cases}
$$

 $0\leq\alpha_{12}\leq\frac{1}{2}$ 2 $\frac{1}{2}$ implies $1-\alpha$ 2 $\frac{2}{12}\geq\frac{3}{4}$ 4 $\frac{3}{4}$ and $A_2 \geq A_1$ 3 4**o** This implies

$$
\gamma(A)^2 = \frac{A_1^2}{A_1 A_2} = \frac{A_1}{A_2} \le \frac{4}{3} = \gamma(A_{hex})^2
$$

So, $\gamma_2=$ $\frac{2}{\sqrt{3}}$.

Best lattice packing

Conjecture best lattice packing

- It is mysterious that there are so many beautiful lattices that are most likely of highest density but that we haveno proof of their optimality.
- Perhaps global optimization using Korkine-Zolotarev method can help?

VI. Elkies-Cohn method

Fourier transform

If f is an integrable function over \mathbf{R}^n , then

$$
\hat{f}(t) = \int_{\mathbf{R}^n} f(x)e^{2\pi i \langle x, t \rangle} dx
$$

If L is a lattice, then the <mark>dual lattice</mark> is

$$
L^* = \{ y \mid \langle x, y \rangle \in \mathbf{Z} \text{ for all } x \in L \}
$$

Poisson summation formula

$$
\sum_{x \in L} f(x + v) = \frac{1}{\det L} \sum_{t \in L^*} e^{-2\pi i \langle v, t \rangle} \hat{f}(t)
$$

Fundamental theorem

- A function is admissible if $f(x)$ and $\hat{f}(x)$ are $O(|x|+1)^{-n-\delta}$ for some $\delta > 0$.
- Suppose $0\neq f : \mathbf{R}^n$ $\mathbf{P}^n\rightarrow\mathbf{R}$ is admissible and
	- $f(x)\leq 0$ for all x with $||x||\geq 1.$
	- $\hat{f}(t)\geq 0$ for all t

 then the density of sphere packings (not only latticesphere packings) is bounded from above by

$$
\operatorname{upp}_n(f) = \frac{f(0)\kappa_n}{2^n \hat{f}(0)}
$$

Partial proof of theorem

- Take a lattice L and suppose that \min $_{x\in L-\{0\}}||x||=1$.
- Poisson formula and hypothesis implies:

$$
f(0) \geq \sum_{\substack{x \in L \\ \text{det } L}} f(x) \quad \text{by } f(x) \leq 0 \text{ if } ||x|| \geq 1
$$

$$
\geq \frac{1}{\det L} \sum_{x \in L^*} \hat{f}(x) \quad \text{by Poisson formula}
$$

$$
\geq \frac{\hat{f}(0)}{\det L} \quad \text{by } \hat{f} \geq 0
$$

As ^a consequence

$$
\delta(L) = \frac{\lambda(L)^n \kappa_n}{\det L} = \frac{\kappa_n}{2^n \det L} \le \frac{\kappa_n f(0)}{2^n \hat{f}(0)} = \text{upp}_n(f)
$$

• The above proof extends to general packings.

Finding good functions

Cohn, Elkies & Kumar found functions $f_2,\,f_8,\,f_{24}$ using polynomials of degree 800 such that

$$
\mathbf{upp}_{2}(f_{2}) \leq \delta(A_{hex})(1+10^{-10})
$$

\n
$$
\mathbf{upp}_{8}(f_{8}) \leq \delta(E_{8})(1+10^{-10})
$$

\n
$$
\mathbf{upp}_{24}(f_{24}) \leq \delta(Leech)(1+10^{-30})
$$

Conjecture There exist some functions $g_2,\,g_8,\,g_{24}$ that realize

$$
\text{upp}_2(g_2) = \delta(A_{hex}), \quad \text{upp}_8(g_8) = \delta(E_8)
$$

and
$$
\text{upp}_{24}(g_{24}) = \delta(Leech)
$$

This would imply that $A_{hex},\,E_8$ unique best packings in dimension $2, \, 8$ and $24.$ $\rm{a_8}$ and \it{Leech} lattice are the

Application to lattice

- The lattices $A_{hex},\,E_{8}$ (local maximum of packing density) γ_8 and $Leech$ are extreme lattices
- Cohn & Kumar were able to prove that if ^a lattice has ^ahigher density than $A_{hex},\,E_8$ too far" from those lattices. \rm{a}_{8} and $Leech$, then it is "not
- Using the fact that an extreme matrix is ^a local maximum of the packing density and careful analysis, they were able to prove that

 E_{8} Leech is best lattice packing in dimension $24\,$ s_8 is best lattice packing in dimension 8

VII. Symmetrymethod

Symmetry of lattices

- A symmetry of a lattice L is an isometry u of \mathbf{R}^n preserving 0 such that $L=u(L).$
- If one selects a basis v of L and consider the Gram matrix $G_{\mathbf{v}},$ then a u corresponds to a matrix $P\in GL$ such that $G_{\textbf{v}}=P^TG_{\textbf{v}}P.$ $_n(\mathbf{Z})$
- If $A \in S^n_{\leq 0}$, then the $_{>0}^n$, then the symmetry group

$$
Aut(A) = \{ P \in GL_n(\mathbf{Z}) \mid A = P^T A P \}
$$

is finite.

Hexagonal symmetries

$$
Mat_{\mathbf{v}}s = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)
$$

A rotation r of angle $\frac{\pi}{3}$ 3:

$$
Mat_{\mathbf{v}}r = \left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right)
$$

Matrix integral groups

- We want to consider lattices having ^a fixed symmetrygroup.
- We use the Gram matrix formalism.
- If G is a finite subgroup of GL $_n(\mathbf{Z}),$ denote by

 $\mathcal{SP}(G) = \{A \in S^n$ $\begin{array}{c|c} n & A \end{array}$ $= P^TAP$ for all $P \in G$ }

- Two subgroups $G_1,\,G_2$ exist $P \in GL_n({\bf Z})$ such that G_1 $_2$ of GL $_n(\mathbf{Z})$ are conjugate if there $n({\bf Z})$ such that $G_1=P G_2 P^{-1}$
- Thm.(Zassenhaus): In dimension $n,$ there is a finite number of subgroups of $GL_n({\bf Z})$ (up to conjugacy).
- They are classified up to dimension $6.$

Two dimensional example

Take the group G_4 $_4$ formed by the 4 integral matrices $\left(\begin{array}{cc} 1 & 0 \ 0 & 1 \end{array}\right)$)
)
) , $\left(\begin{array}{c}\n\end{array}\right)$ [−]¹ ⁰ $0 \quad 1 \int$)
)
) $\left(\begin{array}{cc} 1 & 0 \ 0 & -1 \end{array}\right)$ 0−1 $\bigg)$ and $\bigg($ [−]¹ ⁰ 0−1**)** One has \mathcal{SP} $\Big($ $G\,$ G_4) = $\left\{ \right.$ $\left(\begin{array}{c}\right.\end{array}$ $\it a$ $\rm 0$ $0\quad b$ with a, b ∈ $\mathrm{R}\}$ $\mathcal{S}\mathcal{P}$ $\left($ $G\,$ 4) ∩ $S\,$ 2 $>$ 0= $\left\{ \right.$ $\left(\begin{array}{c}\right.\end{array}$ $\it a$ $\rm 0$ $0\quad b$ $\Bigg)$ with $a >$ $0, b >$ $\rm 0$ $\{0\}$ v v_2 v_1 √ $\it a$ \sqrt{b}
G**-perfect matrices**

- If G is a finite subgroup of $GL_n(\mathbf{Z}),$ we want to describe
the nacking denoity of Crem matrices corresponding to the packing density of Gram matrices corresponding toelements in $\mathcal{SP}(G)$.
- A matrix $A\in \mathcal{SP}(G)$ is G -perfect if:

 $B \in \mathcal{SP}(G)$ and $x^T B x = min(A)$ for all $x \in Min(A)$

implies $B = A$.

A matrix $A\in \mathcal{SP}(G)$ is G -extreme if it is a local
maximum in $\mathcal{SD}(G)$ of maximum in $\mathcal{SP}(G)$ of $\gamma.$

 G -extreme \Rightarrow G -perfect.

G**-perfect domains**

- If A is G -perfect then:
	- Partition $Min(A)$ into $Min(A) = O_1 \cup O_2 \cup \cdots \cup O_r,$
	- with $O_i = \cup_{g \in G} gx$ for some $x \in Min(A)$ $(O_i$ is an orbit).
	- Define $p_i = \sum_{x \in O_i} x x^T$
	- Define the G -perfect domain by

$$
Dom_G(A) = \{ \sum_{i=1}^{r} \lambda_i p_i \text{ with } \lambda_i \ge 0 \}
$$

- Thm. (Bergé, Martinet & Sigrist): G -perfect domains realize a polyhedral subdivision of $\mathcal{SP}(G)\cap S^{n}_{>0}.$
- $\bullet\;\;$ We can enumerate all G -perfect matrices with analogs of Voronoi algorithm.

VIII. Periodic

structures

Motivation

A packing $\mathcal P$ of $\mathbf R^n$ is called periodic if there is a lattice L such that the set of centers of ${\mathcal P}$ is of the form

$$
\bigcup_{i=1}^{m} x^i + L \quad \text{with} \quad x^i \in \mathbf{R}^n
$$

Lattices correspond to the case $m=1.$

- If ${\mathcal P}$ is a packing of density $\delta,$ then for any $\epsilon > 0,$ one can
find a pariadia packings of density $\delta, \ \ \mathbb{R}$ find a periodic packings of density $\geq \delta - \epsilon.$ Hence,
periodic pookings approximate pookings periodic packings approximate packings.
- We hope that by cleverly choosing $\{x^1,\ldots,x^m\}$, we would be able to find packings of higher density thanany lattice packings, i.e. that $\delta_n > \delta_n^*$. Possible dimensions are $4, 5, 6$ and 7 .

Matrix setting

- We want to vary the lattice, while keeping the same structure of the periodic structure.
- In algebraic terms we select some vector x $i\in[0,1[^n$ and consider the set

$$
X = \cup_{i=1}^{m} x^{i} + \mathbf{Z}^{n}
$$

with the norm $||x$ $y||_A=$ $\sqrt{(x-y)^T}$ $^{T}A(x-y)$ with $A\in S^n_\sim$ ${>}0$.

If one authorizes some variation in x becomes non-linear and almost impossible to compute. i , then the setting

Perfection

- Denote by $min(x^i,A)$, the shortest norm of the set $\{x^i\}_{i=1}^m$ is smallest norm $||\;.\;||_A$ between any two
clements of X elements of ^X.
- To $i\leq j,$ one associates the set $X_{i,j}$ of vectors $v\in\mathbf{Z}^n$ such that $||v + x^i - x^j||_A = min(x^i, A)$
- A matrix $A\in S^n_{>0}$ is called (x^i) -perfect if the equation

$$
B \in S^n \text{ and } ||v + x^i - x^j||_B = min(x^i, A) \text{ for all } v \in X_{i,j}
$$

implies $B = A$.

■ One has analog of perfect domain, flipping and so on in that context.

THANK

YOU