Sphere packings and

lattice sphere packings

Mathieu Dutour Sikirić

Institut Rudjer Bošković, Zagreb and Institute of Statistical Mathematics, Tokyo I. Introduction

Norms, balls and spheres

• On the vector space \mathbf{R}^n , we define the Euclidean norm

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}$$
 with $x = (x_1, \dots, x_n)$

The Euclidean distance on Rⁿ is d(x, y) = ||x - y||
A ball B(c, r) of center c and radius r is defined by

$$B(c,r) = \{x \in \mathbf{R}^n \text{ with } ||x - c|| \le r\}$$

• The interior of B(c,r) is $\{x \in \mathbb{R}^n \text{ with } ||x-c|| < r\}$

• The sphere S(c, r) of center c and radius r is defined as

$$S(c,r) = \{x \in \mathbf{R}^n \text{ with } ||x - c|| = r\}$$

Packings

A packing in Rⁿ is a set of balls of the same radius, whose interiors are non-overlapping.

- For historical reasons, those packings are called sphere packings, instead of ball packings.
- We will consider only infinite sphere packings.

Density of packing

The density of a sphere packing SP is the fraction of space covered. It is defined by

 $\delta(\mathcal{SP}) = \lim_{m \to \infty} \frac{\operatorname{vol}(\mathcal{SP} \cap R_m)}{\operatorname{vol}(R_m)}$ with $R_m \to \mathbf{R}^n$

The limit does not necessarily exist. We will always assume this limit exists.

Density of packing

The density of a sphere packing SP is the fraction of space covered. It is defined by

 $\delta(\mathcal{SP}) = \lim_{m \to \infty} \frac{\operatorname{vol}(\mathcal{SP} \cap R_m)}{\operatorname{vol}(R_m)}$ with $R_m \to \mathbf{R}^n$

The limit does not necessarily exist. We will always assume this limit exists.

Density of packing

The density of a sphere packing SP is the fraction of space covered. It is defined by

 $\delta(\mathcal{SP}) = \lim_{m \to \infty} \frac{\operatorname{vol}(\mathcal{SP} \cap R_m)}{\operatorname{vol}(R_m)}$ with $R_m \to \mathbf{R}^n$

The limit does not necessarily exist. We will always assume this limit exists.

Packing problem

- Denote by δ_n the highest density of sphere packings in \mathbb{R}^n .
- The packing problem in dimension n is:
 - Determine the value of δ_n .
 - Describe packings of density δ_n .
- In dimension 3, the problem is sometimes called Kepler problem.
- Removing one sphere in a packing does not change its density!
- A "reasonable" problem is to describe all periodic n-dimensional packings having highest constant.

Lattice packings

• A lattice *L* is a subgroup of \mathbb{R}^d of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_d$.

If *L* is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha > 0$ such that $L + B(0, \alpha)$ is a packing.

Lattice packings

• A lattice *L* is a subgroup of \mathbb{R}^d of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_d$.

If *L* is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha > 0$ such that $L + B(0, \alpha)$ is a packing.

Lattice packings

• A lattice *L* is a subgroup of \mathbb{R}^d of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_d$.

If *L* is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha > 0$ such that $L + B(0, \alpha)$ is a packing.

Density of lattice packings

Take the lattice packing defined by a lattice L:

The packing density has the expression

$$\delta(L) = \frac{\lambda(L)^n \kappa_n}{\det L} \quad \text{with} \quad \lambda(L) = \frac{1}{2} \min_{v \in L - \{0\}} ||v||,$$

 κ_n the volume of the unit ball B(0,1) and det L the volume of an unit cell.

• Denote by δ_n^* the highest density of lattice packings.

Known results

Dimension	Best lattice packing	Best packing
2	A _{hex} (Lagrange)	A _{hex} (Lagrange)
3	A_3 (Gauss)	A_3 (Hales & Ferguson)
4	D_4 (Korkine & Zolotarev)	?
5	D_5 (Korkine & Zolotarev)	?
6	E_6 (Blichfeldt)	?
7	E_7 (Blichfeldt)	?
8	E_8 (Blichfeldt)	?
24	Leech (Cohn & Kumar)	?

We do not know if $\delta_n > \delta_n^*$ for some *n*, i.e. an example of a sphere packing of higher density than any lattice sphere packing.

Plan of the presentation

We will present:

- Those results
- Methods of their proof
- Some conjectures
- Some new techniques

Subjects not covered:

- Finite packings
- Asymptotic theory as the dimension goes to ∞ .
- **Description of remarkable lattices** *Leech*, E_8 , ...
- Random packing.

I. Voronoi polytope

technique

Voronoi domain

Suppose X is a locally finite set in \mathbb{R}^n , for any $x \in X$, define

 $N(x) = \{ v \in \mathbf{R}^n \mid ||v - x|| \le ||v - y||, \text{ for all } y \in X - \{x\} \}$

also known as "Nearest neighbor region", "Brillouin zone", "Wigner Seitz cell".

• They form a face to face tiling of \mathbf{R}^n

Results

- Take a subset X in \mathbb{R}^n and assume that for every $x, x' \in X, x \neq x'$, we have $||x x'|| \ge 2$. Then one defines
 - the sphere packings with balls B(x,1) of radius 1 and center in X,
 - the Voronoi domain region N(x)and gets for any $x \in X$, the inclusion $B(x, 1) \subset N(x)$.
- Denote by α_n the smallest value of α such that for every sphere packing with balls B(x, 1), one has $\alpha \operatorname{vol}(N(x)) \geq \operatorname{vol}(B(x, 1))$.

• One has
$$\delta_n \leq \alpha_n$$
.

$\textbf{Dimension}\ 2$

It is proved that the Voronoi cell of minimal volume in a packing by sphere of radius 1 is regular hexagon. So, $\alpha_2 = \frac{\pi}{\sqrt{12}}$ and $\delta_2 \le \alpha_2$.

- Regular hexagon realizes a face-to-face packing of \mathbb{R}^2 , so in fact $\delta_2 = \alpha_2 = \frac{\pi}{\sqrt{12}}$ (Lagrange)
- Hexagonal packing is the unique periodic packing of highest density.

Voronoi polytope in dimension 3

- The Voronoi region of minimal volume is the Dodecahedron (Thomas Hales & Sean McLaughlin, proved by computer computations)
- There is no set X in \mathbb{R}^3 , whose Voronoi region are Dodecahedron. So, $\delta_3 < \alpha_3$

Configuration of spheres with minimal Voronoi

Configuration of spheres with maximal density

Sphere packing in dimension 3

Hales & Ferguson proved that there is no packing of density higher than the one by A_3 lattice (cannon ball packing).

- The method is computer based, extremely long, extraordinarily complicated, unchecked.
- It uses a decomposition of the space intermediate between Voronoi and Delaunay decomposition.
- It uses global optimization, branch & bound and interval arithmetic.

Packings with highest density in dimension 3 are formed by lamination on the hexagonal packing:

The above "Cannon ball" packing is when the choice of layer is uniform.

Other dimensions

Conjecture It seems likely that

$$\delta_4 = \alpha_4$$
, $\delta_8 = \alpha_8$ and $\delta_{24} = \alpha_{24}$

And that the equality is realized only by the Voronoi domain of D_4 , E_8 and Leech lattice

- This would prove that they are best packings in dimension 4, 8 and 24
- Problem Find Voronoi cell of "small" volume in dimension 5 to 24.

III. Lattices and

Gram matrices

Gram matrix and lattices

- Denote by S^n the vector space of real symmetric $n \times n$ matrices and $S^n_{>0}$ the convex cone of real symmetric positive definite $n \times n$ matrices.
- Take a lattice $L = \mathbf{Z}v_1 + \cdots + \mathbf{Z}v_n$ and associate to it the Gram matrix $G_{\mathbf{v}} = (\langle v_i, v_j \rangle)_{1 \le i,j \le n} \in S_{>0}^n$.
- Example: take the hexagonal lattice generated by $v_1 = (1, 0)$ and $v_2 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$

Isometric lattices

• Take a lattice $L = \mathbf{Z}v_1 + \cdots + \mathbf{Z}v_n$ with $v_i = (v_{i,1}, \dots, v_{i,n}) \in \mathbf{R}^n$ and write the matrix

$$V = \begin{pmatrix} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{pmatrix}$$

and $G_{\mathbf{v}} = V^T V$

- If $M \in S_{>0}^n$, then there exists V such that $M = V^T V$
- If $M = V_1^T V_1 = V_2^T V_2$, then $V_1 = OV_2$ with $O^T O = I_n$ (i.e. *O* corresponds to an isometry of \mathbb{R}^n).
- Also if L is a lattice of \mathbb{R}^n with basis v and u an isometry of \mathbb{R}^n , then $G_v = G_{u(v)}$.

Arithmetic minimum

• The arithmetic minimum of $A \in S_{>0}^n$ is

$$\min(A) = \min_{x \in \mathbf{Z}^n - \{0\}} x^T A x$$

• The minimal vector set of $A \in S_{>0}^n$ is

$$Min(A) = \{ x \in \mathbf{Z}^n \mid x^T A x = min(A) \}$$

Both min(A) and Min(A) can be computed using some programs (for example sv by Vallentin)

• The matrix
$$A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 has
 $Min(A_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}.$

Reexpression of previous definitions

• Take a lattice
$$L = \mathbf{Z}v_1 + \cdots + \mathbf{Z}v_n$$
. If $x \in L$,

$$x = x_1v_1 + \dots + x_nv_n$$
 with $x_i \in \mathbb{Z}$

we associate to it the column vector $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

• We get $||x||^2 = X^T G_{\mathbf{v}} X$ and

det
$$L = \sqrt{\det G_{\mathbf{v}}}$$
 and $\lambda(L) = \frac{1}{2}\sqrt{\min(G_{\mathbf{v}})}$

• For
$$A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
, $det A_{hex} = 3$ and $min(A_{hex}) = 2$

Changing basis

If v and v' are two basis of a lattice *L* then V' = VP with $P \in GL_n(\mathbf{Z})$. This implies

$$\boldsymbol{G}_{\mathbf{v}'} = \boldsymbol{V'}^T \boldsymbol{V'} = (\boldsymbol{V}\boldsymbol{P})^T \boldsymbol{V}\boldsymbol{P} = \boldsymbol{P}^T \{\boldsymbol{V}^T \boldsymbol{V}\} \boldsymbol{P} = \boldsymbol{P}^T \boldsymbol{G}_{\mathbf{v}} \boldsymbol{P}$$

If $A, B \in S_{>0}^n$, they are called arithmetically equivalent if there is at least one $P \in GL_n(\mathbf{Z})$ such that

$$A = P^T B P$$

- Lattices up to isometric equivalence correspond to $S_{>0}^n$ up to arithmetic equivalence.
- In practice, Plesken wrote a program isom for testing arithmetic equivalence.

An example

Take the hexagonal lattice and two basis in it.

Hermite constant

• The Hermite function is defined on $S_{>0}^n$ as

$$\gamma(A) = \frac{\min(A)}{(\det A)^{1/n}}$$

The Hermite constant is:

$$\gamma_n = \max_{A \in S_{>0}^n} \gamma(A)$$

The density of the lattice packing associated to A is

$$\sqrt{\gamma(A)^n} \frac{\kappa_n}{2^n}$$

Finding lattice packings with highest packing density is the same as maximizing the Hermite function.

Extreme lattices

- The function γ is continuous on $S_{>0}^n$.
- The expression of the lattice packing problem in form of a matrix problem allows to use analytical tools.
- A form $A \in S_{>0}^n$ is extreme if the Hermite function γ attains a local maximum at A.
- If one determines all the extreme lattices, then by computing the value of γ for all of them, one would get the absolute maximum at A.
IV. Lattice packings, perfect lattices and Voronoi algorithm

Perfect lattices

• A matrix $A \in S_{>0}^n$ is perfect (Korkine & Zolotarev) if the equation

 $B \in S^n$ and ${}^t x B x = min(A)$ for all $x \in Min(A)$

implies B = A.

- A lattice is perfect if it has a basis (v_1, \ldots, v_n) with G_v being perfect.
- Since $x \in \mathbb{Z}^n$, we have a linear system with integral coefficient so perfect matrices are rational.
- dim(Sⁿ) = $\frac{n(n+1)}{2}$ and shortest vector comes into pairs
 {v, -v}. So one has |Min(A)| ≥ n(n+1).
- A extreme \Rightarrow A perfect. (Korkine & Zolotarev)

A perfect lattice

A non-perfect lattice

•
$$A_{sqr} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 has $Min(A_{sqr}) = \{\pm(0,1), \pm(1,0)\}.$

■ See below two lattices *L* associated to matrices $B \in S^2_{>0}$ with $Min(B) = Min(A_{sqr})$:

A non-perfect lattice

•
$$A_{sqr} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 has $Min(A_{sqr}) = \{\pm(0,1), \pm(1,0)\}.$

See below two lattices *L* associated to matrices $B \in S^2_{>0}$ with $Min(B) = Min(A_{sqr})$:

Perfect domains

If $A \in S_{>0}^n$ is a perfect matrix then the perfect domain is

$$Dom(A) = \{\sum_{v \in Min(A)} \lambda_v v v^T \text{ with } \lambda_v \ge 0\}$$

- A perfect implies that Dom(A) is full-dimensional in S^n .
- Thm. (Voronoi): Perfect domains form a face-to-face tesselation of $S_{>0}^n$.
- Thm. (Voronoi): In a fixed dimension n, there exist a finite number of perfect matrices $A_1, \ldots, A_r \in S_{>0}^n$ such that for every perfect matrix $A \in S_{>0}^n$, there exists $P \in GL_n(\mathbf{Z})$ and $1 \le i \le r$ such that $A = P^T A_i P$

Enumeration of Perfect lattices

dim.	Nr. of perfect lattices	Absolute maximum
		of γ realized by
2	1 (Lagrange)	A_{hex}
3	1 (Gauss)	A_3
4	2 (Korkine & Zolotareff)	D_4
5	3 (Korkine & Zolotareff)	D_5
6	7 (<mark>Barnes</mark>)	E_6
7	33 (Jaquet)	E_7
8	10916 (Dutour, Schürmann & Vallentin)	E_8

We will explain Voronoi algorithm that allows the classification up to dimension 8 (but for dimension up to 5 Korkine-Zolotarev methods are sufficient).

We cut by the plane u + w = 1 and get a circle representation.

The rank 1 matrices $(a, b)(a, b)^T$ with $a, b \in \mathbb{Z}$ lie on the boundary of $S_{>0}^2$.

 $S_{>0}^2$ partition: every triangle corresponds to a perfect domain Dom(B) with B arithmetically equivalent to A_{hex}

Voronoi algorithm

- Find a perfect matrix, insert it to the list as undone.
- Iterate
 - For every undone perfect matrix, compute the perfect domain and then its facets.
 - For every facet realize the flipping, i.e. compute the adjacent perfect domain (and perfect lattice).
 - If the perfect lattice is new, then we insert it into the list of perfect lattices as undone.
- Finish when all perfect domains have been treated.

 $Min(A_{hex}) = \{\pm(1,0), \pm(0,1), \\$

•
$$A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

• $Min(A_{hex}) = {\pm (0,1), \pm (1,0), \pm (-1,1)}.$

• $Dom(A_{hex})$ has three facets.

•
$$B_1 = \begin{pmatrix} 2 & 3 \\ 3 & 6 \end{pmatrix}$$

• $Min(B_1) = \{\pm(1,0), \pm(-2,1), \pm(-1,1)\}.$
• $Dom(A_{hex})$ and $Dom(B_1)$ share a facet.
• $B_1 = P^T A_{hex} P$ with $P = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix}$

•
$$B_2 = \begin{pmatrix} 6 & 3 \\ 3 & 2 \end{pmatrix}$$

• $Min(B_2) = \{\pm(0,1), \pm(-1,2), \pm(-1,1)\}$.
• $Dom(A_{hex})$ and $Dom(B_2)$ share a facet.
• $B_2 = P^T A_{hex} P$ with $P = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$

$$\bullet \quad B_3 = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right)$$

•
$$Min(B_3) = {\pm (0,1), \pm (1,0), \pm (1,1)}.$$

• $Dom(A_{hex})$ and $Dom(B_3)$ share a facet.

•
$$B_3 = P^T A_{hex} P$$
 with $P = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

This completes the enumeration of perfect form in dimension 2: matrices arithmetically equivalent to A_{hex} .

V. Korkine

Zolotarev

method

Korkine Zolotarev reduction

A matrix $A \in S_{>0}^n$ is called *KZ*-reduced if $f(x) = x^T A x$ can be expressed as

$$f(x) = A_1(x_1 - \alpha_{12}x_2 \pm \dots \pm \alpha_{1n}x_n)^2 + A_2(x_2 - \alpha_{23}x_3 \pm \dots \pm \alpha_{2n}x_n)^2 + \dots + A_{n-1}(x_{n-1} - \alpha_{n-1n}x_n)^2 + A_nx_n^2$$

with the following properties:

- $0 \le \alpha_{ij} \le \frac{1}{2}$
- A_1 is the minimum of the matrix A.
- If we put $x_n = 0$, then the above is KZ-reduced.

Properties

- Every matrix $A \in S_{>0}^n$ is arithmetically equivalent to a KZ-reduced one.
- Due to the invariance of γ by arithmetic equivalence, it suffices to solve the packing problem for KZ-reduced matrices.
- A_1 is the minimum of A.
- $A_1 \ldots A_n$ is the determinant of A.
- The Hermite constant is expressed as

$$\gamma_n^n = \max_{\substack{A \ KZ \text{-reduced}}} \frac{A_1^n}{A_1 \dots A_n}$$

In dimension 2

• We have $f(x_1, x_2) = A_1(x_1 - \alpha_{12}x_2)^2 + A_2x_2^2$ • $f(0, 1) \ge A_1$ implies:

$$\begin{cases} A_1(0 - \alpha_{12} \times 1)^2 + A_2 1^2 \geq A_1 \\ A_1 \alpha_{12}^2 + A_2 \geq A_1 \\ A_2 \geq A_1(1 - \alpha_{12}^2) \end{cases}$$

• $0 \le \alpha_{12} \le \frac{1}{2}$ implies $1 - \alpha_{12}^2 \ge \frac{3}{4}$ and $A_2 \ge A_1 \frac{3}{4}$ • This implies

$$\gamma(A)^2 = \frac{A_1^2}{A_1 A_2} = \frac{A_1}{A_2} \le \frac{4}{3} = \gamma(A_{hex})^2$$

___ So, $\gamma_2 = rac{2}{\sqrt{3}}$.

Best lattice packing

Conjecture best lattice packing

dim.	Symbol	Name
9	Λ_9	Laminated lattice of dim. 9
10	K'_{10}	Coxeter Todd lattice of dim. 10
11	Λ_{11}	Laminated lattice of dim. 11
12	K_{12}	Coxeter Todd lattice of dim. 12
16	BW_{16}	Barnes-Wall lattice

- It is mysterious that there are so many beautiful lattices that are most likely of highest density but that we have no proof of their optimality.
- Perhaps global optimization using Korkine-Zolotarev method can help?

VI. Elkies-Cohn method

Fourier transform

If f is an integrable function over \mathbb{R}^n , then

$$\hat{f}(t) = \int_{\mathbf{R}^n} f(x) e^{2\pi i \langle x, t \rangle} dx$$

● If *L* is a lattice, then the dual lattice is

$$L^* = \{y \mid \langle x, y \rangle \in \mathbf{Z} \text{ for all } x \in L\}$$

Poisson summation formula

$$\sum_{x \in L} f(x+v) = \frac{1}{\det L} \sum_{t \in L^*} e^{-2\pi i \langle v, t \rangle} \hat{f}(t)$$

Fundamental theorem

- A function is admissible if f(x) and $\hat{f}(x)$ are $O(|x|+1)^{-n-\delta}$ for some $\delta > 0$.
- $\textbf{Suppose } 0 \neq f: \mathbf{R}^n \rightarrow \mathbf{R} \text{ is admissible and }$
 - $f(x) \le 0$ for all x with $||x|| \ge 1$.
 - $\hat{f}(t) \ge 0$ for all t

then the density of sphere packings (not only lattice sphere packings) is bounded from above by

$$\mathbf{upp}_n(f) = \frac{f(0)\kappa_n}{2^n \hat{f}(0)}$$

Partial proof of theorem

- Take a lattice L and suppose that $\min_{x \in L \{0\}} ||x|| = 1$.
- Poisson formula and hypothesis implies:

$$\begin{array}{rcl} f(0) & \geq & \sum_{x \in L} f(x) & \text{by } f(x) \leq 0 \text{ if } ||x|| \geq 1 \\ & \geq & \frac{1}{\det L} \sum_{x \in L^*} \hat{f}(x) & \text{by Poisson formula} \\ & \geq & \frac{\hat{f}(0)}{\det L} & \text{by } \hat{f} \geq 0 \end{array}$$

As a consequence

$$\delta(L) = \frac{\lambda(L)^n \kappa_n}{\det L} = \frac{\kappa_n}{2^n \det L} \le \frac{\kappa_n f(0)}{2^n \hat{f}(0)} = \mathbf{upp}_n(f)$$

The above proof extends to general packings.

Finding good functions

• Cohn, Elkies & Kumar found functions f_2 , f_8 , f_{24} using polynomials of degree 800 such that

 $upp_{2}(f_{2}) \leq \delta(A_{hex})(1+10^{-10})$ $upp_{8}(f_{8}) \leq \delta(E_{8})(1+10^{-10})$ $upp_{24}(f_{24}) \leq \delta(Leech)(1+10^{-30})$

• Conjecture There exist some functions g_2 , g_8 , g_{24} that realize

$$\mathbf{upp}_{2}(g_{2}) = \delta(A_{hex}), \quad \mathbf{upp}_{8}(g_{8}) = \delta(E_{8})$$

and $\mathbf{upp}_{24}(g_{24}) = \delta(Leech)$

• This would imply that A_{hex} , E_8 and Leech lattice are the unique best packings in dimension 2, 8 and 24.

Application to lattice

- The lattices A_{hex} , E_8 and Leech are extreme lattices (local maximum of packing density)
- Cohn & Kumar were able to prove that if a lattice has a higher density than A_{hex}, E₈ and Leech, then it is "not too far" from those lattices.
- Using the fact that an extreme matrix is a local maximum of the packing density and careful analysis, they were able to prove that

 E_8 is best lattice packing in dimension 8 Leech is best lattice packing in dimension 24

VII. Symmetry method

Symmetry of lattices

- A symmetry of a lattice *L* is an isometry *u* of \mathbb{R}^n preserving 0 such that L = u(L).
- If one selects a basis v of L and consider the Gram matrix G_v , then a u corresponds to a matrix $P \in GL_n(\mathbf{Z})$ such that $G_v = P^T G_v P$.
- If $A \in S_{>0}^n$, then the symmetry group

$$Aut(A) = \{ P \in GL_n(\mathbf{Z}) \mid A = P^T A P \}$$

is finite.

Hexagonal symmetries

$$Mat_{\mathbf{v}}s = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

• A rotation r of angle $\frac{\pi}{3}$:

$$Mat_{\mathbf{v}}r = \left(\begin{array}{cc} 0 & -1\\ 1 & 1 \end{array}\right)$$

Matrix integral groups

- We want to consider lattices having a fixed symmetry group.
- We use the Gram matrix formalism.
- If G is a finite subgroup of $GL_n(\mathbf{Z})$, denote by

 $\mathcal{SP}(G) = \{ A \in S^n \mid A = P^T A P \text{ for all } P \in G \}$

- Two subgroups G_1 , G_2 of $GL_n(\mathbf{Z})$ are conjugate if there exist $P \in GL_n(\mathbf{Z})$ such that $G_1 = PG_2P^{-1}$
- Thm.(Zassenhaus): In dimension n, there is a finite number of subgroups of $GL_n(\mathbf{Z})$ (up to conjugacy).
- They are classified up to dimension 6.

Two dimensional example

• Take the group G_4 formed by the 4 integral matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ • One has $\mathcal{SP}(G_4) = \{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \text{ with } a, b \in \mathbf{R} \}$ • $SP(G_4) \cap S^2_{>0} = \{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \text{ with } a > 0, b > 0 \}$ \sqrt{b} v_2
G-perfect matrices

- If G is a finite subgroup of $GL_n(\mathbf{Z})$, we want to describe the packing density of Gram matrices corresponding to elements in SP(G).
- A matrix $A \in SP(G)$ is *G*-perfect if:

 $B \in \mathcal{SP}(G)$ and $x^T B x = min(A)$ for all $x \in Min(A)$

implies B = A.

• A matrix $A \in SP(G)$ is *G*-extreme if it is a local maximum in SP(G) of γ .

• G-extreme \Rightarrow G-perfect.

G-perfect domains

- If *A* is *G*-perfect then:
 - Partition Min(A) into $Min(A) = O_1 \cup O_2 \cup \cdots \cup O_r$,
 - with $O_i = \bigcup_{g \in G} gx$ for some $x \in Min(A)$ (O_i is an orbit).
 - Define $p_i = \sum_{x \in O_i} x x^T$
 - Define the G-perfect domain by

$$Dom_G(A) = \{\sum_{i=1}^r \lambda_i p_i \text{ with } \lambda_i \ge 0\}$$

- Thm. (Bergé, Martinet & Sigrist): *G*-perfect domains realize a polyhedral subdivision of $SP(G) \cap S_{>0}^n$.
- We can enumerate all G-perfect matrices with analogs of Voronoi algorithm.

VIII. Periodic

structures

Motivation

• A packing \mathcal{P} of \mathbb{R}^n is called periodic if there is a lattice L such that the set of centers of \mathcal{P} is of the form

$$\cup_{i=1}^m x^i + L$$
 with $x^i \in \mathbf{R}^n$

Lattices correspond to the case m = 1.

- If \mathcal{P} is a packing of density δ , then for any $\epsilon > 0$, one can find a periodic packings of density $\geq \delta \epsilon$. Hence, periodic packings approximate packings.
- We hope that by cleverly choosing $\{x^1, \ldots, x^m\}$, we would be able to find packings of higher density than any lattice packings, i.e. that $\delta_n > \delta_n^*$. Possible dimensions are 4, 5, 6 and 7.

Matrix setting

- We want to vary the lattice, while keeping the same structure of the periodic structure.
- In algebraic terms we select some vector $x^i \in [0, 1[^n \text{ and } consider the set$

$$X = \bigcup_{i=1}^{m} x^i + \mathbf{Z}^n$$

with the norm $||x - y||_A = \sqrt{(x - y)^T A(x - y)}$ with $A \in S_{>0}^n$.

If one authorizes some variation in x^i , then the setting becomes non-linear and almost impossible to compute.

Perfection

- Denote by $min(x^i, A)$, the shortest norm of the set $\{x^i\}_{i=1}^m$ is smallest norm $|| \cdot ||_A$ between any two elements of X.
- To $i \leq j$, one associates the set $X_{i,j}$ of vectors $v \in \mathbb{Z}^n$ such that $||v + x^i - x^j||_A = min(x^i, A)$
- A matrix $A \in S_{>0}^n$ is called (x^i) -perfect if the equation

$$B \in S^n$$
 and $||v + x^i - x^j||_B = min(x^i, A)$ for all $v \in X_{i,j}$

implies B = A.

One has analog of perfect domain, flipping and so on in that context.

THANK

YOU