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|. Space fullerenes



Fullerenes

> A fullerene is a 3-valent plane graph, whose faces are 5 or
6-gonal.

» They exist for any even n > 20, n # 22.
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> There exist extremely efficient programs to enumerate them
(FullGen by G. Brinkman, CPF by T. Harmuth)

> Fullerenes with isolated pentagons have n > 60. The smallest
one:

Truncated icosahedron,
soccer ball,
Buckminsterfullerene



Frank Kasper structures

» There are exactly 4 fullerenes with isolated hexagons:

Leagay

20, Iy 24 Dgy 26, Dsp 28, Ty

» A Space-fullerene structure is a 4-valent 3-periodic tiling of
R3 by those 4 fullerenes.

» They were introduced by Frank & Kasper in two papers in
1958, 1959 in order to explain a variety of crystallographic
structures in a unified way.

» The basic problems are:

» Find the possible structures, they are very rare.
» Find some general constructions.
» Find structural properties.



Known Physical phases |

» group is the space group according to the crystallographic

tables

» fund. dom. is the number of cells in a fundamental domain.
» fraction (x20, X24, X26, X28) is the relative number of 20-, 24-,
26- and 28-cells in

phase rep. alloy group fund. dom. fraction
Cia MgZn, P63/ mmc 12 (2,0,0,1)
C15 MgCU2 Fd§m 24 (2, 07 0, 1)
C36 Mgle P63/mmc 24 (27 O, O, ].)
6-layers MgCuNi P63/ mmc 36 (2,0,0,1)
8-layers | MgZn, + 0.03MgAg, | P63/mmc 48 (2,0,0,1)
O-layers | MgZn, + 0.07MgAg, R3m 54 (2,0,0,1)
10-layers | MgZn, + 0.1MgAg, | P63/mmc 60 (2,0,0,1)
- Mg, Zn7 C2/m 110 (35,2,2,16)
X MnysCo040Si15 Pnnm 74 (23,2,2,10)
T Mgs,(Zn, Al)ag Im3 162 (49,6, 6,20)
C V,(Co, Si)s C2/m 50 (15,2,2,6)
—* K7Cse P63/ mmc 26 (7,2,2,2)




Known Physical phases |l

phase rep. alloy group fund. dom. fraction

M Nb43Ni3gA113 Pnma 52 (77 2, 2, 2)
R MO31005101‘18 R§ 159 (277 127 6, 8)
K* Mnz77Fe4Siig C2 110 (25,19,4,7)
V4 ZraAlz P6/mmm 7 (3,2,2,0)
P MO4QCT18Ni40 Pnma 56 (67 5, 2, 1)
0 MoNi P21212; 56 (6,5,2,1)
v MH81_5Si18_5 Immm 186 (37, 40, 10, 6)
J complex Pmmm 22 (4,5,2,0)
F complex P6/mmm 52 (9,13,4,0)
K complex Pmmm 82 (14,21,6,0)
H complex Cmmm 30 (5,8,2,0)
g Cr46Fe54 P42/mnm 30 (57 8, 2, 0)

Ais Cr3Si Pm3n 8 (1,3,0,0)




The Laves phases

> Laves phases are structures defined by stacking different layers
of Fpg together with two choices at every step. Thus a symbol
(Xi)—co<i<oo With x; = %1 describes them.

> All structures with xp6 = x4 = 0 are Laves phases and a great
many compounds are of this type.

» Frank & Kasper, 1959 generalize the construction to sequence
with x; = 0, £1.

P63/mmc, 12 Fd3m, 24 P63/ mmc, 24
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P63/mmc, 36 P63/mmc, 48 R3m, 54



Some other structures

» Also in some mixed clathrate “ice-like" hydrates:

t.c.p. | alloys exp. clathrate | # 20 | # 24 | # 26 | # 28
A15 Cr35i |4C/27H20 1 3 0 0
Cis5 | MgCuy | Il:CHCl3.17TH> O 0 0 1
Z ZrgAlz | 1:Bry.86H,O 3 2 2 0

vertices are H, O, hydrogen bonds, cells are sites of solutes
(cl, Br, ..

).

> At the olympic games:




Kelvin problem |

» The general Kelvin problem is to partition the Euclidean space
E"™ by some cells of equal volume and to minimize the surface
between cells.

> In dimension 2 the solution is known to be the hexagonal
structure:

» T. Hales, The honeycomb conjecture. Discrete Comput.
Geom. 25 (2001) 1-22.

» The solution in dimension 3 is not known but Kelvin proposed
a structure, which was the example to beat.

» F. Almgren proposed to try to beat it by doing variational
optimization over periodic structures



Kelvin problem Il

Kelvin's partition Weaire, Phelan's partition

» Weaire-Phelan partition (A;s) is 0.3% better than Kelvin's,
best is unknown



lI. Combinatorial
encoding and
topological recognition
problem



Flags and flag operators

> A cell complex C is a family of cells with inclusion relations
such that the intersection of any two cells is either empty or a
single cell.
We also assume it to be pure of dimension d, i.e. all inclusion
maximal cell have dimension d.

» It is closed (or has no boundary) if any d — 1 dimensional cell
is contained in two d-dimensional cells.

» A flag is an increasing sequence F,, C F,, C --- C Fp, of cells
of dimension ng,...,n,. (ng,...,n,) is the type of the flag.

» A flag is complete if its type is (O, ..., d).

» Denote by F(C) the set of complete flags of C.

» If f =(Fo,...,Fq)is a complete flag and 0 < i < d then the
flag oi(f) is the one differing from f only in the dimension i.

> A cell complex C is completely described by the action of o;
on F(C).

» The problem is that F(C) may well be infinite or very large to
be workable with.



Delaney symbol

» Suppose C is a cell complex, with a group G acting on it. The
Delaney symbol of C with respect to G is a combinatorial
object containing:

» The orbits Ok of complete flags under G
» The action of o; on those orbits for 0 </ < d.
» For every orbit Oy, take f € O, the smallest m such that
(cioj)™(f) = f is independent of f and denoted m; j(k).
C quotiented by G is an orbifold.

> If G = Aut(C) we speak simply of Delaney symbol of C
» Theorem: If C is a simply connected manifold, then it is
entirely described by its Delaney symbol.
» A.W.M. Dress, Presentations of discrete groups, acting on
simply connected manifolds, in terms of parametrized systems

of Coxeter matrices—a systematic approach, Advances in
Mathematics 63-2 (1987) 196-212.

» This is actually a reminiscence of Poincaré polyhedran
theorem.



The inverse recognition problem

» Suppose we have a Delaney symbol D, i.e. the data of
permutations (o;)o<i<q and the matrices mjj(k).

We want to know what is the universal cover man-
ifold C (and if it is Euclidean space).

» Some cases:

» If we have only 1 orbit of flag then the Delaney symbol is
simply a Coxeter Dynkin diagram and the decision problem is
related to the eigenvalues of the Coxeter matrix.

» If d = 2 then we can associate a curvature ¢(D) to the
Delaney symbol and the sign determines whether C is a sphere,
euclidean plane or hyperbolic plane.

» If d = 3 then the problem is related to hard questions in
3-dimensional topology. But the software Gavrog/3dt by O.
Delgado Friedrichs can actually decide those questions.



Functionalities of Gavrog/3dt

> It can

» Test for euclidicity of Delaney symbols, that is recognize when
C is Euclidean space.

» Find the minimal Delaney symbol, i.e. the representation with
smallest fundamental domain and maximal group of symmetry.

» Compute the space group of the crystallographic structure.

» Test for isomorphism amongst minimal Delaney symbols.

» Create pictures, i.e. metric informations from Delaney symbols.

» All this depends on difficult questions of 3-dimensional
topology, some unsolved. This means that in theory the
program does not always works, but in practice it does.

m Q. Delgado Friedrichs, 3dt - Systre,
http://gavrog.sourceforge.net
w Q. Delgado Friedrichs, Euclidicity criteria, PhD thesis.


http://gavrog.sourceforge.net

Ill. The combinatorial
enumeration problem



Proposed enumeration method

> All periodic tilings can be described combinatorially by
Delaney symbol.

» But is it good for enumeration? No, because the number of
flags may be too large.
» So, we choose not to use it for the generation of the tilings.

> We are enumerating closed orientable 3-dimensional manifolds
with N maximal cells, i.e. with an additional requirement:

» Every maximal cell C is adjacent only to maximal cells C’ with
' £ C.
The crystallographic structure is obtained as universal cover.
> A partial tiling is an agglomeration of tiles, possibly with some
holes.

» The method is thus to add tiles in all possibilities and to
consider adding tiles in all possible ways.



Tree search

» When we are computing all possibilities, we are adding
possible tiles one by one. All options are considered
sequentially.

» This means that we need to store in memory only the previous
choices, i.e. if a structure is made of N maximal cells
Ci, ..., Cp, then we simply have to store:

{G}
{G, G}
{G, G, G}

{G, G, ..., Cn}

This is memory efficient.

» There are two basic movement in the tree: go deeper or go to
the next choice (at the same or lower depth).



V. The obtained

structures



Enumeration results

» We enumerate periodic structures having a fundamental
domain containing at most N maximal cells.

» Note that the cells are not all congruent, Dodecahedron is not
necessarily regular and the faces of “polytopes” can be curved.

» For every structure, we have a fractional formula
(x20, X24, X26, X28).-

» For N = 20, we get 84 structures in 1 month of computations
on about 200 processors. Going from N to N + 1,
computation time multiply by around 2.3.

(1,3,0,0) | 1| (2,0,0,1) | 5 | (3,2,2,0) | 4
(3,3,0,1) | 3 || (3,3,20) | 1| (3,420 |3
(4,5,2,0) | 1 || (5,2,2,1) | 20 | (5,3,0,2) | 3
(5,8,2,0) | 2 || (6,5,2,1) | 6 || (6,11,2,0) | 1
(7,2,2,2) | 5| (7,4,22) | 1 || (7,7,4,0) | 1
(7,8,2,1) | 1 || (8,4,4,1) | 2 || (8,5,2,2) | 2
(9,2,2,3) | 1| (10,3,6,1) | 3 || (10,5,2,3) | 6
(11,1,4,3) | 1 || (11,2,2,4) | 11




The A;s structure (1,3,0,0)

Uniquely determined by fractional composition.



The Z structure (3,2,2,0)




One Laves structure (2,0,0,1)

y .

The 28 maximal cells forms a diamond structure named Cis5. The
most basic Laves structure.



Other structure (3,2,2,0)




Other structure (3,2,2,0)




Other structure (3,2,2,0)







One structure (3,3,0,1)




One structure (3,3,0,1)




One structure (7,2,2,2)

It is a mix of Ci5 and Azs in layers.



One structure (7,2,2,2)

It is a mix of Z and Ci5 in layers.



One structure (5,2,2,1)




One structure (4,5,2,0)

It is a mix of Z and Ajs in layers.



V. Special

constructions



Tiling by buckminsterfullerene

» Does there exist space-fullerenes with maximal cells being
soccer balls (i.e. buckminsterfullerenes)?

» Given a type T of flag and a closed cell complex C it is
possible to build a cell complex C(T), named Wythoff
construction, Shadow geometry, Grassmann geometry,
Kaleidoscope construction, etc.

» Examples:

» If T = {0}, then C(T) = C (identity)
» If T ={d}, then C(T) = C* (i.e. the dualof C)
» If T={0,...,d}, then C(T) is the order complex.

» The answer is that such space fullerenes are obtained by
applying T = {0,1} to the Coxeter geometry of diagram
(5,3,5), which is hyperbolic. So, no such object exist as a
polytope or as a space-fullerene

» A. Pasini, Four-dimensional football, fullerenes and diagram
geometry, Discrete Math 238 (2001) 115-130.



A special tiling by fullerenes
Deza and Shtogrin: There exist tilings by fullerenes different from

F20, F2a, Fa6 and Fog(T4). By Fao, F2a and its elongation
F36(Dep) in ratio 7 : 2 : 1;

» Delgado Friedrichs, O'Keeffe: All tiling by fullerenes with at
most 7 kinds of flags: Ais, Cis, Z, o and this one.



Yarmolyuk Kripyakevich conjecture

» They conjectured that for a space fullerene to exist, we should
have

X 7
—X0 + % + 5726 +2x08 =0

» But some counterexamples were found:

» Some other conjecture are broken.



The Sadoc-Mosseri inflation |

» Call snubPrismsg the Dodecahedron and snubPrismg the
fullerene Foy4.

» Given a space fullerene T by cells P, we define the inflation
IFM(T) to be the simple tiling such that

» Every cell P contains a shrunken copy P’ of P in its interior.

» On every vertices of P a Fpg has been put.

» On every face of P’ with m edges, a snub Prism,, is put which
is contained in P.

» Thus for individual cells Fyg, Fo4, Fog, Fog the operations goes

as follows:
Fao — Foo+12Fx+ 2Fy
Faa — Foa+ {12F20 + 2Fu} + 3 Fog
Fas — Fag+{12F20 +3F2} + 2 Fos
Fas — Fog+{12Fa + 4F} + 2Fy



The Sadoc-Mosseri inflation |l

» The inflation on the A;g structure: the shrunken cells of Ajs
and the generated F,g

N
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@
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The Frank Kasper Sullivan construction |

» The construction is first described in Frank & Kasper, 1959
but a better reference is:

» J.M. Sullivan, New tetrahedrally closed-packed structures.

» We take a tiling of the plane by regular triangle and regular
squares and define from it a space fullerene with xog = 0.
» Every edge of the graph is assigned a color (red or blue) such
that
» Triangles are monochromatic
» colors alternate around a square.

» Local structure is

By o




The Frank Kasper Sullivan construction Il

» The construction explains a number of structures:

15
sigma

F-phase K-phase

J-phase H-phase

> Actually a structure with xpg = 0 is physically realized if and
only if it is obtained by this construction.

» Another name is Hexagonal t.c.p. since there are infinite
columns of Fy4 on each vertex of the tesselation by triangle
and squares.



Pentagonal t.c.p. |. general

> Those structures are described in
» Shoemaker C.B. and Shoemaker D., Concerning systems for

the generation and coding of layered, tetrahedrally
closed-packed structures of intermetallic compounds, Acta
Crystallographica (1972) B28 2957-2965.

They generalize Laves phases, generalized Laves phases (by

Frank and Kasper) and various constructions by Pearson

Shoemaker and Kripyakevich.

» The input of the construction is a plane tiling by, not
necessarily regular, quadrangles and triangles with vertex
configuration (3°), (32,42), (4%), (3%), (3%,4) and (35,4)
being allowed. Some of the edges are doubled and the
non-doubled edges are colored in red and blue so that:

» Every square contains exactly two doubled edges on opposite
sides.

» Every triangle contains exactly one double edge.

» For every face the non-doubled edges are of the same color.

» If two faces share a black edge then their color (red or blue) is
the same if and only if their size are different.



Pentagonal t.c.p. Il. general

» The result is a FK space fullerene with xo4 = x6.

» The structure is organized in layers with alternating structures.

» We have:

» chains of Dodecahedron on each vertex (hence the name
Pentagonal t.c.p.).

» Dodecahedron on doubled edges

» 24-cells and 26-cells inside squres.

» 28-cells near the triangles.



Pentagonal t.c.p. Ill. Laves phases

e %

Ci4-phase

9-layers phase

10-layers phase 8-layers phase 6-layers phase Cs6-phase



Pentagonal t.c.p. IV. generalized Laves phases

N27 structure

Z-phase

N16-structure N4-structure N3-structure

NO-structure

p-phase —*_phase 9-layers phase



Pentagonal t.c.p. V. sporadic structures

El-structure
po-phase C-phase

N5-structure N17-structure

N12-structure
—-phase (Mg4Zny) X-phase



