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I. Space fullerenes



Fullerenes

I A fullerene is a 3-valent plane graph, whose faces are 5 or
6-gonal.

I They exist for any even n ≥ 20, n 6= 22.

I There exist extremely efficient programs to enumerate them
(FullGen by G. Brinkman, CPF by T. Harmuth)

I Fullerenes with isolated pentagons have n ≥ 60. The smallest
one:

Truncated icosahedron,
soccer ball,

Buckminsterfullerene



Frank Kasper structures

I There are exactly 4 fullerenes with isolated hexagons:

20, Ih 24 D6d 26, D3h 28, Td

I A Space-fullerene structure is a 4-valent 3-periodic tiling of
R3 by those 4 fullerenes.

I They were introduced by Frank & Kasper in two papers in
1958, 1959 in order to explain a variety of crystallographic
structures in a unified way.

I The basic problems are:
I Find the possible structures, they are very rare.
I Find some general constructions.
I Find structural properties.



Known Physical phases I
I group is the space group according to the crystallographic

tables
I fund. dom. is the number of cells in a fundamental domain.
I fraction (x20, x24, x26, x28) is the relative number of 20-, 24-,

26- and 28-cells in

phase rep. alloy group fund. dom. fraction
C14 MgZn2 P63/mmc 12 (2, 0, 0, 1)
C15 MgCu2 Fd3m 24 (2, 0, 0, 1)
C36 MgNi2 P63/mmc 24 (2, 0, 0, 1)

6-layers MgCuNi P63/mmc 36 (2, 0, 0, 1)
8-layers MgZn2 + 0.03MgAg2 P63/mmc 48 (2, 0, 0, 1)
9-layers MgZn2 + 0.07MgAg2 R3m 54 (2, 0, 0, 1)

10-layers MgZn2 + 0.1MgAg2 P63/mmc 60 (2, 0, 0, 1)
− Mg4Zn7 C2/m 110 (35, 2, 2, 16)
X Mn45Co40Si15 Pnnm 74 (23, 2, 2, 10)
T Mg32(Zn,Al)49 Im3 162 (49, 6, 6, 20)
C V2(Co,Si)3 C2/m 50 (15, 2, 2, 6)
−? K7Cs6 P63/mmc 26 (7, 2, 2, 2)
pσ Th6Cd7 Pbam 26 (7, 2, 2, 2)
µ Mo6Co7 R3m 39 (7, 2, 2, 2)



Known Physical phases II

phase rep. alloy group fund. dom. fraction
M Nb48Ni39Al13 Pnma 52 (7, 2, 2, 2)
R Mo31Co51Cr18 R3 159 (27, 12, 6, 8)
K? Mn77Fe4Si19 C2 110 (25, 19, 4, 7)
Z Zr4Al3 P6/mmm 7 (3, 2, 2, 0)
P Mo42Cr18Ni40 Pnma 56 (6, 5, 2, 1)
δ MoNi P212121 56 (6, 5, 2, 1)
ν Mn81.5Si18.5 Immm 186 (37, 40, 10, 6)
J complex Pmmm 22 (4, 5, 2, 0)
F complex P6/mmm 52 (9, 13, 4, 0)
K complex Pmmm 82 (14, 21, 6, 0)
H complex Cmmm 30 (5, 8, 2, 0)
σ Cr46Fe54 P42/mnm 30 (5, 8, 2, 0)
A15 Cr3Si Pm3n 8 (1, 3, 0, 0)



The Laves phases

I Laves phases are structures defined by stacking different layers
of F28 together with two choices at every step. Thus a symbol
(xi )−∞≤i≤∞ with xi = ±1 describes them.

I All structures with x26 = x24 = 0 are Laves phases and a great
many compounds are of this type.

I Frank & Kasper, 1959 generalize the construction to sequence
with xi = 0,±1.

P63/mmc , 12 Fd3m, 24 P63/mmc , 24

P63/mmc , 36 P63/mmc , 48 R3m, 54



Some other structures

I Also in some mixed clathrate “ice-like” hydrates:

t.c.p. alloys exp. clathrate # 20 # 24 # 26 # 28

A15 Cr3Si I:4Cl2.7H2O 1 3 0 0
C15 MgCu2 II:CHCl3.17H2O 2 0 0 1
Z Zr4Al3 III:Br2.86H2O 3 2 2 0

vertices are H2O, hydrogen bonds, cells are sites of solutes
(Cl , Br , . . . ).

I At the olympic games:



Kelvin problem I

I The general Kelvin problem is to partition the Euclidean space
En by some cells of equal volume and to minimize the surface
between cells.

I In dimension 2 the solution is known to be the hexagonal
structure:

I T. Hales, The honeycomb conjecture. Discrete Comput.
Geom. 25 (2001) 1–22.

I The solution in dimension 3 is not known but Kelvin proposed
a structure, which was the example to beat.

I F. Almgren proposed to try to beat it by doing variational
optimization over periodic structures



Kelvin problem II

Kelvin’s partition Weaire, Phelan’s partition

I Weaire-Phelan partition (A15) is 0.3% better than Kelvin’s,
best is unknown



II. Combinatorial
encoding and

topological recognition
problem



Flags and flag operators
I A cell complex C is a family of cells with inclusion relations

such that the intersection of any two cells is either empty or a
single cell.
We also assume it to be pure of dimension d , i.e. all inclusion
maximal cell have dimension d .

I It is closed (or has no boundary) if any d − 1 dimensional cell
is contained in two d-dimensional cells.

I A flag is an increasing sequence Fn0 ⊂ Fn1 ⊂ · · · ⊂ Fnr of cells
of dimension n0, . . . , nr . (n0, . . . , nr ) is the type of the flag.

I A flag is complete if its type is (0, . . . , d).
I Denote by F(C) the set of complete flags of C.
I If f = (F0, . . . ,Fd) is a complete flag and 0 ≤ i ≤ d then the

flag σi (f ) is the one differing from f only in the dimension i .
I A cell complex C is completely described by the action of σi

on F(C).
I The problem is that F(C) may well be infinite or very large to

be workable with.



Delaney symbol

I Suppose C is a cell complex, with a group G acting on it. The
Delaney symbol of C with respect to G is a combinatorial
object containing:

I The orbits Ok of complete flags under G
I The action of σi on those orbits for 0 ≤ i ≤ d .
I For every orbit Ok , take f ∈ Ok , the smallest m such that

(σiσj)
m(f ) = f is independent of f and denoted mi,j(k).

C quotiented by G is an orbifold.

I If G = Aut(C) we speak simply of Delaney symbol of C
I Theorem: If C is a simply connected manifold, then it is

entirely described by its Delaney symbol.
I A.W.M. Dress, Presentations of discrete groups, acting on

simply connected manifolds, in terms of parametrized systems
of Coxeter matrices—a systematic approach, Advances in
Mathematics 63-2 (1987) 196–212.

I This is actually a reminiscence of Poincaré polyhedran
theorem.



The inverse recognition problem

I Suppose we have a Delaney symbol D, i.e. the data of
permutations (σi )0≤i≤d and the matrices mij(k).

We want to know what is the universal cover man-
ifold C (and if it is Euclidean space).

I Some cases:
I If we have only 1 orbit of flag then the Delaney symbol is

simply a Coxeter Dynkin diagram and the decision problem is
related to the eigenvalues of the Coxeter matrix.

I If d = 2 then we can associate a curvature c(D) to the
Delaney symbol and the sign determines whether C is a sphere,
euclidean plane or hyperbolic plane.

I If d = 3 then the problem is related to hard questions in
3-dimensional topology. But the software Gavrog/3dt by O.
Delgado Friedrichs can actually decide those questions.



Functionalities of Gavrog/3dt

I It can
I Test for euclidicity of Delaney symbols, that is recognize when
C is Euclidean space.

I Find the minimal Delaney symbol, i.e. the representation with
smallest fundamental domain and maximal group of symmetry.

I Compute the space group of the crystallographic structure.
I Test for isomorphism amongst minimal Delaney symbols.
I Create pictures, i.e. metric informations from Delaney symbols.

I All this depends on difficult questions of 3-dimensional
topology, some unsolved. This means that in theory the
program does not always works, but in practice it does.

à O. Delgado Friedrichs, 3dt - Systre,

http://gavrog.sourceforge.net

à O. Delgado Friedrichs, Euclidicity criteria, PhD thesis.

http://gavrog.sourceforge.net


III. The combinatorial
enumeration problem



Proposed enumeration method

I All periodic tilings can be described combinatorially by
Delaney symbol.

I But is it good for enumeration? No, because the number of
flags may be too large.

I So, we choose not to use it for the generation of the tilings.

I We are enumerating closed orientable 3-dimensional manifolds
with N maximal cells, i.e. with an additional requirement:

I Every maximal cell C is adjacent only to maximal cells C ′ with
C ′ 6= C .

The crystallographic structure is obtained as universal cover.

I A partial tiling is an agglomeration of tiles, possibly with some
holes.

I The method is thus to add tiles in all possibilities and to
consider adding tiles in all possible ways.



Tree search

I When we are computing all possibilities, we are adding
possible tiles one by one. All options are considered
sequentially.

I This means that we need to store in memory only the previous
choices, i.e. if a structure is made of N maximal cells
C1, . . . ,CN , then we simply have to store:

{C1}
{C1,C2}
{C1,C2,C3}

...
{C1,C2, . . . ,CN}

This is memory efficient.

I There are two basic movement in the tree: go deeper or go to
the next choice (at the same or lower depth).



IV. The obtained
structures



Enumeration results

I We enumerate periodic structures having a fundamental
domain containing at most N maximal cells.

I Note that the cells are not all congruent, Dodecahedron is not
necessarily regular and the faces of “polytopes” can be curved.

I For every structure, we have a fractional formula
(x20, x24, x26, x28).

I For N = 20, we get 84 structures in 1 month of computations
on about 200 processors. Going from N to N + 1,
computation time multiply by around 2.3.

(1, 3, 0, 0) 1 (2, 0, 0, 1) 5 (3, 2, 2, 0) 4
(3, 3, 0, 1) 3 (3, 3, 2, 0) 1 (3, 4, 2, 0) 3
(4, 5, 2, 0) 1 (5, 2, 2, 1) 20 (5, 3, 0, 2) 3
(5, 8, 2, 0) 2 (6, 5, 2, 1) 6 (6, 11, 2, 0) 1
(7, 2, 2, 2) 5 (7, 4, 2, 2) 1 (7, 7, 4, 0) 1
(7, 8, 2, 1) 1 (8, 4, 4, 1) 2 (8, 5, 2, 2) 2
(9, 2, 2, 3) 1 (10, 3, 6, 1) 3 (10, 5, 2, 3) 6
(11, 1, 4, 3) 1 (11, 2, 2, 4) 11



The A15 structure (1, 3, 0, 0)

Uniquely determined by fractional composition.



The Z structure (3, 2, 2, 0)



One Laves structure (2, 0, 0, 1)

The 28 maximal cells forms a diamond structure named C15. The
most basic Laves structure.



Other structure (3, 2, 2, 0)



Other structure (3, 2, 2, 0)



Other structure (3, 2, 2, 0)



One structure (3, 3, 0, 1)



One structure (3, 3, 0, 1)



One structure (3, 3, 0, 1)



One structure (7, 2, 2, 2)

It is a mix of C15 and A15 in layers.



One structure (7, 2, 2, 2)

It is a mix of Z and C15 in layers.



One structure (5, 2, 2, 1)



One structure (4, 5, 2, 0)

It is a mix of Z and A15 in layers.



V. Special
constructions



Tiling by buckminsterfullerene

I Does there exist space-fullerenes with maximal cells being
soccer balls (i.e. buckminsterfullerenes)?

I Given a type T of flag and a closed cell complex C it is
possible to build a cell complex C(T ), named Wythoff
construction, Shadow geometry, Grassmann geometry,
Kaleidoscope construction, etc.

I Examples:
I If T = {0}, then C(T ) = C (identity)
I If T = {d}, then C(T ) = C∗ (i.e. the dualof C)
I If T = {0, . . . , d}, then C(T ) is the order complex.

I The answer is that such space fullerenes are obtained by
applying T = {0, 1} to the Coxeter geometry of diagram
(5, 3, 5), which is hyperbolic. So, no such object exist as a
polytope or as a space-fullerene

I A. Pasini, Four-dimensional football, fullerenes and diagram
geometry, Discrete Math 238 (2001) 115–130.



A special tiling by fullerenes
Deza and Shtogrin: There exist tilings by fullerenes different from
F20, F24, F26 and F28(Td). By F20, F24 and its elongation
F36(D6h) in ratio 7 : 2 : 1;

I Delgado Friedrichs, O’Keeffe: All tiling by fullerenes with at
most 7 kinds of flags: A15, C15, Z , σ and this one.



Yarmolyuk Kripyakevich conjecture

I They conjectured that for a space fullerene to exist, we should
have

−x20 +
x24
3

+
7

6
x26 + 2x28 = 0

I But some counterexamples were found:

I Some other conjecture are broken.



The Sadoc-Mosseri inflation I

I Call snubPrism5 the Dodecahedron and snubPrism6 the
fullerene F24.

I Given a space fullerene T by cells P, we define the inflation
IFM(T ) to be the simple tiling such that

I Every cell P contains a shrunken copy P ′ of P in its interior.
I On every vertices of P a F28 has been put.
I On every face of P ′ with m edges, a snub Prismm is put which

is contained in P.

I Thus for individual cells F20, F24, F26, F28 the operations goes
as follows:

F20 → F20 + 12F20 + 20
4 F28

F24 → F24 + {12F20 + 2F24}+ 24
4 F28

F26 → F26 + {12F20 + 3F24}+ 26
4 F28

F28 → F28 + {12F20 + 4F24}+ 28
4 F28



The Sadoc-Mosseri inflation II

I The inflation on the A15 structure: the shrunken cells of A15

and the generated F28



The Frank Kasper Sullivan construction I

I The construction is first described in Frank & Kasper, 1959
but a better reference is:

I J.M. Sullivan, New tetrahedrally closed-packed structures.

I We take a tiling of the plane by regular triangle and regular
squares and define from it a space fullerene with x28 = 0.

I Every edge of the graph is assigned a color (red or blue) such
that

I Triangles are monochromatic
I colors alternate around a square.

I Local structure is

F
26

F
24

F
24

F
20



The Frank Kasper Sullivan construction II

I The construction explains a number of structures:

F−phase

sigma

H−phase

Z

A15

J−phase

K−phase

I Actually a structure with x28 = 0 is physically realized if and
only if it is obtained by this construction.

I Another name is Hexagonal t.c.p. since there are infinite
columns of F24 on each vertex of the tesselation by triangle
and squares.



Pentagonal t.c.p. I. general
I Those structures are described in

I Shoemaker C.B. and Shoemaker D., Concerning systems for
the generation and coding of layered, tetrahedrally
closed-packed structures of intermetallic compounds, Acta
Crystallographica (1972) B28 2957–2965.

They generalize Laves phases, generalized Laves phases (by
Frank and Kasper) and various constructions by Pearson
Shoemaker and Kripyakevich.

I The input of the construction is a plane tiling by, not
necessarily regular, quadrangles and triangles with vertex
configuration (36), (33, 42), (44), (35), (34, 4) and (35, 4)
being allowed. Some of the edges are doubled and the
non-doubled edges are colored in red and blue so that:

I Every square contains exactly two doubled edges on opposite
sides.

I Every triangle contains exactly one double edge.
I For every face the non-doubled edges are of the same color.
I If two faces share a black edge then their color (red or blue) is

the same if and only if their size are different.



Pentagonal t.c.p. II. general

I The result is a FK space fullerene with x24 = x26.

I The structure is organized in layers with alternating structures.

I We have:
I chains of Dodecahedron on each vertex (hence the name

Pentagonal t.c.p.).
I Dodecahedron on doubled edges
I 24-cells and 26-cells inside squres.
I 28-cells near the triangles.



Pentagonal t.c.p. III. Laves phases

8-layers phase10-layers phase
C36-phase6-layers phase

C15-phase

C14-phase

9-layers phase



Pentagonal t.c.p. IV. generalized Laves phases

N4-structure N3-structure

N27 structure

9-layers phase

N16-structure

−?-phaseµ-phase

N9-structure

Z-phase



Pentagonal t.c.p. V. sporadic structures

N17-structure

X -phase−-phase (Mg4Zn7)

N5-structure

C-phasepσ-phase

E1-structure

N12-structure


