Satisfiability: Theory and applications

Mathieu Dutour Sikirić Rudjer Bošković Institute, Croatia

September 29, 2022

I. Introduction

Boolean variables

- \triangleright A Boolean variable is a variable that has two possible values, True or False.
- \triangleright We have a number N of Boolean variables x_1, \ldots, x_N .
- \blacktriangleright The negation of a Boolean variable x is \bar{x} .
- \triangleright A clause c is a Boolean variable which is satisfied if

 $c = y_1 \wedge \cdots \wedge y_t$ with $y_t = x_j$ or $\overline{x_j}$ for some j

The clause is satisfied if at least one or more of the y_i is satisfied.

A satisfiability S is a collection of clauses c_1, \ldots, c_M such that

$$
S = c_1 \vee \cdots \vee c_M
$$

A satisfiability is satisfied if all c_i are True for some choice of the x_i . Otherwise it is $UNSAT$.

Satisfiability problem

- \triangleright **SAT**: The fundamental satisfiability problem is given a satisfiability problem written N variables and M clauses, to find some assignment of the x_i which makes the satisfiability true.
- ▶ If no such assignment of Boolean variables exist, then the system is called unsatisfiable.
- ▶ Variant MAXSAT: allow some clauses to be true or false, but maximize the number of clauses being true.
- \triangleright Variant **ENUMSAT**: enumerate all possible assignments of x_i that makes the system true.
- ▶ Variant Exactly-1 SAT: Allow only one the variable to be true per clause.
- ▶ Many other variants, see [https://en.wikipedia.org/](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem) [wiki/Boolean_satisfiability_problem](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem)

II. Complexity Theory

Satisfiability and complexity theory

- ▶ A NP ("Non-deterministic polynomial") problem means that it is possible to test that a proposed solution is indeed a solution in polynomial time.
- \triangleright A P problem means that it possible to find a solution in polynomial time.
- ▶ Karp gave 21 combinatorial problems that are polynomially equivalent to SAT (which is NP and likely not P)
- \triangleright Such problem are called NP-complete. There are now thousands of NP-complete problems.
- Example, solving linear systems $xA = b$:
	- A solution to the problem is a vector x_0 satisfying $x_0A = b$ or a vector w_0 such that $Aw_0 = 0$ and $bw_0 \neq 0$.
	- \blacktriangleright The problem is in NP. If we have a solution, that is x_0 or w_0 it takes $O(N^2)$ polynomial time to check that it is indeed a solution.
	- \blacktriangleright The problem is in P. We have the Gauss method that allows to find solution in $O(N^3)$ time.
	- \blacktriangleright Explosion of the size of the coefficient is one aspect that can make things more complicated.

The $P = NP$ problem

- \blacktriangleright The question $P = NP$ asks whether any NP problem is actually also P.
- \triangleright One example for it: The linear programming problem is a NP problem that is also P.
- \blacktriangleright The millennium problem asks whether $P = NP$ (1 million dollar).
- If $P = NP$ then most cryptographic devices are broken, to check if a mathematical proof is correct is the same as writing it, or to be more poetic to appreciate great music is the same as writing it.
- \blacktriangleright In all likelihood, P is not equal to NP.
- \blacktriangleright In practical terms, it means that solving satisfiability problem is not easy.

Examples of NP-complete problems

- ▶ Graphs: Clique problem, Graph Coloring, Exact cover, Set packing, Subgraph isomorphism problem.
- \blacktriangleright Satisfiability with at most 3 clauses,
- ▶ Max Cut problem
- ▶ Subset sum problem
- ▶ Steiner tree problem
- ▶ Optimal solution for the $N \times N \times N$ -Rubik cube.
- ▶ Video Games: Super Mario, Pokemon, Tetris, Candy Crush.
- ▶ See [https://en.wikipedia.org/wiki/List_of_](https://en.wikipedia.org/wiki/List_of_NP-complete_problems) [NP-complete_problems](https://en.wikipedia.org/wiki/List_of_NP-complete_problems).

If for any one of those problem a polynomial time algorithm is found, then it is found for all NP-complete problems.

How hard is SAT actually?

- \blacktriangleright If we have a satisfiability problem with N variables and M clauses actually there is better than a 2^N enumeration procedure, there are some algorithm with around 1.2^N steps needed.
- ▶ Still exponential in worst case most likely.
- ▶ But what about practical cases?
- ▶ The answer is that there are many different software for solving SAT problems: **minisat, glucose**, etc.
- \blacktriangleright There is a conference every year <http://www.satisfiability.org/> on the subject with tests and benchmarks and many categories:
	- ▶ Parallel track
	- ▶ Cloud track
	- ▶ Crypto track
	- ▶ Incremental Library track

III. Application to Combinatorial problems

Satisfiability for testing coloring

Given a graph on *n* vertices, can it be colored with *c* colors?

- \blacktriangleright We defined a number of Boolean $B_{v,i}$ with v a vertex and $1 \leq i \leq c$ a color.
- \triangleright We have following constraints:
	- 1. For vertex v adjacent to w we want for any i to have $B_{v,i} \wedge B_{w,i}$
	- 2. For any vertex v and colors $i < j$ we should have $B_{\nu,i} \wedge B_{\nu,j}$
	- 3. For any vertex v we want $B_{v,1} \wedge B_{v,2} \wedge \cdots \wedge B_{v,c}$

N queens problems

A classical problem we want to arrange N-queens so that none can attack another one. Example for $n = 8$:

- \blacktriangleright Define a variable $B_{i,j}$ for each entry of the square \blacktriangleright The constraints are: 1. For each row i, at least one queen so $B_{i,1} \wedge B_{i,2} \wedge \cdots \wedge B_{i,N}$
	- 2. If (i_1, j_1) and (i_2, j_2) could attack each other then $\overline{B_{i_1,j_1}} \wedge \overline{B_{i_2,j_2}}$

Hamiltonian paths

For a graph on N vertices we want to find a path v_1, \ldots, v_N passing by all vertices

- \blacktriangleright We write $B_{i,j}$ for the position j in the *i*-th vertex of the path. \triangleright We have following constraints:
	- 1. Only one position selected: $B_{i,1} \wedge B_{i,2} \wedge \cdots \wedge B_{i,N}$ and $B_{i,j} \wedge B_{i,k}$.
	- 2. If i and j are not adjacent then we set $B_{k,i}\wedge B_{k+1,j}.$

Summary and experience

Generalities

- 1. We can use the work proving NP-completeness in order to relate a problem to the SAT.
- 2. There is a translation cost in term of encoding a problem into SAT. There can be several translations and some better than others.
- 3. What compensate is that the SAT solver are extremely well programmed with advanced optimization.

The graph coloring problem

- 1. There are some lower bound on the chromatic number computable in polynomial time from eigenvalues of the adjacency matrix.
- 2. For a graph with 16384 vertices, I could find a coloring with minisat in 2 minutes.
- 3. On the other hand computing the Hoffman lower bound was not possible in 2 hours.

IV. Computer Games

Sudoku game

For squares, rows and columns only one value can occur:

- ▶ Boolean variable $B_{i,i,k}$ for $1 \leq i,j,k \leq 9$
- ▶ Constraints.
	- 1. For already assigned entries $x(i, j)$ set a one clause $B_{i,j,x(i,j)}$ and $\overline{B_{i,j,k}}$ if $k \neq x(i, j)$.
	- 2. Always select one entry $B_{i,j,1} \wedge \cdots \wedge B_{i,j,9}$
	- 3. If two entries (i_1, j_1) and (i_2, j_2) are colliding we have $\overline{B_{i_1,j_2,k}} \wedge \overline{B_{i_2,j_2,k}}$ for all k.

Minesweeper I

We have a partial solution

- 1. Variable B_{ii} whether there is a mine or not.
- 2. For each entry (i, j) the question becomes if adding B_{ii} makes the problem feasible (in which case there could be a mine) or unfeasible (in which case there could not be a mine).

Minesweeper II

- 1. We want to constraint that among 8 variables x_1, \ldots, x_8 , exactly k of them are true.
- 2. POPCNT₀: $\overline{x_1}$, ..., $\overline{x_8}$
- $3.$ POPCNT₁:
	- 3.1 $\overline{x_i} \wedge \overline{x_i}$ for $1 \le i \le j \le 8$ and
	- 3.2 $x_1 \wedge \cdots \wedge x_8$
- 4. POPCNT_k:
	- 4.1 $\wedge_{i\in S}\overline{x_i}$ for all sets $S \subset \{1,\ldots,8\}$ of size $k+1$ and 4.2 $\wedge_{i \in S} x_i$ for all sets $S \subset \{1, \ldots, 8\}$ of size $8 - k + 1$.
- 5. Putting together the $POPCNT_k$ we get the constraints for the minesweeper.
- 6. By iterating over the uncovered cells, looking for unsatisfiability, we can find the empty cells.
- 7. The above formulation is expensive, there are better ones.
- 8. See for details, SAT/SMT by Example, Dennis Yurichev.

V. Scaling it up: **Industrial** applications

Hardware verification

- 1. The Pentium division bug was a major problem discovered in 1994 that forced a recall of all processors:
	- \blacktriangleright Thomas Nicely, Enumeration to 10^{14} of the twin primes and Brun's constant, Virginia J. Sci. 46 (1995), no. 3, 195–204.
- 2. Pentium has just 3 million transistors while the i9 had about 7 billion transistors. So, why are they not recalled?
- 3. Part of the answer is that the CPU are tested by using satisfiability. See:
	- ▶ Per Bjesse, Tim Leonard, Abdel Mokkedem, Finding Bugs in an Alpha Microprocessor Using Satisfiability Solvers, International Conference on Computer Aided Verification (2001) 454–464

Nowadays 70-80% of the expense of conceiving new electronic is in the verification.

Algorithms for SAT

- 1. Main techniques:
	- 1.1 Conflict-Driven Clause Learning (CDCL) Solvers
	- 1.2 Variable Selection
	- 1.3 Literal Block Distance and Glue Clauses
	- 1.4 Stochastic Local Search (SLS) Solvers
- 2. It is accepted that all there is no universal technique for resolving SAT problems.
- 3. Machine learning techniques can be used to learn from partial information obtained in the computation.
- 4. Wenxuan Guo, Junchi Yan, Hui-Ling Zhen, Xijun Li, Mingxuan Yuan, Yaohui Jin, Machine Learning Methods in Solving the Boolean Satisfiability Problem

Extensions

The success of SAT as a modeling tool has led to further extensions:

- 1. Integer Programming: Solving linear inequalities $f_i(x) \geq b_i$ for x integer.
- 2. Constraint Programming: MiniZinc challenge <https://www.minizinc.org/challenge.html>
- 3. Answer Set Programming: It uses a format named Lparse.
- 4. Satisfaction Modulo Theories (SMT): The success of SAT is based on the simplest logic, Boolean variables. There are many other theories:
	- 4.1 bitvectors
	- 4.2 linear arithmetic, nonlinear arithmetic.
	- The best solver is Z3 and is used a lot in
		- 4.1 Formal verification of computer programs
		- 4.2 Automatic theorem proving

THANK YOU