
Satisfiability: Theory and applications

Mathieu Dutour Sikirić

Rudjer Bos̆ković Institute, Croatia

September 29, 2022



I. Introduction



Boolean variables

▶ A Boolean variable is a variable that has two possible values,
True or False.

▶ We have a number N of Boolean variables x1, . . . , xN .

▶ The negation of a Boolean variable x is x .

▶ A clause c is a Boolean variable which is satisfied if

c = y1 ∧ · · · ∧ yt with yt = xj or xj for some j

The clause is satisfied if at least one or more of the yi is
satisfied.

▶ A satisfiability S is a collection of clauses c1, . . . , cM such that

S = c1 ∨ · · · ∨ cM

A satisfiability is satisfied if all ci are True for some choice of
the xi . Otherwise it is UNSAT.



Satisfiability problem

▶ SAT: The fundamental satisfiability problem is given a
satisfiability problem written N variables and M clauses, to
find some assignment of the xi which makes the satisfiability
true.

▶ If no such assignment of Boolean variables exist, then the
system is called unsatisfiable.

▶ Variant MAXSAT: allow some clauses to be true or false, but
maximize the number of clauses being true.

▶ Variant ENUMSAT: enumerate all possible assignments of xi
that makes the system true.

▶ Variant Exactly-1 SAT: Allow only one the variable to be
true per clause.

▶ Many other variants, see https://en.wikipedia.org/
wiki/Boolean_satisfiability_problem

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem


II. Complexity Theory



Satisfiability and complexity theory
▶ A NP (“Non-deterministic polynomial”) problem means that

it is possible to test that a proposed solution is indeed a
solution in polynomial time.

▶ A P problem means that it possible to find a solution in
polynomial time.

▶ Karp gave 21 combinatorial problems that are polynomially
equivalent to SAT (which is NP and likely not P)

▶ Such problem are called NP-complete. There are now
thousands of NP-complete problems.

▶ Example, solving linear systems xA = b:
▶ A solution to the problem is a vector x0 satisfying x0A = b or a

vector w0 such that Aw0 = 0 and bw0 ̸= 0.
▶ The problem is in NP. If we have a solution, that is x0 or w0 it

takes O(N2) polynomial time to check that it is indeed a
solution.

▶ The problem is in P. We have the Gauss method that allows
to find solution in O(N3) time.

▶ Explosion of the size of the coefficient is one aspect that can
make things more complicated.



The P = NP problem

▶ The question P = NP asks whether any NP problem is
actually also P.

▶ One example for it: The linear programming problem is a NP
problem that is also P.

▶ The millennium problem asks whether P = NP (1 million
dollar).

▶ If P = NP then most cryptographic devices are broken, to
check if a mathematical proof is correct is the same as writing
it, or to be more poetic to appreciate great music is the same
as writing it.

▶ In all likelihood, P is not equal to NP.

▶ In practical terms, it means that solving satisfiability problem
is not easy.



Examples of NP-complete problems

▶ Graphs: Clique problem, Graph Coloring, Exact cover, Set
packing, Subgraph isomorphism problem.

▶ Satisfiability with at most 3 clauses,

▶ Max Cut problem

▶ Subset sum problem

▶ Steiner tree problem

▶ Optimal solution for the N × N × N-Rubik cube.

▶ Video Games: Super Mario, Pokemon, Tetris, Candy Crush.

▶ See https://en.wikipedia.org/wiki/List_of_
NP-complete_problems.

If for any one of those problem a polynomial time algorithm is
found, then it is found for all NP-complete problems.

https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/List_of_NP-complete_problems


How hard is SAT actually?

▶ If we have a satisfiability problem with N variables and M
clauses actually there is better than a 2N enumeration
procedure, there are some algorithm with around 1.2N steps
needed.

▶ Still exponential in worst case most likely.

▶ But what about practical cases?

▶ The answer is that there are many different software for
solving SAT problems: minisat, glucose, etc.

▶ There is a conference every year
http://www.satisfiability.org/ on the subject with
tests and benchmarks and many categories:
▶ Parallel track
▶ Cloud track
▶ Crypto track
▶ Incremental Library track

http://www.satisfiability.org/


III. Application to
Combinatorial problems



Satisfiability for testing coloring
Given a graph on n vertices, can it be colored with c colors?

▶ We defined a number of Boolean Bv ,i with v a vertex and
1 ≤ i ≤ c a color.

▶ We have following constraints:

1. For vertex v adjacent to w we want for any i to have
Bv ,i ∧ Bw ,i

2. For any vertex v and colors i < j we should have Bv ,i ∧ Bv ,j

3. For any vertex v we want Bv ,1 ∧ Bv ,2 ∧ · · · ∧ Bv ,c



N queens problems

A classical problem we want to arrange N-queens so that none can
attack another one. Example for n = 8:

▶ Define a variable Bi ,j for each entry of the square
▶ The constraints are:

1. For each row i , at least one queen so Bi,1 ∧ Bi,2 ∧ · · · ∧ Bi,N

2. If (i1, j1) and (i2, j2) could attack each other then Bi1,j1 ∧ Bi2,j2



Hamiltonian paths

For a graph on N vertices we want to find a path v1, . . . , vN
passing by all vertices

▶ We write Bi ,j for the position j in the i-th vertex of the path.
▶ We have following constraints:

1. Only one position selected: Bi,1 ∧ Bi,2 ∧ · · · ∧ Bi,N and
Bi,j ∧ Bi,k .

2. If i and j are not adjacent then we set Bk,i ∧ Bk+1,j .



Summary and experience
Generalities

1. We can use the work proving NP-completeness in order to
relate a problem to the SAT.

2. There is a translation cost in term of encoding a problem into
SAT. There can be several translations and some better than
others.

3. What compensate is that the SAT solver are extremely well
programmed with advanced optimization.

The graph coloring problem

1. There are some lower bound on the chromatic number
computable in polynomial time from eigenvalues of the
adjacency matrix.

2. For a graph with 16384 vertices, I could find a coloring with
minisat in 2 minutes.

3. On the other hand computing the Hoffman lower bound was
not possible in 2 hours.



IV. Computer
Games



Sudoku game
For squares, rows and columns only one value can occur:

▶ Boolean variable Bi ,j ,k for 1 ≤ i , j , k ≤ 9
▶ Constraints.

1. For already assigned entries x(i , j) set a one clause Bi,j,x(i,j)

and Bi,j,k if k ̸= x(i , j).
2. Always select one entry Bi,j,1 ∧ · · · ∧ Bi,j,9

3. If two entries (i1, j1) and (i2, j2) are colliding we have
Bi1,j1,k ∧ Bi2,j2,k for all k .



Minesweeper I

We have a partial solution

1. Variable Bij whether there is a mine or not.

2. For each entry (i , j) the question becomes if adding Bij makes
the problem feasible (in which case there could be a mine) or
unfeasible (in which case there could not be a mine).



Minesweeper II

1. We want to constraint that among 8 variables x1, . . . , x8,
exactly k of them are true.

2. POPCNT0: x1, . . . , x8
3. POPCNT1:

3.1 xi ∧ xj for 1 ≤ i < j ≤ 8 and
3.2 x1 ∧ · · · ∧ x8

4. POPCNTk :

4.1 ∧i∈Sxi for all sets S ⊂ {1, . . . , 8} of size k + 1 and
4.2 ∧i∈Sxi for all sets S ⊂ {1, . . . , 8} of size 8− k + 1.

5. Putting together the POPCNTk we get the constraints for the
minesweeper.

6. By iterating over the uncovered cells, looking for
unsatisfiability, we can find the empty cells.

7. The above formulation is expensive, there are better ones.

8. See for details, SAT/SMT by Example, Dennis Yurichev.



V. Scaling it up:
Industrial
applications



Hardware verification

1. The Pentium division bug was a major problem discovered in
1994 that forced a recall of all processors:
▶ Thomas Nicely, Enumeration to 1014 of the twin primes and

Brun’s constant, Virginia J. Sci. 46 (1995), no. 3, 195–204.

2. Pentium has just 3 million transistors while the i9 had about 7
billion transistors. So, why are they not recalled?

3. Part of the answer is that the CPU are tested by using
satisfiability. See:
▶ Per Bjesse, Tim Leonard, Abdel Mokkedem, Finding Bugs in

an Alpha Microprocessor Using Satisfiability Solvers,
International Conference on Computer Aided Verification
(2001) 454–464

Nowadays 70-80% of the expense of conceiving new electronic
is in the verification.



Algorithms for SAT

1. Main techniques:

1.1 Conflict-Driven Clause Learning (CDCL) Solvers
1.2 Variable Selection
1.3 Literal Block Distance and Glue Clauses
1.4 Stochastic Local Search (SLS) Solvers

2. It is accepted that all there is no universal technique for
resolving SAT problems.

3. Machine learning techniques can be used to learn from partial
information obtained in the computation.

4. Wenxuan Guo, Junchi Yan, Hui-Ling Zhen, Xijun Li,
Mingxuan Yuan, Yaohui Jin, Machine Learning Methods in
Solving the Boolean Satisfiability Problem



Extensions
The success of SAT as a modeling tool has led to further
extensions:

1. Integer Programming: Solving linear inequalities fi (x) ≥ bi
for x integer.

2. Constraint Programming: MiniZinc challenge
https://www.minizinc.org/challenge.html

3. Answer Set Programming: It uses a format named Lparse.

4. Satisfaction Modulo Theories (SMT): The success of SAT
is based on the simplest logic, Boolean variables. There are
many other theories:

4.1 bitvectors
4.2 linear arithmetic, nonlinear arithmetic.

The best solver is Z3 and is used a lot in

4.1 Formal verification of computer programs
4.2 Automatic theorem proving

THANK YOU

https://www.minizinc.org/challenge.html

