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History

1. Mathematics: construction of planar graphs

M. Goldberg, A class of multisymmetric polyhedra, Tohoku Math. Journal, 43
(1937) 104-108.

Objective was to maximize the interior volume of the polytope, i.e. to find 3-dimensional analogs
of regular polygons.

[1 search of equidistributed systems of points on the sphere for application to Numerical Analysis
2. Biology: explanation of structure of icosahedral viruses

D.Caspar and A.Klug, Physical Principles in the Construction of Reqular Viruses,
Cold Spring Harbor Symp. Quant. Biol., 27 (1962) 1-24.

(k,1) |symmetry capsid of virion

(1,0) Iy, geEMING, virus

(2,0) Iy, hepathite B

(2,1) | I,laevo | HK97, rabbit papilloma virus
(3,1) | 1, laevo rotavirus

(4,0) Iy, herpes virus, varicella
(5,0) Iy, adenovirus

(6,3)7] I, laevo HIV-1
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4. Mathematics:

H.S.M. Coxeter, Virus macromolecules and geodesic domes, in A spectrum of math-
ematics, ed. by J.C.Butcher, Oxford University Press/Auckland University Press:
Oxford, U.K./Auckland New-Zealand, (1971) 98-107.

5. Chemistry: Buckminsterfullerene Cgq (football, Truncated Icosahedron)

Kroto, Kurl, Smalley (Nobel prize 1996) synthetized in 1985 a new molecule, whose
graph is GC1 1(Dodecahedron). Osawa constructed theoretically Cp in 1984.

Fuler formula

If G is a plane graph, then one has

V_E+F=2

with V=Nr. vertices, £E=Nr. edges and - --
F=Nr. faces.

3-valent case 12 =) (6 — 7)p;
4-valent case 8 =) (4 —i)p; ] Y S N N

hexagon and squares are said to be of zero-
curvature

The Goldberg-Coxeter construction

The Goldberg-Coxeter contruction take a 3- or 4-valent plane graph G, two integers k, [ and build
another 3- or 4-valent plane graph GC}, ;(Gy).

v ¥
m-
A &
2,1
- .
¢
. . 77777 l : ‘
— -

If G( has n vertices, then GCy, (G) has

n(k? + kL + 1) vertices if G is 3-valent n(k? + %) vertices if Gy is 4-valent

® ¢, is the class of 3-valent plane graphs having only ¢- and 6-gonal faces.

e The class of 4-valent plane graphs having only 3- and 4-gonal faces is called Octahedrites.

Class Groups Construction
3n p3=4| T,Ty | GCy (Tetrahedron)
4n P4g = § O, Oh GCk,l(Cube)
4n ps =06 |Dg, Dgp,| GO} y(Prismg)
5n ps =12 I, I |GC} (Dodecahedron)
Octahedrites| p3 =8 | O, Oy | GCY (Octahedron)

The zigzags and central circuits

1. (i) a zigzag (also called petrie polygon, left-right path, geodesic) in a 3-valent plane graph is a
circuit of edges such that any two, but no three, consecutive edges belong to the same face.
(ii) a central circuit (also called traverse, straight-ahead, straight Eulerian, cut-though) in a 4-valent
plane graph is a circuit of edges such that any two consecutive edges are opposite.
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Example of a zigzag in a 3-valent plane Example of a central-circuit in a 4-valent
graph. plane graph.

2. A railroad in a 3- or 4-valent map is a circuit of hexagons or squares, adjacent on two of its neighbors
by opposite edges.

Zigzags, central-circuits and railroad can be self-intersecting.

A self-intersecting railroad in 3-valent A self-intersecting railroad in 4-valent
graph graph.
3. A graph is tight if it has no railroad.

Class  |maximal number of zigzags/central circuits
octahedrite 6
In 3
4 at most 9 and conjecturally 8
dn at most 30 and conjecturally 15

Computing ZC-circuits of GCY, 1(Go)

1. If ged(k,l) = 1, then GC/{,[(GQ) 1s tight.

2. The special case GCY, (: Any ZC-circuit of G corresponds to k ZC-circuits of GC, o(Gp) with
length multiplied by k.

Zigzags of GCY, o(Cube)

Central circuits of GCy, o(Octahedron)

3. ged(k,l) = 1: We associate to Gy two elements L and R, which are permutation of the directed
edges of G. The length of ZC-circuits of GC}, ;(Gy) is obtained from the cycle structure of LOy, | R.
The product L O R

(k,1) = (5,2), Sequence: 1,3,5,7,2,4,6,1 product: L ©59 R = RLLRLLL
L®k,lR: L@k_ql7lRLqifk—quO
L@k’lRZRqL@k,l_qu ifl—qgk >0

4. Cube Case:
e [ and R do not commute U L O R # Id.
e Mov(Cube) = (L, Ry=Alt(4)
o K = ((1,2)(3,4), (1, 3)(2,4)) normal subgroup of index 3 of Alt(4). L is of order 3.

{ L Okl R = Zkﬁl — Zk_l

L O R e K & k—1 divisible by 3

e Elements of Alt(4) — K have order 3. Elements of K — {Id} have order 2.
[ GCY,1(Cube) has 6 zigzags if k =1 (mod 3) and 4 zigzags, otherwise

5. For a given graph (G, one can compute the list of possible lengths of zigzags in finite time.

230, 340 230’ 524 320’ 524
260, 320 260, 512 340’ 512
290 360 536
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