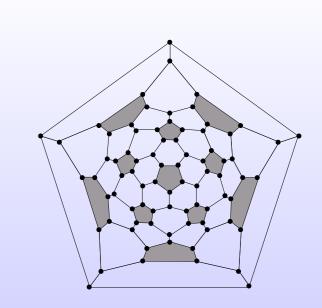


Goldberg-Coxeter construction for 3- or 4-valent plane graphs

Michel Deza, Mathieu Dutour and Misha Shtogrin



History

- 1. **Mathematics**: construction of planar graphs
 - M. Goldberg, A class of multisymmetric polyhedra, Tohoku Math. Journal, 43 (1937) 104-108.

Objective was to maximize the interior volume of the polytope, i.e. to find 3-dimensional analogs of regular polygons.

- search of equidistributed systems of points on the sphere for application to Numerical Analysis
- 2. **Biology**: explanation of structure of icosahedral viruses

D.Caspar and A.Klug, Physical Principles in the Construction of Regular Viruses, Cold Spring Harbor Symp. Quant. Biol., 27 (1962) 1-24.

(k, l)	symmetry	capsid of virion
(1,0)	I_h	$gemini\ virus$
(2,0)	I_h	hepathiteB
(2, 1)	I, laevo	HK97, rabbit papilloma virus
(3, 1)	I, laevo	rotavirus
(4,0)	I_h	$herpes\ virus,\ varicella$
(5,0)	I_h	adenovirus
(6,3)?	I, laevo	HIV-1

3. Architecture: construction of geodesic domes, Patent by Buckminster Fuller

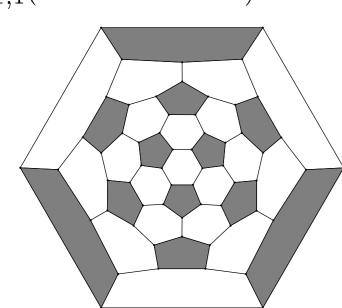
EPCOT in Disneyland.

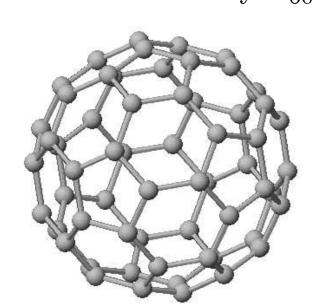
4. Mathematics:

H.S.M. Coxeter, Virus macromolecules and geodesic domes, in A spectrum of mathematics; ed. by J.C.Butcher, Oxford University Press/Auckland University Press: Oxford, U.K./Auckland New-Zealand, (1971) 98–107.

5. **Chemistry**: Buckminsterfullerene C_{60} (football, Truncated Icosahedron)

Kroto, Kurl, Smalley (Nobel prize 1996) synthetized in 1985 a new molecule, whose graph is $GC_{1,1}(Dodecahedron)$. Osawa constructed theoretically C_{60} in 1984.



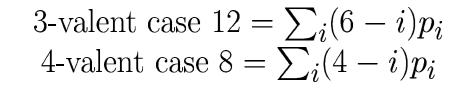


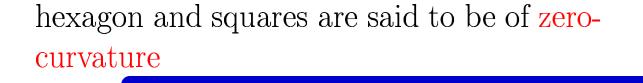
Euler formula

If G is a plane graph, then one has

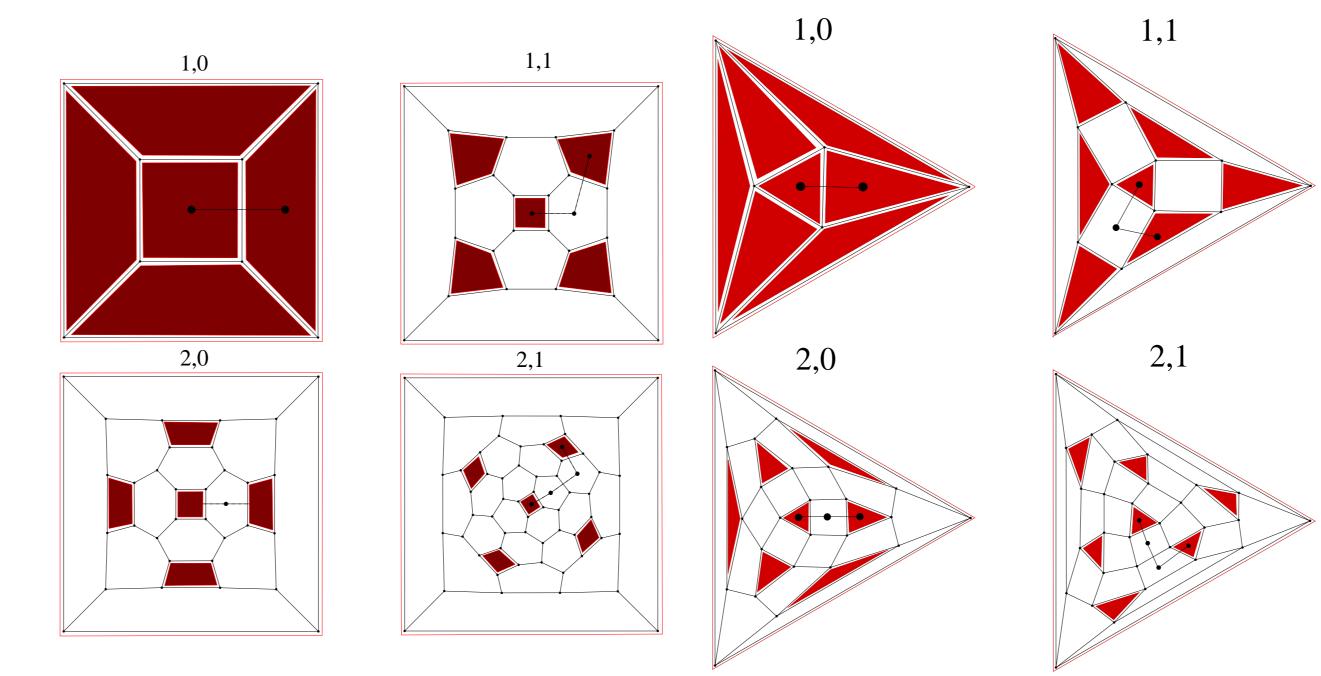
V - E + F = 2

with V=Nr. vertices, E=Nr. edges and F=Nr. faces.





The Goldberg-Coxeter contruction take a 3- or 4-valent plane graph G_0 , two integers k, l and build another 3- or 4-valent plane graph $GC_{k,l}(G_0)$.



If G_0 has n vertices, then $GC_{k,l}(G_0)$ has

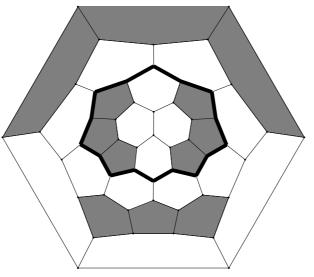
 $n(k^2 + kl + l^2)$ vertices if G_0 is 3-valent $n(k^2 + l^2)$ vertices if G_0 is 4-valent

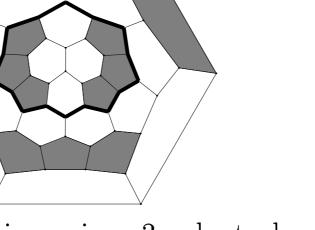
- q_n is the class of 3-valent plane graphs having only q- and 6-gonal faces.
- The class of 4-valent plane graphs having only 3- and 4-gonal faces is called Octahedrites.

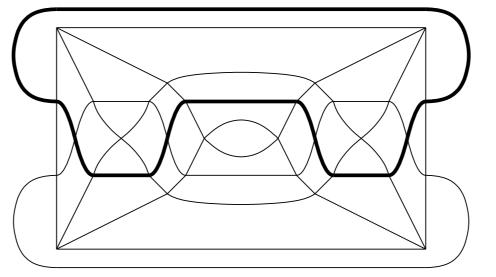
Class		Groups	Construction
3_n	$p_3 = 4$	T, T_d	$GC_{k,l}(\text{Tetrahedron})$
4n	$p_4 = 6$	O, O_h	$GC_{k,l}(ext{Cube})$
4n	$p_4 = 6$	D_6, D_{6h}	$GC_{k,l}(\operatorname{Prism}_6)$
5n	$p_5 = 12$	I, I_h	$GC_{k,l}$ (Dodecahedron)
Octahedrites	$p_3 = 8$	O, O_h	$GC_{k,l}(Octahedron)$

The zigzags and central circuits

1. (i) a zigzag (also called petrie polygon, left-right path, geodesic) in a 3-valent plane graph is a circuit of edges such that any two, but no three, consecutive edges belong to the same face. (ii) a central circuit (also called traverse, straight-ahead, straight Eulerian, cut-though) in a 4-valent plane graph is a circuit of edges such that any two consecutive edges are opposite.





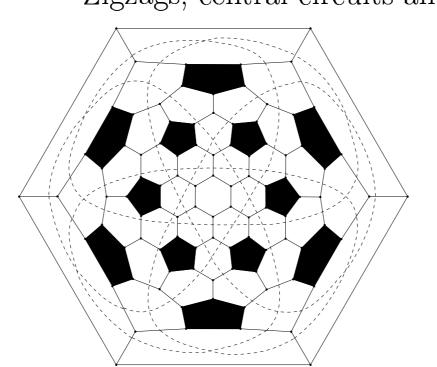


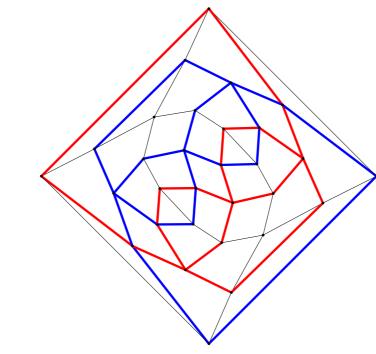
Example of a zigzag in a 3-valent plane

Example of a central-circuit in a 4-valent plane graph.

2. A railroad in a 3- or 4-valent map is a circuit of hexagons or squares, adjacent on two of its neighbors by opposite edges.

Zigzags, central-circuits and railroad can be self-intersecting.





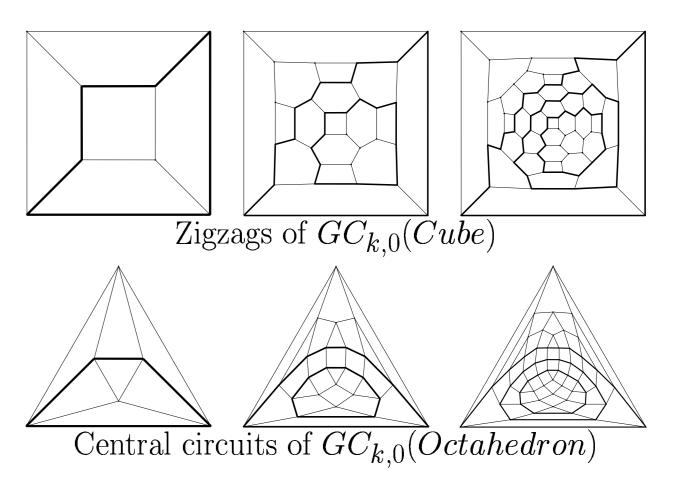
A self-intersecting railroad in 3-valent A self-intersecting railroad in 4-valent graph

3. A graph is tight if it has no railroad.

-		
	Class	maximal number of zigzags/central circuits
	octahedrite	6
	3_n	3
	4n	at most 9 and conjecturally 8
	5n	at most 30 and conjecturally 15

Computing ZC-circuits of $GC_{k,l}(G_0)$

- 1. If gcd(k, l) = 1, then $GC_{k,l}(G_0)$ is tight.
- 2. The special case $GC_{k,0}$: Any ZC-circuit of G_0 corresponds to k ZC-circuits of $GC_{k,0}(G_0)$ with length multiplied by k.



3. gcd(k,l) = 1: We associate to G_0 two elements L and R, which are permutation of the directed edges of G_0 . The length of ZC-circuits of $GC_{k,l}(G_0)$ is obtained from the cycle structure of $L \odot_{k,l} R$. The product $L \odot_{k,l} R$

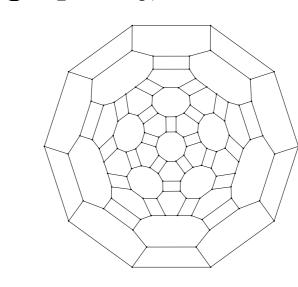
(k,l) = (5,2), Sequence: 1,3,5,7,2,4,6,1 product: $L \odot_{5,2} R = RLLRLLL$

$$\begin{cases} L \odot_{k,l} R = L \odot_{k-ql, l} RL^q & \text{if } k - ql \ge 0 \\ L \odot_{k,l} R = R^q L \odot_{k, l-qk} R & \text{if } l - qk \ge 0 \end{cases}$$

- 4. Cube Case:
- L and R do not commute $\longrightarrow L \odot_{k,l} R \neq Id$.
- $Mov(Cube) = \langle L, R \rangle = Alt(4)$
- $K = \langle (1,2)(3,4), (1,3)(2,4) \rangle$ normal subgroup of index 3 of Alt(4). \overline{L} is of order 3.

$$\begin{cases} \overline{L} \odot_{k,l} R = \overline{L}^k \overline{R}^l = \overline{L}^{k-l} \\ L \odot_{k,l} R \in K \Leftrightarrow k-l \text{ divisible by } 3 \end{cases}$$

- Elements of Alt(4) K have order 3. Elements of $K \{Id\}$ have order 2.
- $GC_{k,l}(\text{Cube})$ has 6 zigzags if $k \equiv l \pmod{3}$ and 4 zigzags, otherwise
- 5. For a given graph G_0 , one can compute the list of possible lengths of zigzags in finite time.



_			
	$2^{30}, 3^{40}$	$2^{30}, 5^{24}$	$3^{20}, 5^{24}$
	$2^{60}, 3^{20}$	$2^{30}, 5^{24}$ $2^{60}, 5^{12}$	$3^{40}, 5^{12}$
	2^{90}	3^{60}	5^{36}
	9^{20}	6^{30}	15^{12}

References

- [DeDu02] M. Deza and M. Dutour, Zigzag structure of Simple Two-faced Polyhedra, http://www. arxiv.org/abs/math.GT/0212352, to appear in Combinatorics, Probability & Computing, Special Issue in memory of W. Deuber (2004).
- [DDF] M.Deza, M. Dutour and P. Fowler, Zigzags, Railroads and Knots in Fullerenes, Journal of Chemical Information and Computer Sciences, in press, http://pubs.acs.org/cgi-bin/asap.cgi/ jcisd8/asap/abs/ci049955h.html
- [DDS] M. Deza, M.Dutour and M. Shtogrin, 4-valent plane graphs with 2-, 3- and 4-gonal faces, "Advances in Algebra and Related Topics" (in memory of B.H.Neumann; Proceedings of ICM Satellite Conference on Algebra and Combinatorics, Hong Kong 2002), World Scientific Publ. Co. (2003) 73-97.
- [DeSt03] M. Deza and M. Shtogrin, Octahedrites, Polyhedra. Symmetry: Culture and Science. The Quarterly of the International Society for the Interdisciplinary Study of Symmetry, **11/1-4** (2000) 27-64.
- [DD04] M. Dutour and M. Deza, Goldberg-Coxeter construction for 3- or 4-valent plane graphs, Electronic Journal of Combinatorics, **11-1** (2004) R20.