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Introduction

- A finite set of points - = Voronoi Polyhedrons

-+ Delaunay polytopes

Name Relevant field of knowledge

Dirichlet domains | lattice theory, 2-dimensional case

Voronoi polytope | n-dimensional lattice, computational geometry
Thiessen polygons | geography

Wigner-Seitz cell solid state physic, crystallography

First Brillouin zone |solid state physic, momentum space

Domain of influence | politics

Low dimension result

A lattice of R™ is a discrete subgroup of R™. Lattice appear in Lie theory as root lattice, Coding
Theory, Crystallography, Number Theory.
There are two kinds of Voronoi polytope (Hexagon and rectangle) and two kinds of Delaunay polytopes
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Voronoi Polytopes Delaunay polytopes
dimension || 1|2 3 4 5 6 7
Nr. Voronoi 1|2 5 52 179377 ? ?
polytopes Fedorov| DeSh Engel
Nr. Delaunay |1 |2 5 19 138 6241 | 7
polytopes Fedorov| Erdahl | Kononenko | Dutour
Ryshkov
Nr. extreme |10 0 0 0 1 > 1
Delaunay DeDu
The hypermetric cone
An abstract metric on n 4 1 point {0, 1,...,n} is an application
d: R +)/2 s R d(¢,7) =0 and

, which satisty to

(4,4) = d(i, ) d(i, j) < d(i, k) + d(k, j)

Given a vector b = (by,b1,...,by) with b; € Z and Y 7' yb; = 1, one defines the hypermetric
inequality for a metric d:

H(b)d= > bbjd(i,) <0
0<i<j<n

The hypermetric cone HY P, 11 is defined as the set of metrics on {0,...,n} that satisfy to all
hypermetric inequalities.
HY P, 1 is a polyhedral cone, which means we can use the notion of dimension. The dimension of

faces of HY P, 1 varies from 1 to n(n2+1>.

Theorem 1 There is a correspondence between Delaunay polytopes and hypermetrics:
given a Delaunay polytope P, we can select an affine basis {vg,...,vn}. The distance
d(¢,7) = ||v; — fuj||2 is an hypermetric.

This allows to define the rank of a Delaunay polytope as the dimension of the face in which it is
contained or in other words as its number of degrees of freedom.
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Extreme Delaunay in high dimension

A Delaunay polytope whose rank is equal to 1 is called extreme. A Delaunay polytope P is extreme
if and only if the only transformations f : R™ — R such that f(P) is a Delaunay polytope are
1sometries and homotheties.

The first non-trivial extreme Delaunay polytope is the Schlafli polytope, which is the unique Delaunay
polytope of the root lattice Eg.

Fg={re FEg:x1+r9=23+ -+ 23 =0}
E8={£U€Z8U(%—|—Z)8 and > . x; € 27}

Schlafli polytope has a symmetry group of size 51840.

Root lattice Ejg is obtained by a section of root lattice Fg (which has an even bigger symmetry group).
S0, an idea would be to consider other highly symmetric lattices, do section of them and then, possibly,
obtain extreme Delaunay polytopes:

Name |dimension|Nr. vertices| section of
Schlafli 6 27 Ey
(Gosset 7 56 Eig
16 512 Barnes Wall
Bis 15 135 Barnes Wall
22 275 Leech
23 552 Leech

This idea works!

The polyhedral method

The condition of being extreme correspond to being an extreme ray (think about one vertex in the
cube) in the hypermetric cone HY P, 1.

Using standard polyhedral technique it is possible, given an extreme ray e of a cone to find the adjacent
extreme rays of this cone (think about the 3 adjacent vertex of a given vertex v of the cube).

The only drawback is that we need to select the right inequality H(b)d of the hypermetric cone
HY P, 1. This is done by using the solution of the Closest Vector Problem:

Problem 1 Given a lattice L in R" and a vector v, find one vectorl € L (or all vectorsl € L),
which has ||v — || minimal.

This is a classic problem of geometry; it is proven to be Non-Polynomial, i.e. one cannot avoid doing
an exhaustive enumeration of all possibilities and the number of vectors to consider grow exponentially
with n.

This problem is key to all polyhedral computation with Voronoi and Delaunay, it is also used in
Cryptography and in Coding Theory.

S50, we take the Delaunay polytope Bis find the corresponding extreme ray and find the adjacent
extreme rays. It happens that 77 of those extreme rays correspond to an extreme Delaunay polytope
E Dg of dimension 8.

The f-vector of this polytope is

fo= 79 number of vertices of £ Dg
fi1 = 1268 number of edges of E'Dg
fo = 7896 number of 2-faces of £ Dg

f3 = 23520

fa = 36456

fr = 29876

f7 = 1131  number of facets of FDg
Je=1 E Dy itselt

Infinite construction

We analyse mathematically £ Dg and manage to build an infinite sequence of extreme Delaunay
polytopes.
This construction uses root lattice Dy,

n
Dy ={x € Z" such that sz is even }
1=1
Proposition 1 If n even, n > 6, there is a n-dimensional extreme Delaunay E Dy, formed with
3 layers of D,,_1 lattice
® ( vertex
® the n — 1 half-cube
® the n — 1 cross-polytope

Case n = 6 corresponds to Schlafli polytope.
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