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|. Basic
definitions



Polytopes, definition

» A polytope P C R” is defined alternatively as:
» The convex hull of a finite number of points vi oo vm

P:{VGR"lv:Z)\;viwith)\;Z()and Z)\i:]_}

» The following set of solutions:
P = {x € R" | f{(x) > b; with f; linear}

with the condition that P is bounded.

» The cube is defined alternatively as
» The convex hull of the 2" vertices

{(x1, .-+, %n) with x; = £1}
> The set of points x € R" satisfying to

x;<land x; > —1



Facets

and vertices

A vertex of a polytope P is a point v € P, which cannot be
expressed as v = Av! + (1 — A)v2 with0 < A < 1and v/ € P.
A polytope is the convex hull of its vertices and this is the
minimal set defining it.

A facet of a polytope is an inequality f(x) — b > 0, which
cannot be expressed as

f(x) — b= AFf(x) — by) + (1 — N)(F?(x) — bo) with

f'(x) — b; > 0on P.

A polytope is defined by its facet inequalities. and this is the
minimal set of linear inequalities defining it.

The dual-description problem is the problem of passing from
one description to another.



Faces

» Given an inequality f(x) > b, which is valid on P, the face
defined by f(x) > b is

x € P such that f(x) = b

and its dimension is the dimension of the smallest affine plane
containing it.

» The dimension of faces of a n dimensional polytope P varies
from 0 to n — 1. A face of dimension 0 is a vertex, a face of
dimension n — 1 is a facet.

» Faces are defined by the set of vertices contained in them.

» The inclusion relation between faces defines a lattice.



Homogeneous coordinates and duality
» Linear functions are expressed in terms of scalar product.
f(x)=aix1+ -+ anxp = (a,x)

» A polyhedral cone is a cone defined by linear inequalities
f(x) > 0. The vertices correspond to extreme ray.
» Formulas are easier for the polyhedral cones, all programs are
designed for polyhedral cones and not for polytopes.
» But we can reduce polytope to polyhedral cones:
» If v € R" is a vertex then we map it to a vector
v =(1,v) € R™1L
» If f(x) = (a,x) > b, we map it to a vector & = (—b, a).
» The inequality f(v) > b is then rewritten as (v/,a’) > 0.
» The two problems:
1. given the vertices of P, find the facets,
2. given the facets of P, find the vertices,
are now expressed exactly identically:

Find extreme rays of the cone (a;,x) > 0with1 </i<m



ll. Linear
programming



Linear programming

> If f(x), fi(x) are affine functions on R”, b; € R, then the
linear programming problem is:

maximize f(x)
subject to fi(x) > b;

» Two main class of methods exist:

» The simplex method: It goes from one vertex of the solution
to another adjacent vertex until an optimal vertex is obained.
Not polynomial in general, very good in practice.

> Interior point methods: It takes an interior point and
converges to a better and better vertex.

With the primal dual method the method returns an interval,
which can be made as small as possible.
Polynomial in theory, relatively bad for us.

Generally we use simplex methods because they use exact

arithmetic and for the kind of computation is usually not the
limiting factor.



Computations related to linear programming

» Take P = conv(vi,...,vp) a polytope.

Testing if an element v belongs to the interior of P is lin.prog.
Testing if an element v belongs to P is lin.prog.

Determining the vertices amongst the v; is lin.prog (M times).
Determining the adjacency v; — v; amongst the v; is lin.prog
(M(M —1)/2 times).

> Take P={x € R" : fi(x) > b;j for 1 <i < N}.

Testing P = 0 is lin.prog.

» Computing the dimension of P is lin.prog.

» Determining facet defining inequalities is lin.prog.

» Finding one vertex is lin.prog.
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» In principle we can obtain all the facets from such linear
combinations but we will see faster methods.

» Linear programming is ok, when not used too much. If that is
the case, then it is necessary to compute the dual description.



1. The dual

description problem



Computing dual description

» The dual description problem is important to many many
computations:

> It allows to test membership questions easily.
> It allows to get the full face-set if needed.

» In high dimension the problem becomes difficult:
» The number of vertices, facets grows very fast.
» Even if the number is small, it can be difficult to compute.

» Some known programs exist (cdd, 1rs, ppl, pd, porta,
ghull, etc.), their efficiency varies widely and sometimes they
take too much time.

» In many cases the polytope considered have a “big" symmetry
group and the orbits of facets is the really needed information.

> We will expose some techniques for dealing with this problem.



Limitations of hope

» If the quotient ffacets
becomes impossible.

acets

is really too large then the problem

» Combinatorial explosion is the driving phenomenon. Using
symmetry has only limited efficiency.

polytope | dim. | |V/| |G| # orbits fac. | # facets
CUT, 6 8 1152 1 16
CUTs 10 16 1920 2 56
CUTs 15 32 23040 3 368
CUT, 21 64 322560 11 116764
CUTs 28 | 128 | 5160960 1477
CUTy | 36 | 256 | 185794560 | > 1.10°

CUT, is a polytope arising in combinatorial optimization.

» In practice, the method explained here allow to compute the
required list if its size is reasonable.




Program comparisons

We consider a polytope defined by a set LF of inequalities for
which we want its vertex set L).
» Irs: it iterates over all admissible basis in the simplex
algorithm of linear programming

> It is a tree search, no memory limitation.
» Some repetition can occur in the output.
> ldeal if the polytope has a lot of vertices.
» cdd: it adds inequalities one after the other and maintain the
double description throughout the computation
> All vertices and facets are stored memory limitation.
» Good performance if the polytope has degenerate vertices.
» pd: We have a partial list of vertices, we compute the facets
with Irs. If it does not coincide with £LF then we can generate
a missed vertex by linear programming.
» It is a recommended method if there is less vertices than facets.
» Bad performance for general polytopes.

» So, in general, choosing the right method is really difficult.



V. The adjacency
decomposition method



The adjacency decomposition method

Input: The vertex-set of a polytope P and a group G acting on P.
Output: O, the orbits of facets of P.

» Compute some initial facet F (by linear programming) and
insert the corresponding orbit into O as undone.
» For every undone orbit O of facet:
» Take a representative F of O.
» Find the ridges contained in F, i.e. the facets of the facet F
(this is a dual description computation).
» For every ridge R, find the corresponding adjacent facet F’
such that R=FnNF'.
» For every adjacent facet found test if the corresponding orbit is
already present in O. If no insert it as undone.
» Mark the orbit O as done.

» Terminate when all orbits are done.

Reinvented many times (D. Jaquet 1993, T. Christof and G.
Reinelt 1996, A. Deza et al. 2001).



General feature of the algorithm

It is a graph traversal algorithm:

» The algorithm starts by computing the orbits of lowest
incidence, which are the one for which the dual description is
easiest to be done.

» Sometimes it seems that no end is in sight, we get a lower
bound on the number of orbits.

» At the end, only the orbits of highest incidence remains.

» In most cases, the orbits of highest incidence do not yield new
orbits but in a few cases, this happens




Balinski theorem

The skeleton of a polytope is the graph formed by its facets with
two vertices adjacent if and only if the facets are adjacent.

» Balinski theorem The skeleton of a n-dimensional polytope is
n-connected, i.e. the removal of any set of n — 1 vertices
leaves it connected.

» So, if the number of facets in remaining orbits is at most
n — 1, then we know that no more orbits is to be discovered.
Scope of application:

» the criterion is usually not applicable to the polytopes of
combinatorial optimization, i.e. the orbits of facets of such
polytopes are usually relatively big.

» For the polytopes arising in geometry of numbers, it is
sometimes applicable.

» Very cheap to test, huge benefits if applicable.



The recursive adjacency method

In all cases considered so far, the orbits of maximum incidence also
have the highest symmetry and are the most difficult to compute.

» The computation of adjacent facets is a dual-description
computation.

> So, the idea is to apply the Adjacency Decomposition method
to those orbits as well.

» Based on informations on the symmetry group and on the
incidence, we decide if we should respawn the adjacency
method at another level.

Issues:
» The number of cases to consider can grow dramatically.

» If one takes the stabilizer of a face, then the size of the groups
involved may be quite small to be efficient.



Banking methods

» When one applies the Recursive Adjacency decomposition
method, one needs to compute the dual description of faces.
» F; and Fy are two facets of P to which we apply the
Adjacency Decomposition Method.
G is a common facet of F; and F».
The dual description of G is computed twice:

/\
\/

» The idea is to store the dual descrlptlon of faces in a bank
and when a dual description is needed to see if it has been
already done.



V. Symmetry
questions



Permutation groups

» Polytopes of interest have usually less than 1000 vertices
Vi,...,Vpn, their symmetry group can be represented as a
permutation of their vertex-set.

» The first benefit is that permutation group algorithms have
been well studied for a long time and have good
implementation in GAP.

w A, Seress, Permutation group algorithms, Cambridge
University Press, 2003.
mw D .F. Holt, B. Eick and E.A. O'Brien, Handbook of
computational group theory, Chapman & Hall/CRC, 2005.
» The second benefit is that a facet of a polytope thus
corresponds to a subset of {1,..., N} and that permutation
group acting on sets have a very good implementation in GAP.

> In some extreme cases (# vertices > 100000) permutation
groups might not work as quietly and other methods have to
be used.



Symmetry questions

Usually, most of the computational time is spent in symmetry
computations.
» We always need two operations:
> Isomorphism tests between two objects.
» Computation of the stabilizer or automorphism group of an
object.
> There are three different contexts:
(1) Identifying orbits when the full orbit has been generated.
(2) Given a polytope P and a group G acting on P, test if two
faces are equivalent under G.
(3) Test if two polytopes are isomorphic.



(1) Full orbit

» Eventually, the Recursive Adjacency Decomposition Method
will call 1rs, cdd, etc for generating the full dual-description.

» Hence, we need to split the output into orbits.

» The idea is then to code those orbits by 0/1-vectors and to
identify the full orbits, use C++ and the STL for identifying
them.

» This is memory-limited and sometimes we cannot identify the
orbits correctly. Then we do another respawn of the adjacency
method.



(2) In the Adjacency decomposition iteration

We have a fixed group G of a polytope P and we want to test if
two faces F; and F; are equivalent under G.

» We represent G as permutation group on the set of vertices
(vi)i<i<n of P and the faces by their incidence, i.e. subsets of
{1,...,N}.

» Then, we use two following functions in GAP

» Stabilizer (G, S1, OnSets);
> RepresentativeAction(G, S1, S2, OnSets);
The important fact is that the action OnSets is extremely

efficient and uses backtrack search, i.e. in practice we never
build the full orbit.

» The main reason why our program is working is because GAP
has efficient implementation of those functions.



(3) Symmetry groups of polytopes

» Suppose P is a polyhedral cone generated by vectors
(vi)i<i<n in R". There are three possible groups
» Combinatorial symmetry group Comb(P): this is the group of
transformations o € Sym(N) preserving the set of faces of P
globally.
» Projective symmetry group Proj(P): this is the group of
transformations o € Sym(N) such that there exist , > 0,
A € GL,(R) with Av; = o (i) Ve(iy.-
» Linear symmetry group Lin(P): this is the group of
transformations o € Sym(N) such that there exist A € GL,(R)
with Av; = Vo (i)
We have Lin(P) C Proj(P) C Comb(P)
» It can be proved that we need “only” the facets to compute
Comb(P). Since this is the objective itself, we have to be
content with Proj(P) and Lin(P).



Computing Lin(P)
» Define the form M
Q= Z fviv
i=1
» Define the edge colored graph on N vertices with edge color

—1t
cj =viQ 'y

» The automorphism group of the edge colored graph
corresponds to the automorphism group of the vector family.

» The automorphism group of the edge colored graph is
computed with nauty and a reduction to a vertex colored
graph. If G has n vertices and k colors, then we have the
following reductions:

Line graph: @ vertices.

Every color is a graph: nk vertices.

Every bit of a color is a graph: nlog(k) vertices.

Another construction: ny/log(k) vertices.

v vy VvYy



Going from high to low symmetries

» The symmetry group of the face might be larger than its
stabilizer under the bigger group.

» The stabilizer of the face
has order 6

» The symmetry group of the
face has order 12.

» Suppose that we have a set of orbits for the big symmetry
group G
F=x1GU---Ux,G

we want to represent F as list of orbits for a subgroup H of G.

» For every x; do a double coset decomposition
G = Gx,.ngU - UGX,-ng

with G, the stabilizer of x; in G.
» So, x;G = UJ'X,'ng



VI. Case
Studies



Perfect domain Dom(Eg)

» Context: The Voronoi algorithm for computing perfect forms
in dimension n needs to find the facets of their perfect
domains.

» The perfect domain Dom(Eg) has 120 extreme rays and is of
dimension 36 symmetry group has size 348364800.

» There are 25075566937584 facets in 83092 orbits.
» 4 orbits required a secondary application of the ADM.

» The orbit made of facets of incidence 75 have a stabilizer of
size 23040 but a symmetry group of size 737280, therefore
allowing us to finish the computation.

» Total running time with ons and offs was 15 months.



Contact polytope of O3

» Context: The determination of overlattice of Oz3 of minimum
3 requires the computation of vertices of the contact polytope
of 023.

» The polytope Contact(O23) has 4600 facets, dimension 23
and the symmetry group Zy x Cos.
» There are 15615584979368414 vertices in 269 orbits.

» One vertex correspond to a 22-dimensionl simplicial polytope
of 44 vertices with a group transitive on simplices.

» HS, My, M,3 appear as stabilizer of vertices.

» One orbit is incident to 275 facets and has group McL.

> One orbit of simplices is incident only to the above orbit.

» Main computational difficulty is in checking if two vertices are
equivalent.

» Total running time is two days.



Delaunay polytopes of Coxeter lattices

» Coxeter lattices A], are some lattices with a symmetry group
Zy x Sym(n+ 1)

» The key step of the computation of Delaunay polytopes is
computing facets of Delone polytopes. The problem is that
some Delaunay polytopes have more than 300000 vertices.

» Every face of a Delaunay is encoded by its barycenter, thus we
do not need permutation representations on huge number of
vertices.

» The heuristic is to respawn the ADM whenever the number of
vertices is greater than 70. This makes sometimes 16 levels of

recursion.
lattice | # orbits
A§3 10 A§4 17
A%5 10 A%7 26
A%9 15 A%3 55




VIIl. Other methods
using symmetry for
dual description



Techniques apparented to Adjacency Decomposition

» Computing perfect forms in dimension n: This can be seen as
computing vertices of polytope defined by following
inequalities:

{A € S" such that xAxT >1 for all x € Z" — {0}}

» Computing Delaunay polytopes of a lattice L C R"”. This can
be seen as computing facets of the polytope defined by
following vertex-set

{(x, Ix]|?) for all x € L}

» All kinds of space decompositions by polyhedra ( T-type,
L-types, etc.)



The incidence technique

The incidence technique is the logical competitor of the Adjacency
Decomposition Method.

» Suppose that the vertex set £ of P is partitionned into orbits
{01, ..., Op} of representative v;.

» For every 1 </ < p, consider the space
P ={f € (R")*" | f(v) >0 forve&and f(v) =0}

Every facet of P is equivalent to a facet in P; for some i.
> The description of P may be redundant, so elimination of
redundant facets by linear programming is necessary.
» The incidence method admits extensions to edges of P,
2-dimensional faces of P, etc.

This is invented several times (V. Grishukhin 1992, T. Christof and
G. Reinelt 1996, A. Deza et al. 2004).



The cascade algorithm

The Cascade algorithm (a reincarnation of Fourier-Motzkin) has
been introduced by D. Jaquet 1992:

» If P is a polytope of dimension n with m vertices, then it is
the projection of a simplex of dimension m — 1.
» If P’ is a polytope in RY, f a projection on an hyperplane of
RY, then the facets of f(P’) are:
» Projections of facets of P’.
» Projections of intersection of adjacent facets of P’.
» We can compute the orbits of facets of the projection f(P’)
from the orbits of facets of the polytope P’.
» This yields an algorithm for enumerating facets of P:

» Start with the simplex of dimension m — 1.
» Project m — 1 — n times to get the facets of P.

The problem is that the intermediate polytopes have a much
smaller symmetry group than the original polytope.



Orbit polytope

» Suppose G is a group acting on R"”, v € R”. We want to
compute the facets of the orbit polytope conv(G.v).

» We problem is that G.v the vertex-set might be too large to
store in memory and the facets be very large too.

» The technique is store the set S of vertices adjacent to v, say,
S={vi,...,vm} =v.{g1,...,gm} (Poincaré Polyhedron
theorem).

» Use an iteration

» Determine an initial set S with (g;) generating G.
» By the group action, we know the vertices adjacent to S.
» We check if those vertices are adjacent to v.

> If yes, we update the set S.
> If no, we return the set S as the reply.

> It works for the group Ma4 for v = (0%°,1,2,3,4,5),
|G.v| = 5100480.

» But this is a very specific example: Mps.v = Sym(24).v,
whose face-lattice is given by the Wythoff construction.



VIII. Application of
dual descriptions



Face-lattice under symmetry

The face-lattice of a polytope is usually “fat”:

» The number of faces of intermediate dimension is much larger
than the number of vertices and facets.

There is an efficient algorithm for enumerating the faces under
symmetry:
» We first compute the facets of the polytope.

» We represent faces by the list of incident vertices and the
action OnSets.

» For every face F of dimension k, we use the facets to find the
faces of dimension k + 1 to which F belongs.

» We then reduce by isomorphism.

If one wants only the k-faces for small k, then the facets are not
necessary a priori and linear programming suffices.



Flag system under symmetry

» The number of flags is much larger than the number of faces.

» But there is an efficient algorithm for enumerating orbits of
flags under symmetry.

» The idea is to extend flags (Fo,..., Fx) to flags
(F(), ey Fk+1) with dim F; = /.
» The only trick is the isomorphism test:
» Take two flags f = (Fo,...,Fx) and ' = (F§,..., F])
» Check isomorphism of Fy and Fj under G with OnSets. If
not-isomorphic leave.
» If F§ = Fo.g then replace f by f.g.
> Replace G by the stabilizer of Fj.
» Consider faces of dimension 1,...,n.



Group homology

» If G is a group, X a classifying space, then H;(G) = H;(X/G).

> A classifying space X is one such that G acts fixed-point-free
on it.

» If G is a finite matrix group, then conv(G.v) provides an
“approximation” of it, i.e. stabilizer of faces are small.

» If i is small, the fact that the action is not fixed-point-free can
be taken care of by using a technique named "C.T.C. Wall
Lemma”.

v

This gives a method for computing H;(G) for i small.



IX. Inertia
moment



Inertia

matrix of a polytope

If P € R"is a polytope then we want to compute the
integrals of volume, barycenter and inertia moment

/dx, /x,-dx and /x,-xjdx
P P P

This integral is rewritten as a symmetric (n+ 1) x (n+ 1)
matrix integral:

loxa(P) = /P(l,x)(l,x)de

If one is satisfied with approximate results, then Monte Carlo
methods are to be preferred. They are much faster and fairly
accurate.



Decomposition method

» All known methods for computing integrals over a polytope P
rely on decomposing it into an union (signed or not) of
simplices.

w B. Bueler B., A. Enge and K. Fukuda, Exact Volume
Computation for Polytopes: a Practical Study,
Polytopes—combinatorics and computation (Oberwolfach,
1997), 131-154, DMV Sem., 29, Birkhauser, Basel, 2000.

» Two methods are used by us:

> Irs can return a simplicial decomposition if one computes the
facets from the vertices.

> If one takes a random quadratic form and computes a
Delaunay decomposition for it then “most” Delaunays are
simplices. The remaining can be decomposed by further
application of the method.



How to use symmetries?

» We need decompositions of the space, which are invariant
space decompositions into simplices.

» One way to get such a decomposition is to compute the orbits
of flags Fp C F1 C --- C F, of P.

» For every such flag we associate the simplex
(Iso(Fo), Iso(F1), . .., Iso(Fp), Iso(P))

The decomposition is then invariant under Lin(P).

» The isobarycenter Iso(F) is the isobarycenter of the vertex-set
of F, not of F itself as a polytope.

» The problem is that polytopes have generally a lot of orbits of
flags even “very symmetric ones”.



Lassere decomposition method
Suppose we have a n-dimensional polytope P and a group G
acting on it by isometries.

» Compute the orbits of facets Oy, ..., Os of representative
Fi,...,Fs

» Compute the isobarycenter Iso(P) of the vertex-set of P.
> One has the formulas.

vol(conv(F;, Iso(P))) = Lvol(F;) x d(F;, Iso(P))
vol(P) = 37 ,]0j|vol(conv(F;, Iso(P)))

» More generally, we can express the integral
Io.12(conv(Fj, Iso(P))) in terms of Iy 12(F;) and Iso(P).

> The integral lp12(P) expands as

> 1
> o] al > glo12(conv(F;, Iso(P)))g
i=1

geiG



Averaging operation

» If G is a group generated by g1, ..., gs acting affinely on R”,
v € R", we want to compute the barycenter of the orbit Gx:

Iso(v Z g.v
IG | 5%
but we don't want to compute the orbit itself.
» Denote by Aff(G,v) the smallest affine subspace of R"
invariant under G containing the point v.
The method is simply to add points to a basis B of Aff(G,v)
inductively until the obtained subspace is invariant.
» Take an affine basis vi, ..., vy of Aff(G,v) and write Iso(v)

as
Iso(v Za v; with Za, =1,

which is then the unique solutlon of the equations
gi(lso(v)) = Iso(v)



The recursive decomposition method for L(DV/(L))

» We use Lassere’s method recursively until the number of
vertices is low enough.

» Faces of DV/(L) are encoded by their dual Delaunay and
vertices generated only when needed.

» We have a banking system to keep computed integral.

» Some results:

Lattice L Q(L)
TSI300
Mo T30 0.07206
1371514201
As 10110207600 ~ 0-07176
A2 52220743~ 0.072166
9 V/5.2813271040
AB 8651427563 ., ) 072079
9 V/2.5826578125000
+ 4568341
D10 64512000 ~ 0.07081
4 29183629
D1, 412776000 ~ 0.070700
797361041 .,
K1 Sos67561000 > 0070095




Availability

The software polyhedral is available from my web page

http://wuw.liga.ens.fr/~dutour/polyhedral/

Other features:

» The system works, as a database, by saving on disk:

» This works by guaranteeing atomicity of operations.

» This is useful in case of power failure, no loss of work.

» It is also useful when we change the heuristics of the
respawning. All computations simply update the database.

» Written in GAP, perl, C++ using many people’s other
programs (nauty, cdd, 1rs).

» Examples, but no manual yet.


http://www.liga.ens.fr/~dutour/polyhedral/
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