# Classifying spaces from polyhedral tesselations: the perfect form method

Mathieu Dutour Sikirić

Ellis Graham

Institut Rudjer Bošković

**NUI** Galway

Achill Schürmann

TU Delft, Netherland

April 27, 2012

# I. Problem setting

# **Group Homology**

- ▶ Take *G* a group, suppose that:
  - X is a contractible space.
  - G act fixed point free on X.

Then we define the group homologies of G to be  $H_p(G) = H_p(X/G)$ .

- ▶ The space *X* is then a classifying space.
- Examples:
  - ► The bar construction gives a classifying space which can be used to compute with general groups.
  - ▶ If G is a Bieberbach group (acts fixed point free on  $\mathbb{R}^n$ ) then  $\mathbb{R}^n$  is the classifying space and the homology is the one of a flat manifold.
- ▶ Getting workable classifying space for a group is not easy:
  - ▶ If G is finite then  $H_i(G) \neq 0$  for an infinity of i and thus X is infinite dimensional.
  - Thus one hopes to work out some "approximate classifying space" and obtain the homology by perturbation arguments.

# The case of $GL_n(\mathbb{Z})$

- ▶ The group  $GL_n(\mathbb{Z})$  acts on  $\mathbb{R}^n$ .
- ▶ So a priori, it would seem that the approximate classifying space would be  $\mathbb{R}^n$ . But the stabilizer of a point  $x \in \mathbb{R}^n$  can be infinite or  $GL_n(\mathbb{Z})$  itself.
- ▶ So, we would like another space X on which  $GL_n(\mathbb{Z})$  could act. Our wishes are for:
  - X to be contractible.
  - ▶ X to admit a cell decomposition (polyhedral tesselation) invariant under  $GL_n(\mathbb{Z})$ .
  - ▶ That every face F of the tesselation has finite stabilizer under  $GL_n(\mathbb{Z})$ .

# Positive definite quadratic forms

▶ A matrix Q is called positive definite, respectively positive semidefinite, if for every  $x \in \mathbb{R}^n - \{0\}$  we have

$$x^t Qx > 0$$
, respectively  $x^t Qx \ge 0$ .

- ▶ Denote by  $S_{>0}^n$ , respectively  $S_{\geq 0}^n$  the cones of positive definite, respectively positive semidefinite  $n \times n$ -matrices.
- ▶ The group  $GL_n(\mathbb{Z})$  acts on  $S_{>0}^n$  by the relation

$$(P,Q)\mapsto P^tQP$$

▶ For any  $Q \in S_{>0}^n$  the automorphism group

$$\operatorname{Aut}(Q) = \{ P \in \operatorname{GL}_n(\mathbb{Z}) \text{ such that } P^t Q P = Q \}$$

is finite.

# Why use perfect forms?

- ▶ They satisfy the necessary condition of being a polyhedral tesselation with finite stabilizers (More to that later).
- ► They are computationally expensive, i.e. only up to dimension 8.
- But other decomposition are worse:
  - The L-type domain tesselation is not effective beyond dimension 5.
  - ► The Minkovski domain method gives only one domain and with trivial stabilizer but it has a lot of facets and extreme rays.
- ▶ We do not explain the geometric aspect of perfect forms.

#### References

- ► G. Voronoi, Nouvelles applications des paramètres continues à la théorie des formes quadratiques 1: Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math 133 (1908) 97–178.
- M. Dutour Sikirić, A. Schuermann and F. Vallentin, Classification of eight dimensional perfect forms, Electron. Res. Announc. Amer. Math. Soc.
- A. Schuermann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.
- ▶ J. Martinet, *Perfect lattices in Euclidean spaces*, Springer, 2003.
- S.S. Ryshkov, E.P. Baranovski, Classical methods in the theory of lattice packings, Russian Math. Surveys 34 (1979) 1–68, translation of Uspekhi Mat. Nauk 34 (1979) 3–63.

# II. Perfect forms

### Perfect form

▶ If  $A \in S^n_{>0}$  then define  $\min(A) = \min_{v \in \mathbb{Z}^n \neq 0} A[v]$  and

$$Min(A) = \{x \in \mathbb{Z}^n \text{ such that } A[x] = min(A)\}$$

▶ The group  $GL_n(\mathbb{Z})$  acts on  $S_{>0}^n$ :

$$Q \mapsto P^t Q P$$

and we have  $Min(P^tQP) = P^{-1}Min(Q)$ .

▶ A form is called perfect if the equation in B

$$B[v] = \min(A)$$
 for all  $v \in \min(A)$ 

implies B = A.

- A perfect form is necessarily rational and thus up to a multiple integral.
- ▶ There is a finite number of perfect forms up to  $GL_n(\mathbb{Z})$  equivalence.

#### Perfect domains

- ▶ If  $v \in \mathbb{Z}^n$  then the corresponding rank 1 form is  $p(v) = {}^t vv$ .
- ▶ If A is a perfect form, its perfect domain is

$$\mathsf{Dom}(A) = \sum_{v \in \mathsf{Min}(A)} \mathbb{R}_+ p(v)$$

- ▶ If A has m shortest vectors then Dom(A) has  $\frac{m}{2}$  extreme rays.
- ▶ The perfect domains define a polyhedral tesselation of  $S_{>0}^n$ .
- ▶ For n = 2, we get the classical picture:



# The Voronoi algorithm

#### The algorithm itself is:

- $\triangleright$  Find a perfect form, insert it to the list  $\mathcal{L}$  as undone.
- Iterate
  - For every undone perfect form Q in  $\mathcal{L}$ , compute the perfect domain Dom(Q) and then its facets.
  - ▶ For every facet F of Dom(Q) realize the flipping, i.e. compute the adjacent perfect form Q' such that  $Dom(Q) \cap Dom(Q') = F$ .
  - ▶ If Q' is not equivalent to a form in  $\mathcal{L}$ , then we insert it into  $\mathcal{L}$  as undone.
- Finish when all perfect domains have been treated.

#### The subalgorithms are:

- Find the dual description of the perfect domain Dom(A)
- For a facet F of Dom(A) find the adjacent perfect form A'.
- Test equivalence of perfect forms.

### Enumeration of Perfect forms

| dim | Nr of forms | forms                              | Authors                       |
|-----|-------------|------------------------------------|-------------------------------|
| 1   | 1           | $A_1$                              |                               |
| 2   | 1           | $A_2$                              | Lagrange                      |
| 3   | 1           | $A_3$                              | Gauss                         |
| 4   | 2           | D <sub>4</sub> , A <sub>4</sub>    | Korkine & Zolotareff          |
| 5   | 3           | D <sub>5</sub> , A <sub>5</sub> ,  | Korkine & Zolotareff          |
| 6   | 7           | E <sub>6</sub> , E <sub>6</sub> *, | Barnes                        |
| 7   | 33          | E <sub>7</sub> ,                   | Jaquet                        |
| 8   | 10916       | E <sub>8</sub> ,                   | Dutour, Schürmann & Vallentin |

#### Remarks

- ▶ This gives the number of perfect domains.
- ▶ The number of orbits of faces of the perfect domain tesselation is much higher but finite. It has been enumerated up to dimension 7.

III. Well rounded

retract

### Arithmetic closure

- ▶ For A a perfect quadratic form, the perfect domain Dom(A) contains some rank 1 forms, for example p(v).
- ▶ So actually, the perfect domains realize a tiling not of  $S_{>0}^n$ , nor  $S_{>0}^n$  but of the rational closure  $S_{rat,>0}^n$ .
- ▶ The rational closure  $S_{rat,>0}^n$  has a number of descriptions:
  - lacksquare  $S_{rat,>0}^n = \sum_{v \in \mathbb{Z}^n} \mathbb{R}_+ p(v)$
  - ▶ If  $A \in S_{\geq 0}^n$  then  $A \in S_{rat,\geq 0}^n$  if and only if  $Ker\ A$  is defined by rational equations.
  - ▶ If  $A \in S_{\geq 0}^n$  then  $A \in S_{rat,\geq 0}^n$  if and only if it defines a tesselation of  $\mathbb{Z}^n$  by Delaunay polyhedra.
- ► So, actually, the stabilizers of some faces of the polyhedral complex are infinite.

#### Well rounded forms

- A form Q is said to be well rounded if it admits vectors v₁, ..., vn such that
  - $\triangleright$   $(v_1,\ldots,v_n)$  form a basis of  $\mathbb{R}^n$
  - $\triangleright$   $v_1, \ldots, v_n$  are shortest vectors.
  - $P Q[v_1] = \cdots = Q[v_n].$
- Every form can be continuously deformed to a well rounded form and this defines a retracting homotopy of  $S_{>0}^n$  onto a polyhedral complex of dimension  $\frac{n(n-1)}{2} + 1$ .
- So, by killing the faces of the perfect form tesselation that contain some degenerate form we keep only the one that have finite stabilizers and we get the decomposition that we want.
- Actually, in term of dimension, we cannot do better:
  - A. Pettet and J. Souto, Minimality of the well rounded retract, Geometry and Topology, 12 (2008), 1543-1556.

# IV. Hacking tesselations

# Special tesselations

- A polyhedral decomposition is called special if for all faces F of the tesselation and every g ∈ Stab(F) the element g stabilizes F pointwise.
- ▶ In particular, top dimensional faces have trivial stabilizers and codimension 1 faces have stabilizer of order 1 or 2.
- ▶ This property is not achieved by the perfect form tesselation.
- So, we have to modify the tesselation in order to achieve this.
- ▶ A weaker property that we may wish is that the top-dimensional faces have small stabilizers.
- We cannot get rid of stabilizers, but we have some degree of freedom for the face that they stabilize.

# Some operations

We can add a ray in the middle of the perfect domain. The operation is as follows:



▶ We may merge back some faces. As follows:



We can also add a ray on a face:



### Perfect forms in dimension 4

- Initially there are 2 orbits of perfect forms so full dimensional cells are:
  - ▶  $O_1$ : full dimensional cell with 64 facets and stabilizer of size 1152 (perfect domain of  $D_4$ ).
  - ▶  $O_2$ : full dimensional cell with 10 facets and stabilizer of size 240 (perfect domain of  $A_4$ ).
- Now split both  $O_1$  and  $O_2$  by adding a central ray. We then get as orbits of full dimensional cells:
  - O<sub>1,1</sub>: full dimensional cell with 10 facets and stabilizer of size 24.
  - $ho_{1,2}$ : full dimensional cell with 10 facets and stabilizer of size 8.
  - O<sub>2,1</sub>: full dimensional cell with 10 facets and stabilizer of size 24.
- ▶ Every cell  $O_{1,1}$  is adjacent to a unique cell  $O_{2,1}$ . Join them:
  - $\triangleright$   $O_1'$ : full dimensional cell with 18 facets and stabilizer of size 24.
  - $\triangleright$   $O_2'$ : full dimensional cell with 10 facets and stabilizer of size 8.

### Perfect forms in dimension 4

- Now we put a central ray in  $O'_1$  and get the following decomposition:
  - $O'_{1,1}$ : full dimensional cell with 10 facets and stabilizer of size 2.
  - $ightharpoonup O_{1,2}'$ : full dimensional cell with 10 facets and stabilizer of size 4.
  - $ightharpoonup O_2'$ : full dimensional cell with 10 facets and stabilizer of size 8.

This decomposition is much more manageable.

# V. Other tesselations

# The case of $GL_n(\mathbb{Z}[i])$

- ▶ We can make  $GL_n(\mathbb{Z}[i])$  act on  $\mathbb{R}^{2n}$  and more precisely on the quadratic forms corresponding to hermitian forms.
- ▶ All the theory follow as before, but the dimension is  $n^2$ .
- See for more details.
  - ► A. Schürmann, *Enumerating perfect forms*, Contemporary Mathematics
- ▶ The method applies to  $GL_n(\mathbb{Z}[\omega])$  with  $\mathbb{Z}[\omega]$  the Eisenstein integers.

# Other techniques I

- Some methods based on the Poincare polyhedron theorem have been devised. Example of application:
  - R. Riley, Applications of a computer implementation of Poincare theorem on fundamental polyhedra, Mathematics of Computation 40 (1983) 607–632.
  - ▶ A. Rahm and M. Fuchs, *The integral homnology of PSL*<sub>2</sub> *of imaginary quadratic integers with non-trivial class group.*
- More sophisticated applications of Poincare polyhedron theorem to complex hyperbolic spaces are:
  - M. Deraux, Deforming the ℝ-fuchsian (4, 4, 4)-lattice group into a lattice.
  - ► E. Falbel and P.-V. Koseleff, *Flexibility of ideal triangle groups in complex hyperbolic geometry*, Topology **39** (2000) 1209–1223.

# Other techniques II

- As far as we know there as only two work for non-polyhedral, but still manifold, domains.
  - R. MacPherson and M. McConnel, Explicit reduction theory for Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.
  - D. Yasaki, An explicit spine for the Picard modular group over the Gaussian integers, Journal of Number Theory, 128 (2008) 207–234.
- Other works for non-manifold setting would be:
  - ► T. Brady, The integral cohomology of Out<sub>+</sub>(F<sub>3</sub>), Journal of Pure and Applied Algebra 87 (1993) 123–167.
  - ► H.-W. Henn, The cohomology of SL<sub>3</sub>(Z[1/2]), K-theory 16 (1999) 299–359.