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Ellis Graham

NUI Galway

Achill Schürmann
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I. Problem
setting



Group Homology

I Take G a group, suppose that:
I X is a contractible space.
I G act fixed point free on X .

Then we define the group homologies of G to be
Hp(G ) = Hp(X/G ).

I The space X is then a classifying space.
I Examples:

I The bar construction gives a classifying space which can be
used to compute with general groups.

I If G is a Bieberbach group (acts fixed point free on Rn) then
Rn is the classifying space and the homology is the one of a
flat manifold.

I Getting workable classifying space for a group is not easy:
I If G is finite then Hi (G ) 6= 0 for an infinity of i and thus X is

infinite dimensional.
I Thus one hopes to work out some “approximate classifying

space” and obtain the homology by perturbation arguments.



The case of GLn(Z)

I The group GLn(Z) acts on Rn.

I So a priori, it would seem that the approximate classifying
space would be Rn. But the stabilizer of a point x ∈ Rn can
be infinite or GLn(Z) itself.

I So, we would like another space X on which GLn(Z) could
act. Our wishes are for:

I X to be contractible.
I X to admit a cell decomposition (polyhedral tesselation)

invariant under GLn(Z).
I That every face F of the tesselation has finite stabilizer under

GLn(Z).



Positive definite quadratic forms

I A matrix Q is called positive definite, respectively positive
semidefinite, if for every x ∈ Rn − {0} we have

x tQx > 0, respectively x tQx ≥ 0.

I Denote by Sn
>0, respectively Sn

≥0 the cones of positive definite,
respectively positive semidefinite n × n-matrices.

I The group GLn(Z) acts on Sn
>0 by the relation

(P,Q) 7→ PtQP

I For any Q ∈ Sn
>0 the automorphism group

Aut(Q) = {P ∈ GLn(Z) such that PtQP = Q}

is finite.



Why use perfect forms?

I They satisfy the necessary condition of being a polyhedral
tesselation with finite stabilizers (More to that later).

I They are computationally expensive, i.e. only up to dimension
8.

I But other decomposition are worse:
I The L-type domain tesselation is not effective beyond

dimension 5.
I The Minkovski domain method gives only one domain and with

trivial stabilizer but it has a lot of facets and extreme rays.

I We do not explain the geometric aspect of perfect forms.
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II. Perfect
forms



Perfect form

I If A ∈ Sn
>0 then define min(A) = minv∈Zn 6=0 A[v ] and

Min(A) = {x ∈ Zn such that A[x ] = min(A)}

I The group GLn(Z) acts on Sn
>0:

Q 7→ PtQP

and we have Min(PtQP) = P−1 Min(Q).

I A form is called perfect if the equation in B

B[v ] = min(A) for all v ∈ Min(A)

implies B = A.

I A perfect form is necessarily rational and thus up to a
multiple integral.

I There is a finite number of perfect forms up to GLn(Z)
equivalence.



Perfect domains

I If v ∈ Zn then the corresponding rank 1 form is p(v) = tvv .
I If A is a perfect form, its perfect domain is

Dom(A) =
∑

v∈Min(A)

R+p(v)

I If A has m shortest vectors then Dom(A) has m
2 extreme rays.

I The perfect domains define a polyhedral tesselation of Sn
>0.

I For n = 2, we get the classical picture:
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The Voronoi algorithm

The algorithm itself is:

I Find a perfect form, insert it to the list L as undone.
I Iterate

I For every undone perfect form Q in L, compute the perfect
domain Dom(Q) and then its facets.

I For every facet F of Dom(Q) realize the flipping, i.e. compute
the adjacent perfect form Q ′ such that
Dom(Q) ∩ Dom(Q ′) = F .

I If Q ′ is not equivalent to a form in L, then we insert it into L
as undone.

I Finish when all perfect domains have been treated.

The subalgorithms are:

I Find the dual description of the perfect domain Dom(A)

I For a facet F of Dom(A) find the adjacent perfect form A′.

I Test equivalence of perfect forms.



Enumeration of Perfect forms

dim Nr of forms forms Authors
1 1 A1

2 1 A2 Lagrange
3 1 A3 Gauss
4 2 D4, A4 Korkine & Zolotareff
5 3 D5, A5, . . . Korkine & Zolotareff
6 7 E6, E∗

6 , . . . Barnes
7 33 E7, . . . Jaquet
8 10916 E8, . . . Dutour, Schürmann & Vallentin

Remarks

I This gives the number of perfect domains.

I The number of orbits of faces of the perfect domain
tesselation is much higher but finite. It has been enumerated
up to dimension 7.



III. Well rounded
retract



Arithmetic closure

I For A a perfect quadratic form, the perfect domain Dom(A)
contains some rank 1 forms, for example p(v).

I So actually, the perfect domains realize a tiling not of Sn
>0,

nor Sn
≥0 but of the rational closure Sn

rat,≥0.

I The rational closure Sn
rat,≥0 has a number of descriptions:

I Sn
rat,≥0 =

∑
v∈Zn R+p(v)

I If A ∈ Sn
≥0 then A ∈ Sn

rat,≥0 if and only if Ker A is defined by
rational equations.

I If A ∈ Sn
≥0 then A ∈ Sn

rat,≥0 if and only if it defines a
tesselation of Zn by Delaunay polyhedra.

I So, actually, the stabilizers of some faces of the polyhedral
complex are infinite.



Well rounded forms

I A form Q is said to be well rounded if it admits vectors v1,
. . . , vn such that

I (v1, . . . , vn) form a basis of Rn

I v1, . . . , vn are shortest vectors.
I Q[v1] = · · · = Q[vn].

I Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of Sn

>0 onto a

polyhedral complex of dimension n(n−1)
2 + 1.

I So, by killing the faces of the perfect form tesselation that
contain some degenerate form we keep only the one that have
finite stabilizers and we get the decomposition that we want.

I Actually, in term of dimension, we cannot do better:
I A. Pettet and J. Souto, Minimality of the well rounded retract,

Geometry and Topology, 12 (2008), 1543-1556.



IV. Hacking
tesselations



Special tesselations

I A polyhedral decomposition is called special if for all faces F
of the tesselation and every g ∈ Stab(F ) the element g
stabilizes F pointwise.

I In particular, top dimensional faces have trivial stabilizers and
codimension 1 faces have stabilizer of order 1 or 2.

I This property is not achieved by the perfect form tesselation.

I So, we have to modify the tesselation in order to achieve this.

I A weaker property that we may wish is that the
top-dimensional faces have small stabilizers.

I We cannot get rid of stabilizers, but we have some degree of
freedom for the face that they stabilize.



Some operations

I We can add a ray in the middle of the perfect domain. The
operation is as follows:

I We may merge back some faces. As follows:

I We can also add a ray on a face:



Perfect forms in dimension 4

I Initially there are 2 orbits of perfect forms so full dimensional
cells are:

I O1: full dimensional cell with 64 facets and stabilizer of size
1152 (perfect domain of D4).

I O2: full dimensional cell with 10 facets and stabilizer of size
240 (perfect domain of A4).

I Now split both O1 and O2 by adding a central ray. We then
get as orbits of full dimensional cells:

I O1,1: full dimensional cell with 10 facets and stabilizer of size
24.

I O1,2: full dimensional cell with 10 facets and stabilizer of size
8.

I O2,1: full dimensional cell with 10 facets and stabilizer of size
24.

I Every cell O1,1 is adjacent to a unique cell O2,1. Join them:
I O ′1: full dimensional cell with 18 facets and stabilizer of size 24.
I O ′2: full dimensional cell with 10 facets and stabilizer of size 8.



Perfect forms in dimension 4

I Now we put a central ray in O ′1 and get the following
decomposition:

I O ′1,1: full dimensional cell with 10 facets and stabilizer of size
2.

I O ′1,2: full dimensional cell with 10 facets and stabilizer of size
4.

I O ′2: full dimensional cell with 10 facets and stabilizer of size 8.

This decomposition is much more manageable.



V. Other
tesselations



The case of GLn(Z[i ])

I We can make GLn(Z[i ]) act on R2n and more precisely on the
quadratic forms corresponding to hermitian forms.

I All the theory follow as before, but the dimension is n2.
I See for more details.

I A. Schürmann, Enumerating perfect forms, Contemporary
Mathematics

I The method applies to GLn(Z[ω]) with Z[ω] the Eisenstein
integers.



Other techniques I

I Some methods based on the Poincare polyhedron theorem
have been devised. Example of application:

I R. Riley, Applications of a computer implementation of
Poincare theorem on fundamental polyhedra, Mathematics of
Computation 40 (1983) 607–632.

I A. Rahm and M. Fuchs, The integral homnology of PSL2 of
imaginary quadratic integers with non-trivial class group.

I More sophisticated applications of Poincare polyhedron
theorem to complex hyperbolic spaces are:

I M. Deraux, Deforming the R-fuchsian (4, 4, 4)-lattice group
into a lattice.

I E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups
in complex hyperbolic geometry, Topology 39 (2000)
1209–1223.



Other techniques II

I As far as we know there as only two work for non-polyhedral,
but still manifold, domains.

I R. MacPherson and M. McConnel, Explicit reduction theory for
Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.

I D. Yasaki, An explicit spine for the Picard modular group over
the Gaussian integers, Journal of Number Theory, 128 (2008)
207–234.

I Other works for non-manifold setting would be:
I T. Brady, The integral cohomology of Out+(F3), Journal of

Pure and Applied Algebra 87 (1993) 123–167.
I H.-W. Henn, The cohomology of SL3(Z[1/2]), K-theory 16

(1999) 299–359.


