Practical computation of Hecke operators

Mathieu Dutour Sikirić

Institute Rudjer Bošković, Croatia and Universität Rostock

May 7, 2014

I. Computing with polytopes

Polytopes, definition

- A polytope $P \subset \mathbb{R}^n$ is defined alternatively as:
	- If The convex hull of a finite number of points v^1, \ldots, v^m :

$$
P = \{v \in \mathbb{R}^n \mid v = \sum_i \lambda_i v^i \text{ with } \lambda_i \ge 0 \text{ and } \sum_i \lambda_i = 1\}
$$

 \blacktriangleright The following set of solutions:

$$
P = \{x \in \mathbb{R}^n \mid f_j(x) \ge b_j \text{ with } f_j \text{ linear}\}
$$

with the condition that P is bounded.

- \blacktriangleright The cube is defined alternatively as
	- The convex hull of the 2^n vertices

$$
\{(x_1,\ldots,x_n) \text{ with } x_i=\pm 1\}
$$

The set of points $x \in \mathbb{R}^n$ satisfying to

 $x_i \leq 1$ and $x_i \geq -1$

Facets and vertices

- A vertex of a polytope P is a point $v \in P$, which cannot be expressed as $v=\lambda v^1+(1-\lambda)v^2$ with $0<\lambda< 1$ and $v^1 \neq v^2 \in P$.
- \triangleright A polytope is the convex hull of its vertices and this is the minimal set defining it.
- A facet of a polytope is an inequality $f(x) b \ge 0$, which cannot be expressed as $f(x) - b = \lambda (f_1(x) - b_1) + (1 - \lambda)(f_2(x) - b_2)$ with

$$
f_i(x)-b_i\geq 0 \text{ on } P.
$$

- \triangleright A polytope is defined by its facet inequalities. and this is the minimal set of linear inequalities defining it.
- \triangleright The dual-description problem is the problem of passing from one description to another.
- \triangleright There are several programs CDD, LRS for computing dual-description computations.
- \blacktriangleright In case of large problems, we can use the symmetries for faster computation.

Linear programs

 \triangleright A linear program is the problem of maximizing a linear function $f(x)$ over a set $\mathcal P$ defined by linear inequalities.

 $\mathcal{P} = \{x \in \mathbb{R}^d \text{ such that } f_i(x) \geq b_i\}$

with f_i linear and $b_i \in \mathbb{R}$.

- \blacktriangleright The solution of linear programs is attained at vertices of P .
- \triangleright There are two classes of solution methods:

optimal solution vertex

Simplex method

Interior point method

- \triangleright Simplex methods use exact arithmetic but have bad theoretical complexity
- Interior point methods have good theoretical complexity but only gives an approximate vertex.

Face complex

- A face of a polytope P is a set defined by $f(x) = 0$ with f an affine function that is positive on P.
- ► Faces vary in dimension between 0 (vertices) and $n-1$ (facets).
- \blacktriangleright The set of faces form a lattice under the inclusion relation, i.e. they are completely described by the set of vertices $S \subset \{1,\ldots,p\}.$
- If F, F' are faces of dimenion k, $k + 2$ with $F \subset F'$ then there exist two faces F_1 , F_2 with $F \subset F_i \subset F'$.
- \triangleright There are essentially two techniques for computing the set of faces of a polytope P:
	- \triangleright We know vertices and facets of P: Then given a subset S, find all the facets containing the vertices of S , check if the rank is correct (linear algebra)
	- \triangleright We know only the vertices of P: Checking if a set defines a face can be done by linear programming.

The second approach is good if one wants the low dimensional faces and the facets cannot be computed.

Boundary operator I

Let us take a n -dimensional polytope P

 \triangleright Given a face F we can define its differential (boundary) by

$$
dF = \sum_{F' \subset F} \epsilon(F', F) F'
$$

With $\epsilon(F', F) = \pm 1$.

- \triangleright Essentially all algorithm for computing face lattice also give the boundary operators.
- \triangleright But the sign can be troublesome. Essentially there are two possible orientations on a face F and we have to make decisions.
- ► For an edge $e = \{v, v'\}$ we set $de = v' v$ (arbitrary choice)
- \triangleright We have the collapsing relation

$$
d\circ d=0
$$

By using it we can recursively compute the signs $\epsilon(F', F)$ up to a global sign for F.

Boundary operator II

- \triangleright The recursive method works well, but it is painful to program and it requires the knowledge of all faces from dimension 0 to k.
- \blacktriangleright The recursive method does not use the polyhedral linear structure of \mathbb{R}^n which is an advantage (generality) and an inconvenient (speed and complexity).
- For each face F we define a spanning set $s(F)$.
- \blacktriangleright The formula for ϵ is then:

 $\epsilon(F',F)=$ sign det $\mathsf{Mat}_{\mathsf{s}(F)}\, \mathsf{s}(F')\cup \mathsf{Cent}(F)$

with Cent(F) the center of the face F .

 \triangleright The formula only requires that we know the $k-1$ dimensional and k-dimensional faces.

II. Homology

Polytopal complex

- A polytopal complex PC is a family of cells:
	- It contains \emptyset and P such that for every face F one has $\emptyset \subset F \subset P$.
	- If F is a face and

$$
\emptyset = F_0 \subset F_1 \subset \cdots \subset F_p = F
$$

is a chain, which cannot be further refined, then dim $F = p$.

- \triangleright We set dim $PC =$ dim $P 1$
- If F_{n-1} and F_{n+1} are two cells of dimension $p-1$ and $p+1$ then there exist exactly two cells G , G' such that

$$
F_{p-1}\subset G, G'\subset F_{p+1}
$$

- \triangleright The faces F are equivalent to polytopes.
- \blacktriangleright Example:
	- Any plane graph, any map on a surface.
	- \blacktriangleright Any polyhedral subdivision
	- \blacktriangleright Any polytope.

Homology from the tesselation

Let PC be a polytopal complex.

- For any $0 \le p \le dim \, \mathcal{PC}$ denote by $C_p(\mathcal{PC}, \mathbb{Z})$ the \mathbb{Z} -module, whose basis is the p-dimensional faces of PC .
- \triangleright We denote by d_p the boundary operator:

$$
d_p: C_p(\mathcal{PC}, \mathbb{Z}) \to C_{p-1}(\mathcal{PC}, \mathbb{Z})
$$

Note that $d_0: C_0 \rightarrow \{0\}$.

 \triangleright We define

$$
B_p(\mathcal{PC}, \mathbb{Z}) = \text{Im } d_{p+1}
$$
 and $Z_p(\mathcal{PC}, \mathbb{Z}) = \text{Ker } d_p$

► From the relation $d_p d_{p-1} = 0$ we have $B_p \subset Z_p$ and we define

$$
H_p(\mathcal{PC},\mathbb{Z})=Z_p/B_p
$$

 \blacktriangleright H_i is a sum of $\mathbb Z$ (rational) and $\mathbb Z/a\mathbb Z$ groups (torsion).

Topological invariance

If M is a manifold and PC_1 and PC_2 are two polytopal subdivision modelled on it, then

$$
H_p(\mathcal{PC}_1, \mathbb{Z}) = H_p(\mathcal{PC}_2, \mathbb{Z}) \text{ for } 0 \leq p \leq \text{dim}(\mathcal{M}) \times
$$

 $H_0(PC) = \mathbb{Z}^m$ with m the number of connected components.

A space X is called contractible if it can be continuously deformed to a point x . For a contractible space, one has

$$
H_0(X) = \mathbb{Z} \text{ and } H_p(X) = \{0\} \text{ for } p > 0
$$

 \blacktriangleright For a *n*-dimensional polytope P we have

$$
H_i(P) = \left\{ \begin{array}{ll} \mathbb{Z} & \text{if } i = 0 \text{ or } i = n - 1 \\ 0 & \text{otherwise} \end{array} \right.
$$

The reason is that a *n*-dimensional polytope is essentially a $n-1$ dimensional sphere.

III. Resolutions and G-modules

G-modules

- \triangleright We use the GAP notation for group action, on the right.
- \triangleright A G-module M is a $\mathbb Z$ -module with an action

$$
\begin{array}{rcl} M\times G & \to & M \\ (m,g) & \mapsto & m.g \end{array}
$$

 \triangleright The group ring $\mathbb{Z}G$ formed by all finite sums

$$
\sum_{g \in G} \alpha_g g \text{ with } \alpha_g \in \mathbb{Z}
$$

is a G-module.

If the orbit of a point v under a group G is $\{v_1, \ldots, v_m\}$, then the set of sums

$$
\sum_{i=1}^{m} \alpha_i v_i \text{ with } \alpha_i \in \mathbb{Z}
$$

is a G-module.

 \triangleright We can define the notion of generating set, free set, basis of a G-module. But not every finitely generated G-module admits a basis.

Polyhedral complex and G-module

Let us take P a *n*-dimensional polytopes and a group G acting on it.

- \triangleright Denote n_k the number of orbits of faces of dimension k.
- \triangleright For each dimension k we need to select a number of orbit representatives $G_1^k, \ldots, G_{n_k}^k$.
- \triangleright The differentials of a *k*-dimensional face *F* is

$$
d_k F = \sum_{i=1}^{N} \alpha_i F_i \text{ (no group action)}
$$

= $\sum_{i=1}^{N} \alpha_i G_{p(i)}^{k-1} g_i \text{ } g_i \in \Gamma$
= $\sum_{i=1}^{n_{k-1}} G_i^{k-1} \left\{ \sum_{j=1}^{n_i} \alpha_{i,j} g_{i,j} \right\} \text{ (grouping terms)}$

- \triangleright So, we can express the differencial d_k as a G-module $n_k \times n_{k-1}$ matrix.
- \blacktriangleright The terms g_i are not defined uniquely because the stabilizer may not be trivial.
- If we choose an orientation on F then we have as well defined an orientation on $F.g$ by the G-linearity.

Free G-modules

- A G-module is free if it admits a basis e_1, \ldots, e_k .
- \triangleright For free G-modules, we can work in much the same way as for vector space, i.e., with matrices.
- In Let $\phi : M \to M'$ be a G-linear homomorphism between two free G-modules and (e_i) , (e'_i) two basis of M, M'.
- \blacktriangleright We can write $\phi(e_i)=\sum_j f_j$ a $_{ij}$ with $a_{ij}\in \mathbb{Z} G$
- \triangleright but then we have with $g_i \in \mathbb{Z}$ G

$$
\begin{array}{rcl}\n\phi(\sum_i e_i g_i) & = & \sum_i \phi(e_i g_i) \\
& = & \sum_i \phi(e_i) g_i \\
& = & \sum_j f_j(\sum_i a_{ij} g_i)\n\end{array}
$$

 \triangleright More generally the "right" matrix product is $AB = C$ with $c_{ij} = \sum_{k} b_{kj} a_{ik}.$

Resolutions

Take G a group.

 \triangleright A resolution of a group G is a sequence of G-modules $(M_i)_{i>0}$:

$$
\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots
$$

together with a collection of G-linear operators $d_i: M_i \to M_{i-1}$ such that Ker $d_i = \text{Im } d_{i-1}$

- \triangleright What is useful to homology computations are free resolutions with all M_i being free G-modules.
- In general if a group G acts on a polytope P then some faces have non-trivial stabilizer. So, the resolution that comes from the cell-complex is not free in general.
- In terms of homology if an element s stabilizes a face F then we have

$$
F.s = \epsilon_F(s)F
$$
 with $\epsilon_F(s) = \pm 1$

whether s preserves the orientation of F or not. The sign can be computed by the same technique as for $\epsilon(F', F)$.

IV. Group homology

Covering space

- If X, Y are two topological spaces, then a mapping $\phi: X \to Y$ is called a covering map if
	- For any $y \in Y$, there exist a neighborhood N_y of y
	- ► such that for any $x\in\phi^{-1}(y)$ there exist a neighborhood \mathcal{N}_x with
		- $\blacktriangleright N_{\rm v} \subset \phi(N_{\rm x}),$
		- $\blacktriangleright N_x \cap N_{x'} = \emptyset$ if $x \neq x'$,
		- \blacktriangleright $\phi : N_x \rightarrow \phi(N_x)$ is bijective.
- ► As a consequence $|\phi^{-1}(y)|$ is independent of y and ϕ is surjective.
- \triangleright There exist a group G of homeomorphisms of X such that for any $x, x' \in X$, there is a $g \in G$ such that $g(x) = x$.
- \blacktriangleright We then write $X/G = Y$.
- An example is $X = \mathbb{R}$, $Y = S^1 = \{z \in \mathbb{C} : |z| = 1\}$ and $\phi(x) = e^{ix}$

Group homology

- \blacktriangleright Take G a group, suppose that:
	- \triangleright X is a contractible space.
	- \triangleright G acts fixed point free on X.

Then we define $H_p(G) = H_p(X/G)$.

- \blacktriangleright The space X is then a classifying space.
- \triangleright Every group has a classifying space but finding them can be difficult.
- \blacktriangleright For example if $G=\mathbb{Z}^2$, then $X=\mathbb{R}^2$, $Y=X/G$ is a 2-dimensional torus and one has
	- $H_0(G) = \mathbb{Z}$, $H_1(G) = \mathbb{Z}^2$, $H_2(G) = \mathbb{Z}$, $H_i(G) = 0$ for $i > 2$.

Using resolutions for homology

- \triangleright The constructon of abstract spaces is relatively complicated.
- \triangleright The method is to take a free-resolution of a group G.
- \triangleright The homology is then obtained by killing off the G-action of a free resolution, i.e replacing the $\mathsf{G}\text{-modules }({\mathbb Z} G)^k$ by ${\mathbb Z}^k$, replacing accordingly the d_i by \tilde{d}_i and getting

$$
H_i(G,\mathbb{Z})=\mathsf{Ker}\,\,\widetilde{\mathsf{d}}_i/\mathrm{Im}\,\widetilde{\mathsf{d}}_{i-1}
$$

- \triangleright The big problem is to get free resolutions. It is not an easy task.
- \blacktriangleright Two alternatives:
	- \triangleright Compute free resolutions for the stabilizers and put it all together with the CTC Wall lemma. KeyWord: Spectral sequence
	- \triangleright Compute a resolution with only finite stabilizers: Kill the faces with orientation reversing stabilizers. Kill the G-action. Then compute the quotient. It is the homology modulo the torsion.

V. Perfect forms and domains

Arithmetic minimum of positive definite matrices

- Denote by S^n the vector space of real symmetric $n \times n$ matrices, $S_{>0}^n$ the convex cone of real symmetric positive definite $n \times n$ matrices and $S^n_{\geq 0}$ the convex cone of real symmetric positive semidefinite $n \times n$ matrices.
- ► The arithmetic minimum of $A \in S^n_{>0}$ is

$$
\min(A) = \min_{x \in \mathbb{Z}^n - \{0\}} A[x] \text{ with } A[x] = x^T A x
$$

▶ The minimal vector set of $A \in S^n_{>0}$ is

$$
Min(A) = \{x \in \mathbb{Z}^n \mid A[x] = min(A)\}
$$

 \triangleright Both min(A) and Min(A) can be computed using some programs (for example SV by Vallentin)

• The matrix
$$
A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$
 has

Min(
$$
A_{hex}
$$
) = { \pm (1, 0), \pm (0, 1), \pm (1, -1)}.

Equivalence and Stabilizer

If $A, B \in S^n_{>0}$, they are called arithmetically equivalent if there is at least one $P \in GL_n(\mathbb{Z})$ such that

$$
A = P^T B P
$$

► The arithmetic automorphism group of $A \in S^n_{>0}$ is defined as the set of $P \in GL_n(\mathbb{Z})$ such that

$$
A = P^T A P
$$

- \triangleright In practice, Plesken/Souvignier wrote a program ISOM for testing arithmetic equivalence and a program AUTO for computing automorphism groups.
- \triangleright Those program requires to find a set of short vectors and use partition backtrack.
- \blacktriangleright They are a-priori exponential in time but in practice more than ok in dimension less than 10.

Perfect forms and domains

► A matrix $A \in S^n_{>0}$ is perfect (Korkine & Zolotarev) if the equation

$$
B \in S^n \text{ and } x^T B x = \min(A) \text{ for all } x \in \text{Min}(A)
$$

implies $B = A$.

- ▶ Theorem: (Korkine & Zolotarev) If a form is extreme then it is perfect.
- \triangleright Up to a scalar multiple, perfect forms are rational.
- If $v \in \mathbb{Z}^n$ then the corresponding rank 1 form is $p(v) = vv^T$.
- If A is a perfect form, its perfect domain is

$$
\mathsf{Dom}(A) = \sum_{v \in \mathsf{Min}(A)} \mathbb{R}_+ p(v)
$$

- If A has m shortest vectors then Dom(A) has $\frac{m}{2}$ extreme rays.
- \triangleright So actually, the perfect domains realize a tessellation not of $S_{>0}^n$, nor $S_{\geq 0}^n$ but of the rational closure $S_{rat,\geq 0}^n$.

Finiteness

- \triangleright Theorem: (Voronoi) Up to arithmetic equivalence there is only finitely many perfect forms.
- \blacktriangleright The group $GL_n(\mathbb{Z})$ acts on $S^n_{>0}$:

 $Q \mapsto P^t Q P$

and we have $\mathsf{Min}(P^t Q P) = P^{-1} \mathsf{Min}(Q)$

- ▶ Dom $(P^{\mathsf{T}} Q P) = c(P)^{\mathsf{T}}$ Dom $(Q) c(P)$ with $c(P) = (P^{-1})^{\mathsf{T}}$
- For $n = 2$, we get the classical picture:

Known results on lattice packing density maximization

- \blacktriangleright The enumeration of perfect forms is done with the Voronoi algorithm.
- \triangleright The number of orbits of faces of the perfect domain tessellation is much higher but finite (Known for $n \le 7$)
- Blichfeldt used Korkine-Zolotarev reduction theory.
- \triangleright Cohn & Kumar used Fourier analysis and Linear programming.

VI. Ryshkov polyhedron and the Voronoi algorithm

The Ryshkov polyhedron

 \blacktriangleright The Ryshkov polyhedron R_n is defined as

$$
R_n = \{A \in S^n \text{ s.t. } A[x] \ge 1 \text{ for all } x \in \mathbb{Z}^n - \{0\}\}
$$

- \blacktriangleright R_n is invariant under the action of $GL_n(\mathbb{Z})$.
- \triangleright R_n is locally polyhedral, i.e. for a given $A \in R_n$

$$
\{x\in\mathbb{Z}^n \text{ s.t. } A[x]=1\}
$$

is finite

- \triangleright Vertices of R_n correspond to perfect forms.
- ► For a form $A \in R_n$ we define the local cone

$$
Loc(A) = \{ Q \in S^n \text{ s.t. } Q[x] \ge 0 \text{ if } A[x] = 1 \}
$$

The Voronoi algorithm

 \blacktriangleright Find a perfect form (say A_n), insert it to the list $\mathcal L$ as undone.

 \blacktriangleright Iterate

- For every undone perfect form A in \mathcal{L} , compute the local cone $Loc(A)$ and then its extreme rays.
- For every extreme ray r of $Loc(A)$ realize the flipping, i.e. compute the adjacent perfect form $A'=A+\alpha r$.
- If A' is not equivalent to a form in $\mathcal L$, then we insert it into $\mathcal L$ as undone.
- \blacktriangleright Finish when all perfect forms have been treated.

The sub-algorithms are:

- \triangleright Find the extreme rays of the local cone $Loc(A)$ (use CDD or LRS or any other program)
- For any extreme ray r of $Loc(A)$ find the adjacent perfect form A' in the Ryshkov polyhedron R_n
- \triangleright Test equivalence of perfect forms using ISOM

Flipping on an edge I

Min(
$$
A_{hex}
$$
) = { \pm (1, 0), \pm (0, 1), \pm (1, -1)}

with

$$
A_{hex} = \left(\begin{array}{cc} 1 & 1/2 \\ 1/2 & 1 \end{array}\right) \text{ and } D = \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)
$$

Flipping on an edge II

 $Min(B) = {\pm(1,0), \pm(0,1)}$

with

$$
B=\left(\begin{array}{cc}1&1/4\\1/4&1\end{array}\right)=A_{hex}+D/4
$$

Flipping on an edge III

$$
\mathsf{Min}(\mathcal{A}_{\mathsf{sqr}}) = \{\pm(1,0), \pm(0,1)\}
$$

with

$$
A_{\mathit{sqr}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) = A_{\mathit{hex}} + D/2
$$

Flipping on an edge IV

with

 $\mathsf{Min}(\tilde{\mathsf{A}}_{\mathsf{hex}}) = \{\pm(1,0), \pm(0,1), \pm(1,1)\}$ $\tilde{A}_{hex}=\left(\begin{array}{cc} 1 & -1/2 \ -1/2 & 1 \end{array}\right)=A_{hex}+D$

The Ryshkov polyhedron R_2

Well rounded forms and retract

- A form Q is said to be well rounded if it admits vectors v_1 , \ldots , v_n such that
	- \blacktriangleright (v_1, \ldots, v_n) form a \mathbb{R} -basis of \mathbb{R}^n (not necessarily a \mathbb{Z} -basis)
	- \triangleright v_1, \ldots, v_n are shortest vectors of Q.
- \triangleright Well rounded forms correspond to bounded faces of R_n .
- \triangleright Every form can be continuously deformed to a well rounded form and this defines a retracting homotopy of R_n onto a polyhedral complex WR_n of dimension $\frac{n(n-1)}{2}$.
- Every face of WR_n has finite stabilizer.
- \triangleright Actually, in term of dimension, we cannot do better:
	- \triangleright A. Pettet and J. Souto, Minimality of the well rounded retract, Geometry and Topology, 12 (2008), 1543-1556.
- \triangleright We also cannot reduce ourselves to lattices whose shortest vectors define a $\mathbb Z$ -basis of $\mathbb Z^n$.

Topological applications

- \blacktriangleright The fact that we have finite stabilizers for all faces means that we can compute rational homology/cohomology of $GL_n(\mathbb{Z})$ efficiently.
- ► This has been done for $n \leq 7$
	- ▶ P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory and the cohomology of modular groups, Adv. Math 245 (2013) 587–624.
- As an application, we can compute $K_n(\mathbb{Z})$ for $n \leq 8$.
- \triangleright By using perfect domains, we can compute the action of Hecke operators on the cohomology.
- ► This has been done for $n < 4$:
	- ▶ P.E. Gunnells, Computing Hecke Eigenvalues Below the Cohomological Dimension, Experimental Mathematics 9-3 (2000) 351–367.
- \triangleright The above can, in principle, be extended to the case of $GL_n(R)$ with R a ring of algebraic integers.

VII. Tessellations

Linear Reduction theories for $Sⁿ$

Some $\mathsf{GL}_n(\mathbb{Z})$ invariant tessellations of $S^n_{rat,\geq 0}$:

- \triangleright The perfect form theory (Voronoi I) for lattice packings (full face lattice known for $n \leq 7$, perfect domains known for $n \leq 8$
- \triangleright The central cone compactification (Igusa & Namikawa) (Known for $n \leq 6$)
- \triangleright The L-type reduction theory (Voronoi II) for Delaunay tessellations (Known for $n < 5$)
- \triangleright The C-type reduction theory (Ryshkov & Baranovski) for edges of Delaunay tessellations (Known for $n \leq 5$)
- \blacktriangleright The Minkowski reduction theory (Minkowski) it uses the successive minima of a lattice to reduce it (Known for $n \le 7$) not face-to-face
- \triangleright Venkov's reduction theory also known as Igusa's fundamental cone (finiteness proved by Crisalli and Venkov)

Central cone compactification

 \triangleright We consider the space of integral valued quadratic forms:

$$
I_n = \{A \in S^n_{>0} \text{ s.t. } A[x] \in \mathbb{Z} \text{ for all } x \in \mathbb{Z}^n\}
$$

All the forms in I_n have integral coefficients on the diagonal and half integral outside of it.

- \blacktriangleright The centrally perfect forms are the elements of I_n that are vertices of conv I_n .
- **►** For $A \in I_n$ we have $A[x] \geq 1$. So, $I_n \subset R_n$
- Any root lattice is a vertex both of R_n and conv I_n .
- ► The centrally perfect forms are known for $n \leq 6$:

► By taking the dual we get tessellations of $S_{rat, \geq 0}^n$.

Non-polyhedral reduction theories

- \triangleright Some works with non-polyhedral, but still manifold domains:
	- \triangleright R. MacPherson and M. McConnel, Explicit reduction theory for Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.
	- \triangleright D. Yasaki, An explicit spine for the Picard modular group over the Gaussian integers, Journal of Number Theory, 128 (2008) 207–234.
- \triangleright Other works in complex hyperbolic space using Poincaré polyhedron theorem:
	- \blacktriangleright M. Deraux, Deforming the \mathbb{R} -fuchsian (4, 4, 4)-lattice group into a lattice.
	- \triangleright E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups in complex hyperbolic geometry, Topology 39 (2000) 1209–1223.
- \triangleright Other works for non-manifold setting would be:
	- \blacktriangleright T. Brady, The integral cohomology of Out₊(F_3), Journal of Pure and Applied Algebra 87 (1993) 123–167.
	- \triangleright K.N. Moss, Cohomology of SL(n, $\mathbb{Z}[1/p]$), Duke Mathematical Journa 47-4 (1980) 803–818.

VIII. Modular forms

Modular forms for $SL(2, \mathbb{Z})$

- ► We call $\mathbb{H} = \{z \in \mathbb{C} \text{ s.t. } Im(z) > 0\}$ the upper half-plane.
- A function $f : \mathbb{H} \to \mathbb{C}$ is called a modular form of weight k for $SL(2, \mathbb{Z})$ if:
	- \blacktriangleright f is holomorphic

• For any matrix
$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})
$$
 we have

$$
f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)
$$

- \blacktriangleright f is holomorphic at the cusps.
- \triangleright Modular forms are of primary importance in number theory.
- Exect Let us call M_k the space of modular forms of weight k. We have the Shimura-Eichler isomorphism:

$$
M_k \simeq H_1(SL_2(\mathbb{Z}), R_{k-2})
$$

with R_k the space of homogeneous polynomials of degree 2.

 \blacktriangleright Note that the space $\mathbb H$ can be mapped onto $S^2_{>0}.$

The general case and Hecke operators

- \triangleright We want to find modular forms for some finite index subgroups Γ of $SL(n, \mathbb{Z})$ with $n > 2$ (and other groups as well).
- \triangleright What is known is that the spaces of modular forms are isomorphic to the space

$H_k(Γ, Q)$

- \triangleright But in order to understand the operators we need more than just the dimensio and the solution to that is to consider the Hecke operators.
- \triangleright This is the only way we know of extracting the arithmetic informations.

IX. Hecke operators on homology

Definitions

We take Γ a finite index subgoup of $SL(n, \mathbb{Z})$.

- \blacktriangleright We consider elements $g\in\mathsf{GL}(n,\mathbb{Q})$ such that $\mathsf{\Gamma}\cap g^{-1}\mathsf{\Gamma} g$ has finite index in Γ.
- \triangleright We want to consider the action of g on the homology classes. The problem is that the homology are obtained after killing the Γ action, so we need to consider something else than just g .
- \blacktriangleright The idea is to split the double coset

$$
\Gamma g \Gamma = g_1 \Gamma \cup g_2 \Gamma \cup \cdots \cup g_m \Gamma
$$

into right cosets.

- \triangleright The splitting can be done by a very simple iterative algorithm if we have:
	- **A** generating set for Γ.
	- **An oracle function** ϕ **for testing membership in Γ**

Actions on the perfect form complex

- \triangleright A k-dimensional face F of the perfect form complex is defined as a family of vectors v_1, \ldots, v_m with $v_i \in \mathbb{Z}^n$.
- In The image F.g is defined by the vectors v_1g, \ldots, v_mg .
- In dimension $k = 1$ all is ok:
	- \triangleright They are spanned by just one vector. So the image $F.g$ is spanned by v_1g .
	- \triangleright v_1g is not necessarily integral, but it is a multiple of an integral vector.
	- \triangleright So, we can define the action in dimension 1.
- \triangleright For higher dimensions we want to do recursively. That is if:

$$
d_k F = \sum_i \alpha_i F_i h_i \text{ with } h_i \in \Gamma
$$

then

$$
d_k(F.g) = b = \sum_i \alpha_i F_i h_i g
$$

= $\sum_i \alpha_i F_i g_i k_i$ with $k_i \in \Gamma$

So, we need to compute on all cosets. We must have $d_{k-1}b = 0.$

Two dimensional example

 \blacktriangleright Let us take the face $F = \{(1,0), (0,1)\}$ and $g = \left(\begin{array}{cc} 2 & 0 \ 1 & 1 \end{array} \right)$.

Computing on the perfect form complex: Groups

- \triangleright We need to compute stabilizers of cells (possibly infinite) and checking equivalence.
- In What we can do is for a face $F = \{v_1, \ldots, v_m\}$ with rank $\{v_1, \ldots, v_m\} = k < n$ is to:
	- ► Find a subspace $W \subset \mathbb{Z}^n$ of rank k with $v_i \in F$ and $W = (W \otimes \mathbb{R}) \cap \mathbb{Z}^n$.
	- \triangleright Compute the finite group of automorphism of F in W by using AUTO.
	- \triangleright Determine directly the group preserving W pointwise.

This requires doing the number theory which is ok for \mathbb{Z}^n but harder in other cases.

- An alternative is for a face F to consider all full dimensional cells G with $F \subset G$. We then:
	- ighthave a finite set of such pairs (F, G) up to equivalence.
	- \triangleright We can enumerate all of them by using the full-dimensional cells.

This is harder computationally but much simpler and general.

Computing on the perfect form complex: Equations I

 \blacktriangleright In order to build the Hecke operators, we need to be able to solve

$$
d_kx=b
$$

for x a k-dimensional chain and b a $k - 1$ dimensional chain.

- A necessary and sufficient condition for x to exist is $d_{k-1}b = 0.$
- \blacktriangleright In other words we have an infinite integral linear system.
- \triangleright The chosen solution is to take a family C_1, \ldots, C_r of top-dimensional cells such that
	- Any face occuring in b is contained in at least one C_i .
	- \triangleright The graph defined by all C_i with adjacency relation is connected.
- If the system has no solution then we iterate by adding all cells neighboring to the C_i .

Computing on the perfect form complex: Equations II

 \triangleright We are thus led to trying to find solutions of equations

$$
Ax = b
$$

with A a very large matrix.

- \triangleright We want to find sparse solutions because they are expected to be the nicest and simplest (compressed sensing).
- \triangleright When searching for sparse solutions, a good heuristic is to svole the linear program

$$
\min \|x\|_1 \text{ with } Ax = b
$$

- \triangleright We found good results with GLPK and bad ones with LP SOLVE and cdd.
- \triangleright Further improvement depend critically on improvements to the solver.

The invariance problem I

We set $F.g = \sum_i \alpha_i F_i g_i$.

In order for the operator to be consistent we need that for every s stabilizing F we have

$$
F.\mathit{sg} = F.\mathit{ge}_F(s)
$$

If $sg = g'v$ with $g'\Gamma \neq g\Gamma$ then we simply write

$$
F.g'=(F.g)v^{-1}\epsilon_F(s)
$$

- ► However if $sg = gv$ with $v \in \Gamma$ then we face a consistency problem because the solution of our system is not necessarily integral.
- Exect us call $\Gamma(F, g)$ the corresponding stabilizer (maybe infinite).
- Extribution Let us call $O(x)$ the orbit of the solution x under $\Gamma(F, g)$.
- \blacktriangleright The following is invariant:

$$
\frac{1}{|O(x)|}\sum_{u\in O(x),u.g=x}u\epsilon_F(g)
$$

The invariance problem II

 \blacktriangleright For our example this gives

- In order to have $O(x)$ finite we impose that the solution x has the same singularities as $F.g.$
- If the solutions are not consistent then we cannot solve the system.
- \triangleright By taking the average we forfeit the integral solution and so we can only compute the action on rational homology.

The action on homology

- Say, the group $H_k(\Gamma,\mathbb{Q})$ has dimension p.
- \blacktriangleright It has a basis of cycles

$$
c_i = \sum_{j=1}^{n_k} \alpha_{i,j} F_i
$$

with $\alpha_{i,j} \in \mathbb{Z}$ and F_i representatives of orbits of k-dimensional faces of the cell-complex.

 \triangleright The Hecke operator on a cycle c is defined as

$$
T_g(c)=\sum_i cg_i
$$

- \blacktriangleright Theorem: The operator T_g preserves H_k .
- \blacktriangleright The characteristic polynomial of T_g is the important arithmetic information.

THANK YOU