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|. Computing with
polytopes



Polytopes, definition

» A polytope P C R” is defined alternatively as:
» The convex hull of a finite number of points v?, ..., v™:

P={veR"|v=> Xv with \; >0and > X\ =1}

» The following set of solutions:
P = {x € R" | fj(x) > b; with f; linear}

with the condition that P is bounded.
» The cube is defined alternatively as
» The convex hull of the 2" vertices

{(X17 e ;Xn) Wlth Xj = il}
» The set of points x € R” satisfying to

x,-glandx,-Z—l



Facets

v

v

and vertices

A vertex of a polytope P is a point v € P, which cannot be
expressed as v = Av! + (1 — A)v? with 0 < A < 1 and
vi£v2 e P,

A polytope is the convex hull of its vertices and this is the
minimal set defining it.

A facet of a polytope is an inequality f(x) — b > 0, which
cannot be expressed as

f(x) — b= Af(x) — b1) + (1 — A)(f2(x) — b2) with

fi(x) — bi > 0 on P.

A polytope is defined by its facet inequalities. and this is the
minimal set of linear inequalities defining it.

The dual-description problem is the problem of passing from
one description to another.

There are several programs CDD, LRS for computing
dual-description computations.

In case of large problems, we can use the symmetries for
faster computation.



Linear programs

» A linear program is the problem of maximizing a linear
function f(x) over a set P defined by linear inequalities.

P ={xecR? suchthat fi(x)> b;}

with f; linear and b; € R.
» The solution of linear programs is attained at vertices of P.
» There are two classes of solution methods:

Gptimal solution vertex Gptimal solution vertex
Simplex method Interior point method
» Simplex methods use exact arithmetic but have bad
theoretical complexity
> Interior point methods have good theoretical complexity but
only gives an approximate vertex.



Face complex

» A face of a polytope P is a set defined by f(x) = 0 with f an
affine function that is positive on P.

> Faces vary in dimension between 0 (vertices) and n —1
(facets).

> The set of faces form a lattice under the inclusion relation, i.e.
they are completely described by the set of vertices
Sc{1,...,p}.

» If F, F’ are faces of dimenion k, k +2 with F C F’ then there
exist two faces Fi, Fo» with F C F; C F'.

» There are essentially two techniques for computing the set of
faces of a polytope P:

» We know vertices and facets of P: Then given a subset S, find
all the facets containing the vertices of S, check if the rank is
correct (linear algebra)

» We know only the vertices of P: Checking if a set defines a
face can be done by linear programming.

The second approach is good if one wants the low dimensional
faces and the facets cannot be computed.



Boundary operator |
Let us take a n-dimensional polytope P
» Given a face F we can define its differential (boundary) by

dF = > e(F',F)F’
F'CF
With e(F', F) = £1.
» Essentially all algorithm for computing face lattice also give
the boundary operators.

» But the sign can be troublesome. Essentially there are two
possible orientations on a face F and we have to make
decisions.

» For an edge e = {v,Vv'} we set de = v/ — v (arbitrary choice)

» We have the collapsing relation

dod=0

By using it we can recursively compute the signs e(F’, F) up
to a global sign for F.



Boundary operator |l

» The recursive method works well, but it is painful to program

and it requires the knowledge of all faces from dimension 0 to
k.

» The recursive method does not use the polyhedral linear
structure of R” which is an advantage (generality) and an
inconvenient (speed and complexity).

» For each face F we define a spanning set s(F).

» The formula for € is then:
e(F', F) = sign det Maty ) s(F') U Cent(F)

with Cent(F) the center of the face F.

» The formula only requires that we know the k — 1 dimensional
and k-dimensional faces.



ll. Homology



Polytopal complex

» A polytopal complex PC is a family of cells:

» It contains () and P such that for every face F one has
hcFcP.
» If Fis a face and

(Z):F()CFlC'-'CFp:F

is a chain, which cannot be further refined, then dim F = p.
» We set dim PC =dim P —1
» If F,_q and Fpyq are two cells of dimension p —1 and p+1
then there exist exactly two cells G, G’ such that

Fp,1 C G, G c Fp+1

» The faces F are equivalent to polytopes.
> Example:

» Any plane graph, any map on a surface.
» Any polyhedral subdivision
» Any polytope.



Homology from the tesselation

Let PC be a polytopal complex.

» For any 0 < p < dim PC denote by C,(PC,Z) the Z-module,
whose basis is the p-dimensional faces of PC.

» We denote by d, the boundary operator:
dp : Co(PC,Z) = Cp—1(PC,Z)

Note that dy : Co — {0}.
» We define

B,(PC,Z) = Im dpi1 and Z,(PC,Z) = Ker dp
» From the relation d,d,—1 = 0 we have B, C Z, and we define
Hy(PC,Z) = Zp/B,

» H; is a sum of Z (rational) and Z/a7 groups (torsion).



Topological invariance

» If M is a manifold and PC; and PCy are two polytopal
subdivision modelled on it, then

Hp(PC1,Z) = Hp(PC2,Z) for 0 < p < dim(M)x

» Ho(PC) = Z™ with m the number of connected components.

» A space X is called contractible if it can be continuously
deformed to a point x. For a contractible space, one has

Ho(X) = Z and Hp(X) = {0} for p >0
» For a n-dimensional polytope P we have

Z ifi=0ori=n-1
Hi(P) = { 0 otherwise

The reason is that a n-dimensional polytope is essentially a
n — 1 dimensional sphere.



I1l1. Resolutions
and G-modules



G-modules

> We use the GAP notation for group action, on the right.
» A G-module M is a Z-module with an action

MxG — M
(m,g) — mg
» The group ring ZG formed by all finite sums

Z agg with ag € Z
geai
is a G-module.
» If the orbit of a point v under a group G is {vi,...,Vvn}, then
the set of sums
m
Za,-v,- with a; € Z
i=1
is a G-module.
» We can define the notion of generating set, free set, basis of a
G-module. But not every finitely generated G-module admits
a basis.



Polyhedral complex and G-module

Let us take P a n-dimensional polytopes and a group G acting on
it.

» Denote ny the number of orbits of faces of dimension k.

» For each dimension k we need to select a number of orbit
representatives G, ..., G,’,‘k.

» The differentials of a k-dimensional face F is
diF = Z,Nzl a;F; (no group action)
N k—1
Ei:l aiGp(,-) 8i 8i € r
S GH! {Zj’zl a;Jg,-,j} (grouping terms)

» So, we can express the differencial dy as a G-module
Nk X Ng_1 matrix.

» The terms g; are not defined uniquely because the stabilizer
may not be trivial.

» If we choose an orientation on F then we have as well defined
an orientation on F.g by the G-linearity.



Free G-modules

» A G-module is free if it admits a basis eq, ..., e.

» For free G-modules, we can work in much the same way as for
vector space, i.e., with matrices.

» Let ¢ : M — M’ be a G-linear homomorphism between two
free G-modules and (¢;), (e) two basis of M, M'.

» We can write ¢(e;) = ZJ. fa; with a; € ZG
> but then we have with g; € ZG

o(> eigi) =

Il
I
C."\,%\%
©
&

> More generally the “right” matrix product is AB = C with
Cij = Zk bkja,-k.



Resolutions
Take G a group.
> A resolution of a group G is a sequence of G-modules
(M;)i>o:
Zo+— My + My < My« ...

together with a collection of G-linear operators
d; : M; — M;_q1 such that Ker d; = Im d;_1

» What is useful to homology computations are free resolutions
with all M; being free G-modules.

» In general if a group G acts on a polytope P then some faces
have non-trivial stabilizer. So, the resolution that comes from
the cell-complex is not free in general.

> In terms of homology if an element s stabilizes a face F then

we have
F.s = er(s)F with eg(s) = +1

whether s preserves the orientation of F or not. The sign can
be computed by the same technique as for e(F’, F).



V. Group
homology



Covering space

» If X, Y are two topological spaces, then a mapping
¢ : X — Y is called a covering map if

» For any y € Y, there exist a neighborhood N, of y
» such that for any x € ¢~1(y) there exist a neighborhood N,
with
> Ny C ¢(Ny),
> NoN Ny =0if x #x,
> ¢ Ny — ¢(Ny) is bijective.
» As a consequence |¢~1(y)| is independent of y and ¢ is
surjective.

» There exist a group G of homeomorphisms of X such that for
any x,x’ € X, there is a g € G such that g(x) = x.

» We then write X/G =Y.

> An example is X =R, Y=S'={ze€C:|z|=1} and
P(x) = e



Group homology

» Take G a group, suppose that:
» X is a contractible space.
» G acts fixed point free on X.
Then we define H,(G) = Hp(X/G).
» The space X is then a classifying space.

» Every group has a classifying space but finding them can be
difficult.

» For example if G = Z?, then X =R?, Y = X/G is a
2—dimensiona| torus and one has

Ho(G)

H(G) =

H(G) =

Hi(G) = 0 for i>2.

v

v vy



Using resolutions for homology

» The constructon of abstract spaces is relatively complicated.
» The method is to take a free-resolution of a group G.

» The homology is then obtained by killing off the G-action of a
free resolution, i.e replacing the G-modules (ZG)* by 7k,
replacing accordingly the d; by d; and getting

Hi(G,Z) = Ker di/im &;_,

» The big problem is to get free resolutions. It is not an easy
task.

» Two alternatives:

» Compute free resolutions for the stabilizers and put it all
together with the CTC Wall lemma. KeyWord: Spectral
sequence

» Compute a resolution with only finite stabilizers: Kill the faces
with orientation reversing stabilizers. Kill the G-action. Then
compute the quotient. It is the homology modulo the torsion.



V. Perfect forms

and domains



Arithmetic minimum of positive definite matrices

» Denote by S” the vector space of real symmetric n X n
matrices, SZ the convex cone of real symmetric positive
definite n x n matrices and SZ, the convex cone of real
symmetric positive semidefinite n x n matrices.

» The arithmetic minimum of A € SZ; is

min(A) = Xeggi_n{o} A[x] with A[x] = xT Ax

» The minimal vector set of A € 52, is
Min(A) = {x € Z" | A[x] = min(A)}

» Both min(A) and Min(A) can be computed using some
programs (for example SV by Vallentin)

» The matrix Apex = ( i é ) has

Min(Apex) = {£(1,0), £(0, 1), £(1, ~1)}.



Equivalence and Stabilizer

>

If A, B € S, they are called arithmetically equivalent if there

is at least one P € GL,(Z) such that
A=PTBP

The arithmetic automorphism group of A € S is defined as
the set of P € GL,(Z) such that

A=PTAP

In practice, Plesken/Souvignier wrote a program ISOM for
testing arithmetic equivalence and a program AUTO for
computing automorphism groups.

Those program requires to find a set of short vectors and use
partition backtrack.

They are a-priori exponential in time but in practice more
than ok in dimension less than 10.



Perfect forms and domains

» A matrix A € 52 is perfect (Korkine & Zolotarev) if the
equation

B € S™ and x'Bx = min(A) for all x € Min(A)

implies B = A.

» Theorem: (Korkine & Zolotarev) If a form is extreme then it
is perfect.

» Up to a scalar multiple, perfect forms are rational.

» If v € Z" then the corresponding rank 1 form is p(v) = w'.

> If Ais a perfect form, its perfect domain is

Dom(A) = Z Ryp(v
vEMin(A)
» If A has m shortest vectors then Dom(A) has 7 extreme rays.

» So actually, the perfect domains realize a tessellation not of
5%y, nor 5, but of the rational closure 57, .



Finiteness

» Theorem:(Voronoi) Up to arithmetic equivalence there is only
finitely many perfect forms.

» The group GL,(Z) acts on SZ:
Q— P'QP

and we have Min(PtQP) = P~ Min(Q)
> Dom(PTQP) = ¢(P)" Dom(Q)c(P) with c(P) = (P~1)"
» For n = 2, we get the classical picture:




Known results on lattice packing density maximization

o
3

Nr. of perfect forms

Best lattice packing

N
£

O 00O ~NOOCTL P~ WN

1 (Lagrange)
1 (Gauss)

2 (Korkine & Zolotarev)
3 (Korkine & Zolotarev)
7 (Barnes)

33 (Jaquet)
10916 (DSV)
>500000

?

Es (Blichfeldt & Watson)

E; (Blichfeldt & Watson)

Es (Blichfeldt & Watson)
Ao?

Leech (Cohn & Kumar)

» The enumeration of perfect forms is done with the Voronoi

algorithm.

» The number of orbits of faces of the perfect domain
tessellation is much higher but finite (Known for n <7)

» Blichfeldt used Korkine-Zolotarev reduction theory.

» Cohn & Kumar used Fourier analysis and Linear programming.




VI. Ryshkov polyhedron
and the Voronoi algorithm



The Ryshkov polyhedron

» The Ryshkov polyhedron R, is defined as

R,={A€ S"st. Alx] > 1forall xeZ"—{0}}

v

Ry is invariant under the action of GL,(Z).

v

R, is locally polyhedral, i.e. for a given A € R,
{x € Z" st. Alx] =1}

is finite

v

Vertices of R, correspond to perfect forms.

v

For a form A € R, we define the local cone

Loc(A) ={Q € §" s.t. Q[x] > 0if A[x] =1}



The Voronoi algorithm

» Find a perfect form (say A,), insert it to the list £ as undone.

> lterate
» For every undone perfect form A in £, compute the local cone
Loc(A) and then its extreme rays.
» For every extreme ray r of Loc(A) realize the flipping, i.e.
compute the adjacent perfect form A’ = A+ ar.
» If A’ is not equivalent to a form in £, then we insert it into £
as undone.

» Finish when all perfect forms have been treated.

The sub-algorithms are:

» Find the extreme rays of the local cone Loc(A) (use CDD or
LRS or any other program)

» For any extreme ray r of Loc(A) find the adjacent perfect
form A’ in the Ryshkov polyhedron R,

» Test equivalence of perfect forms using ISOM



Flipping on an edge |

Min(AheX) = {:l:(]-a 0)7 i(oa 1)7 :l:(]-’ _1)}

with




Flipping on an edge Il

Min(B) = {=(1,0),£(0,1)}




Flipping on an edge Il

Min(Asqr) = {£(1,0),£(0,1)}
with
10

Ahex

sqr




Flipping on an edge IV

Min(’ahex) = {:I:(la 0)7 :I:(O, 1)7 :l:(lv 1)}

Ahex = < L _1/2 > = Ahex+ D

-1/2 1
. Ahex

with

. Khex



The Ryshkov polyhedron R,
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Well rounded forms and retract

v

A form Q@ is said to be well rounded if it admits vectors vy,
., Vp such that

» (vi,...,Vv,) form a R-basis of R” (not necessarily a Z-basis)
> vi,...,V, are shortest vectors of Q.
» Well rounded forms correspond to bounded faces of R,,.

» Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of R, onto a
polyhedral complex WR,, of dimension n(n-1)

» Every face of WR,, has finite stabilizer.

» Actually, in term of dimension, we cannot do better:

» A. Pettet and J. Souto, Minimality of the well rounded retract,
Geometry and Topology, 12 (2008), 1543-1556.

» We also cannot reduce ourselves to lattices whose shortest

vectors define a Z-basis of Z".



Topological applications

>

The fact that we have finite stabilizers for all faces means that
we can compute rational homology/cohomology of GL,(Z)
efficiently.

This has been done for n <7

» P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory
and the cohomology of modular groups, Adv. Math 245
(2013) 587-624.

As an application, we can compute K,(Z) for n < 8.
By using perfect domains, we can compute the action of
Hecke operators on the cohomology.

This has been done for n < 4:

» P.E. Gunnells, Computing Hecke Eigenvalues Below the
Cohomological Dimension, Experimental Mathematics 9-3
(2000) 351-367.

The above can, in principle, be extended to the case of
GL,(R) with R a ring of algebraic integers.



VIIl. Tessellations



Linear Reduction theories for S”
Some GL,(Z) invariant tessellations of S7, q:
» The perfect form theory (Voronoi |) for lattice packings (full
face lattice known for n < 7, perfect domains known for
n <38)

» The central cone compactification (Igusa & Namikawa)
(Known for n < 6)

» The L-type reduction theory (Voronoi Il) for Delaunay
tessellations (Known for n < 5)

» The C-type reduction theory (Ryshkov & Baranovski) for
edges of Delaunay tessellations (Known for n < 5)

» The Minkowski reduction theory (Minkowski) it uses the
successive minima of a lattice to reduce it (Known for n < 7)
not face-to-face

» Venkov's reduction theory also known as Igusa's fundamental
cone (finiteness proved by Crisalli and Venkov)



Central cone compactification

» We consider the space of integral valued quadratic forms:
I ={A e Sys.t Alx] € Z for all x € Z"}

All the forms in I, have integral coefficients on the diagonal
and half integral outside of it.

» The centrally perfect forms are the elements of /, that are
vertices of conv /.

» For A€ I, we have A[x] > 1. So, I, C R,

» Any root lattice is a vertex both of R, and conv /,,.

> The centrally perfect forms are known for n < 6:

dim. Centrally perfect forms
2 A, (lgusa)
3 As (lgusa)
4 A4, Dy (Igusa)
5 As, Ds (Namikawa)
6 Ag, Ds, Es (Dutour Sikiri¢)

> By taking the dual we get tessellations of 57, -o.



Non-polyhedral reduction theories

» Some works with non-polyhedral, but still manifold domains:

» R. MacPherson and M. McConnel, Explicit reduction theory for
Siegel modular threefolds, Invent. Math. 111 (1993) 575-625.

» D. Yasaki, An explicit spine for the Picard modular group over
the Gaussian integers, Journal of Number Theory, 128 (2008)
207-234.

» Other works in complex hyperbolic space using Poincaré
polyhedron theorem:
» M. Deraux, Deforming the R-fuchsian (4,4, 4)-lattice group
into a lattice.
» E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups
in complex hyperbolic geometry, Topology 39 (2000)
1209-1223.

» Other works for non-manifold setting would be:

» T. Brady, The integral cohomology of Out, (F3), Journal of
Pure and Applied Algebra 87 (1993) 123-167.

» K.N. Moss, Cohomology of SL(n,Z[1/p]), Duke Mathematical
Journa 47-4 (1980) 803-818.



VII. Modular forms



Modular forms for SL(2, Z)

» We call H={z € C s.t. Im(z) > 0} the upper half-plane.
» A function f : H — C is called a modular form of weight k for
SL(2,Z) if:
» f is holomorphic

: a b
» For any matrix A = ( c d

F (Zij) = (cz + d)*f(2)

> € SL(2,Z) we have

» f is holomorphic at the cusps.
» Modular forms are of primary importance in number theory.

> Let us call My the space of modular forms of weight k. We
have the Shimura-Eichler isomorphism:

Mk >~ Hl(SLQ(Z), kaz)

with Ry the space of homogeneous polynomials of degree 2.
> Note that the space H can be mapped onto S%O.



The general case and Hecke operators

» We want to find modular forms for some finite index
subgroups I' of SL(n,Z) with n > 2 (and other groups as
well).

» What is known is that the spaces of modular forms are
isomorphic to the space

Hk(ra Q)

» But in order to understand the operators we need more than
just the dimensio and the solution to that is to consider the
Hecke operators.

» This is the only way we know of extracting the arithmetic
informations.



|X. Hecke operators
on homology



Definitions

We take I a finite index subgoup of SL(n, Z).

» We consider elements g € GL(n, Q) such that TN g~ 'lg has
finite index in I,

» We want to consider the action of g on the homology classes.
The problem is that the homology are obtained after killing
the I action, so we need to consider something else than just
g.

» The idea is to split the double coset

lglh =gl Ugl U---Ugnl

into right cosets.

» The splitting can be done by a very simple iterative algorithm
if we have:
» A generating set for I'.
» An oracle function ¢ for testing membership in I’



Actions on the perfect form complex

» A k-dimensional face F of the perfect form complex is defined
as a family of vectors vy, ..., vy, with v; € Z".
» The image F.g is defined by the vectors v1g, ..., ving.
> In dimension k =1 all is ok:
» They are spanned by just one vector. So the image F.g is
spanned by v1g.
> v1g is not necessarily integral, but it is a multiple of an
integral vector.
» So, we can define the action in dimension 1.

> For higher dimensions we want to do recursively. That is if:

dkF = Za,’Fih,’ with h,' el

then
dk(F.g) = b = Z,- a,-F,-h,-g
= Zi Oz,'F,'g,'k,' with k; e T

So, we need to compute on all cosets. We must have
dix_1b=0.



Two dimensional example

» Let us take the face F = {(1,0),(0,1)} and g = < i (i >

» We then have

32

(1,0

(=3.1)

(-3.2)
(SN)

» So we set



Computing on the perfect form complex: Groups

» We need to compute stabilizers of cells (possibly infinite) and
checking equivalence.
» What we can do is for a face F = {v1,..., vy} with
rank{vi,...,vm} = k < nis to:
» Find a subspace W C Z" of rank k with v; € F and
W=(WgR)NZ"
» Compute the finite group of automorphism of F in W by using
AUTO.
» Determine directly the group preserving W pointwise.
This requires doing the number theory which is ok for Z" but
harder in other cases.

» An alternative is for a face F to consider all full dimensional
cells G with F C G. We then:
» have a finite set of such pairs (F, G) up to equivalence.
» We can enumerate all of them by using the full-dimensional
cells.

This is harder computationally but much simpler and general.



Computing on the perfect form complex: Equations |

v

In order to build the Hecke operators, we need to be able to
solve

dix = b
for x a k-dimensional chain and b a kK — 1 dimensional chain.
A necessary and sufficient condition for x to exist is
dk_1b=0.

In other words we have an infinite integral linear system.

» The chosen solution is to take a family (3, ... C, of

top-dimensional cells such that

» Any face occuring in b is contained in at least one C;.
» The graph defined by all C; with adjacency relation is
connected.

If the system has no solution then we iterate by adding all
cells neighboring to the C;.



Computing on the perfect form complex: Equations Il

v

We are thus led to trying to find solutions of equations
Ax =b

with A a very large matrix.

We want to find sparse solutions because they are expected to
be the nicest and simplest (compressed sensing).

When searching for sparse solutions, a good heuristic is to
svole the linear program

min || x||1 with Ax = b

We found good results with GLPK and bad ones with
LP_SOLVE and cdd.

Further improvement depend critically on improvements to
the solver.



The invariance problem |
We set F.g = Zi aiFigi.
> In order for the operator to be consistent we need that for
every s stabilizing F we have

F.sg = F.ger(s)
» If sg = g'v with g'T # gl then we simply write

F.g' = (Fg)v ler(s)

» However if sg = gv with v € ' then we face a consistency
problem because the solution of our system is not necessarily
integral.

» Let us call I'(F, g) the corresponding stabilizer (maybe
infinite).

> Let us call O(x) the orbit of the solution x under I'(F, g).

» The following is invariant:

1
o) 2 uerle)

u€O(x),u.g=x



The invariance problem Il

» For our example this gives

32)

» In order to have O(x) finite we impose that the solution x has
the same singularities as F.g.

> If the solutions are not consistent then we cannot solve the
system.

» By taking the average we forfeit the integral solution and so
we can only compute the action on rational homology.



The action on homology

>

v

Say, the group Hi(I', Q) has dimension p.
It has a basis of cycles

ng
C = E a;JF;
J=1

with «;j € Z and F; representatives of orbits of k-dimensional
faces of the cell-complex.

The Hecke operator on a cycle c is defined as
Teg(c) = Z Cc8i

Theorem: The operator T, preserves H.

The characteristic polynomial of T, is the important
arithmetic information.
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