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Institute Rudjer Bos̆ković, Croatia and
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I. Computing with

polytopes



Polytopes, definition

I A polytope P ⊂ Rn is defined alternatively as:
I The convex hull of a finite number of points v1, . . . , vm:

P = {v ∈ Rn | v =
∑
i

λiv
i with λi ≥ 0 and

∑
λi = 1}

I The following set of solutions:

P = {x ∈ Rn | fj(x) ≥ bj with fj linear}

with the condition that P is bounded.

I The cube is defined alternatively as
I The convex hull of the 2n vertices

{(x1, . . . , xn) with xi = ±1}

I The set of points x ∈ Rn satisfying to

xi ≤ 1 and xi ≥ −1



Facets and vertices
I A vertex of a polytope P is a point v ∈ P, which cannot be

expressed as v = λv1 + (1− λ)v2 with 0 < λ < 1 and
v1 6= v2 ∈ P.

I A polytope is the convex hull of its vertices and this is the
minimal set defining it.

I A facet of a polytope is an inequality f (x)− b ≥ 0, which
cannot be expressed as
f (x)− b = λ(f1(x)− b1) + (1− λ)(f2(x)− b2) with
fi (x)− bi ≥ 0 on P.

I A polytope is defined by its facet inequalities. and this is the
minimal set of linear inequalities defining it.

I The dual-description problem is the problem of passing from
one description to another.

I There are several programs CDD, LRS for computing
dual-description computations.

I In case of large problems, we can use the symmetries for
faster computation.



Linear programs
I A linear program is the problem of maximizing a linear

function f (x) over a set P defined by linear inequalities.

P = {x ∈ Rd such that fi (x) ≥ bi}

with fi linear and bi ∈ R.
I The solution of linear programs is attained at vertices of P.
I There are two classes of solution methods:

optimal solution vertex

Simplex method

optimal solution vertex

Interior point method
I Simplex methods use exact arithmetic but have bad

theoretical complexity
I Interior point methods have good theoretical complexity but

only gives an approximate vertex.



Face complex
I A face of a polytope P is a set defined by f (x) = 0 with f an

affine function that is positive on P.
I Faces vary in dimension between 0 (vertices) and n − 1

(facets).
I The set of faces form a lattice under the inclusion relation, i.e.

they are completely described by the set of vertices
S ⊂ {1, . . . , p}.

I If F , F ′ are faces of dimenion k , k + 2 with F ⊂ F ′ then there
exist two faces F1, F2 with F ⊂ Fi ⊂ F ′.

I There are essentially two techniques for computing the set of
faces of a polytope P:

I We know vertices and facets of P: Then given a subset S , find
all the facets containing the vertices of S , check if the rank is
correct (linear algebra)

I We know only the vertices of P: Checking if a set defines a
face can be done by linear programming.

The second approach is good if one wants the low dimensional
faces and the facets cannot be computed.



Boundary operator I
Let us take a n-dimensional polytope P

I Given a face F we can define its differential (boundary) by

dF =
∑
F ′⊂F

ε(F ′,F )F ′

With ε(F ′,F ) = ±1.

I Essentially all algorithm for computing face lattice also give
the boundary operators.

I But the sign can be troublesome. Essentially there are two
possible orientations on a face F and we have to make
decisions.

I For an edge e = {v , v ′} we set de = v ′ − v (arbitrary choice)

I We have the collapsing relation

d ◦ d = 0

By using it we can recursively compute the signs ε(F ′,F ) up
to a global sign for F .



Boundary operator II

I The recursive method works well, but it is painful to program
and it requires the knowledge of all faces from dimension 0 to
k.

I The recursive method does not use the polyhedral linear
structure of Rn which is an advantage (generality) and an
inconvenient (speed and complexity).

I For each face F we define a spanning set s(F ).

I The formula for ε is then:

ε(F ′,F ) = sign det Mats(F ) s(F ′) ∪ Cent(F )

with Cent(F ) the center of the face F .

I The formula only requires that we know the k − 1 dimensional
and k-dimensional faces.



II. Homology



Polytopal complex

I A polytopal complex PC is a family of cells:
I It contains ∅ and P such that for every face F one has
∅ ⊂ F ⊂ P.

I If F is a face and

∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fp = F

is a chain, which cannot be further refined, then dim F = p.
I We set dim PC = dim P − 1
I If Fp−1 and Fp+1 are two cells of dimension p − 1 and p + 1

then there exist exactly two cells G , G ′ such that

Fp−1 ⊂ G ,G ′ ⊂ Fp+1

I The faces F are equivalent to polytopes.

I Example:
I Any plane graph, any map on a surface.
I Any polyhedral subdivision
I Any polytope.



Homology from the tesselation

Let PC be a polytopal complex.

I For any 0 ≤ p ≤ dim PC denote by Cp(PC,Z) the Z-module,
whose basis is the p-dimensional faces of PC.

I We denote by dp the boundary operator:

dp : Cp(PC,Z)→ Cp−1(PC,Z)

Note that d0 : C0 → {0}.
I We define

Bp(PC,Z) = Im dp+1 and Zp(PC,Z) = Ker dp

I From the relation dpdp−1 = 0 we have Bp ⊂ Zp and we define

Hp(PC,Z) = Zp/Bp

I Hi is a sum of Z (rational) and Z/aZ groups (torsion).



Topological invariance

I If M is a manifold and PC1 and PC2 are two polytopal
subdivision modelled on it, then

Hp(PC1,Z) = Hp(PC2,Z) for 0 ≤ p ≤ dim(M)x

I H0(PC) = Zm with m the number of connected components.

I A space X is called contractible if it can be continuously
deformed to a point x . For a contractible space, one has

H0(X ) = Z and Hp(X ) = {0} for p > 0

I For a n-dimensional polytope P we have

Hi (P) =

{
Z if i = 0 or i = n − 1
0 otherwise

The reason is that a n-dimensional polytope is essentially a
n − 1 dimensional sphere.



III. Resolutions
and G -modules



G -modules
I We use the GAP notation for group action, on the right.
I A G -module M is a Z-module with an action

M × G → M
(m, g) 7→ m.g

I The group ring ZG formed by all finite sums∑
g∈G

αgg with αg ∈ Z

is a G -module.
I If the orbit of a point v under a group G is {v1, . . . , vm}, then

the set of sums
m∑
i=1

αivi with αi ∈ Z

is a G -module.
I We can define the notion of generating set, free set, basis of a

G -module. But not every finitely generated G -module admits
a basis.



Polyhedral complex and G -module
Let us take P a n-dimensional polytopes and a group G acting on
it.

I Denote nk the number of orbits of faces of dimension k .

I For each dimension k we need to select a number of orbit
representatives G k

1 , . . . , G k
nk

.

I The differentials of a k-dimensional face F is

dkF =
∑N

i=1 αiFi (no group action)

=
∑N

i=1 αiG
k−1
p(i) gi gi ∈ Γ

=
∑nk−1

i=1 G k−1
i

{∑ni
j=1 αi ,jgi ,j

}
(grouping terms)

I So, we can express the differencial dk as a G -module
nk × nk−1 matrix.

I The terms gi are not defined uniquely because the stabilizer
may not be trivial.

I If we choose an orientation on F then we have as well defined
an orientation on F .g by the G -linearity.



Free G -modules

I A G -module is free if it admits a basis e1, . . . , ek .

I For free G -modules, we can work in much the same way as for
vector space, i.e., with matrices.

I Let φ : M → M ′ be a G -linear homomorphism between two
free G -modules and (ei ), (e ′i ) two basis of M, M ′.

I We can write φ(ei ) =
∑

j fjaij with aij ∈ ZG
I but then we have with gi ∈ ZG

φ(
∑

i eigi ) =
∑

i φ(eigi )
=

∑
i φ(ei )gi

=
∑

j fj(
∑

i aijgi )

I More generally the “right” matrix product is AB = C with
cij =

∑
k bkjaik .



Resolutions
Take G a group.

I A resolution of a group G is a sequence of G -modules
(Mi )i≥0:

Z← M0 ← M1 ← M2 ← . . .

together with a collection of G -linear operators
di : Mi → Mi−1 such that Ker di = Im di−1

I What is useful to homology computations are free resolutions
with all Mi being free G -modules.

I In general if a group G acts on a polytope P then some faces
have non-trivial stabilizer. So, the resolution that comes from
the cell-complex is not free in general.

I In terms of homology if an element s stabilizes a face F then
we have

F .s = εF (s)F with εF (s) = ±1

whether s preserves the orientation of F or not. The sign can
be computed by the same technique as for ε(F ′,F ).



IV. Group
homology



Covering space

I If X , Y are two topological spaces, then a mapping
φ : X → Y is called a covering map if

I For any y ∈ Y , there exist a neighborhood Ny of y
I such that for any x ∈ φ−1(y) there exist a neighborhood Nx

with
I Ny ⊂ φ(Nx),
I Nx ∩ Nx′ = ∅ if x 6= x ′,
I φ : Nx → φ(Nx) is bijective.

I As a consequence |φ−1(y)| is independent of y and φ is
surjective.

I There exist a group G of homeomorphisms of X such that for
any x , x ′ ∈ X , there is a g ∈ G such that g(x) = x .

I We then write X/G = Y .

I An example is X = R, Y = S1 = {z ∈ C : |z | = 1} and
φ(x) = e ix



Group homology

I Take G a group, suppose that:
I X is a contractible space.
I G acts fixed point free on X .

Then we define Hp(G ) = Hp(X/G ).

I The space X is then a classifying space.

I Every group has a classifying space but finding them can be
difficult.

I For example if G = Z2, then X = R2, Y = X/G is a
2-dimensional torus and one has

I H0(G ) = Z,
I H1(G ) = Z2,
I H2(G ) = Z,
I Hi (G ) = 0 for i > 2.



Using resolutions for homology

I The constructon of abstract spaces is relatively complicated.

I The method is to take a free-resolution of a group G .

I The homology is then obtained by killing off the G -action of a
free resolution, i.e replacing the G -modules (ZG )k by Zk ,
replacing accordingly the di by d̃i and getting

Hi (G ,Z) = Ker d̃i/Im d̃i−1

I The big problem is to get free resolutions. It is not an easy
task.

I Two alternatives:
I Compute free resolutions for the stabilizers and put it all

together with the CTC Wall lemma. KeyWord: Spectral
sequence

I Compute a resolution with only finite stabilizers: Kill the faces
with orientation reversing stabilizers. Kill the G -action. Then
compute the quotient. It is the homology modulo the torsion.



V. Perfect forms

and domains



Arithmetic minimum of positive definite matrices

I Denote by Sn the vector space of real symmetric n × n
matrices, Sn

>0 the convex cone of real symmetric positive
definite n × n matrices and Sn

≥0 the convex cone of real
symmetric positive semidefinite n × n matrices.

I The arithmetic minimum of A ∈ Sn
>0 is

min(A) = min
x∈Zn−{0}

A[x ] with A[x ] = xTAx

I The minimal vector set of A ∈ Sn
>0 is

Min(A) = {x ∈ Zn | A[x ] = min(A)}

I Both min(A) and Min(A) can be computed using some
programs (for example SV by Vallentin)

I The matrix Ahex =

(
2 1
1 2

)
has

Min(Ahex) = {±(1, 0),±(0, 1),±(1,−1)}.



Equivalence and Stabilizer

I If A,B ∈ Sn
>0, they are called arithmetically equivalent if there

is at least one P ∈ GLn(Z) such that

A = PTBP

I The arithmetic automorphism group of A ∈ Sn
>0 is defined as

the set of P ∈ GLn(Z) such that

A = PTAP

I In practice, Plesken/Souvignier wrote a program ISOM for
testing arithmetic equivalence and a program AUTO for
computing automorphism groups.

I Those program requires to find a set of short vectors and use
partition backtrack.

I They are a-priori exponential in time but in practice more
than ok in dimension less than 10.



Perfect forms and domains

I A matrix A ∈ Sn
>0 is perfect (Korkine & Zolotarev) if the

equation

B ∈ Sn and xTBx = min(A) for all x ∈ Min(A)

implies B = A.

I Theorem: (Korkine & Zolotarev) If a form is extreme then it
is perfect.

I Up to a scalar multiple, perfect forms are rational.

I If v ∈ Zn then the corresponding rank 1 form is p(v) = vvT .

I If A is a perfect form, its perfect domain is

Dom(A) =
∑

v∈Min(A)

R+p(v)

I If A has m shortest vectors then Dom(A) has m
2 extreme rays.

I So actually, the perfect domains realize a tessellation not of
Sn
>0, nor Sn

≥0 but of the rational closure Sn
rat,≥0.



Finiteness
I Theorem:(Voronoi) Up to arithmetic equivalence there is only

finitely many perfect forms.
I The group GLn(Z) acts on Sn

>0:

Q 7→ PtQP

and we have Min(PtQP) = P−1 Min(Q)

I Dom(PTQP) = c(P)T Dom(Q)c(P) with c(P) =
(
P−1

)T
I For n = 2, we get the classical picture:

(0,1)

(1,1)

(1,2)

(3,2) (2,3)

(1,3)

(−1,2)

(−2,3)

(−1,3)

(2,1)

(3,1)

(1,0)

(−3,1)

(−2,1)

(−3,2)

(−1,1)



Known results on lattice packing density maximization

dim. Nr. of perfect forms Best lattice packing
2 1 (Lagrange) A2

3 1 (Gauss) A3

4 2 (Korkine & Zolotarev) D4

5 3 (Korkine & Zolotarev) D5

6 7 (Barnes) E6 (Blichfeldt & Watson)
7 33 (Jaquet) E7 (Blichfeldt & Watson)
8 10916 (DSV) E8 (Blichfeldt & Watson)
9 ≥500000 Λ9?

24 ? Leech (Cohn & Kumar)

I The enumeration of perfect forms is done with the Voronoi
algorithm.

I The number of orbits of faces of the perfect domain
tessellation is much higher but finite (Known for n ≤ 7)

I Blichfeldt used Korkine-Zolotarev reduction theory.

I Cohn & Kumar used Fourier analysis and Linear programming.



VI. Ryshkov polyhedron
and the Voronoi algorithm



The Ryshkov polyhedron

I The Ryshkov polyhedron Rn is defined as

Rn = {A ∈ Sn s.t. A[x ] ≥ 1 for all x ∈ Zn − {0}}

I Rn is invariant under the action of GLn(Z).

I Rn is locally polyhedral, i.e. for a given A ∈ Rn

{x ∈ Zn s.t. A[x ] = 1}

is finite

I Vertices of Rn correspond to perfect forms.

I For a form A ∈ Rn we define the local cone

Loc(A) = {Q ∈ Sn s.t. Q[x ] ≥ 0 if A[x ] = 1}



The Voronoi algorithm

I Find a perfect form (say An), insert it to the list L as undone.
I Iterate

I For every undone perfect form A in L, compute the local cone
Loc(A) and then its extreme rays.

I For every extreme ray r of Loc(A) realize the flipping, i.e.
compute the adjacent perfect form A′ = A + αr .

I If A′ is not equivalent to a form in L, then we insert it into L
as undone.

I Finish when all perfect forms have been treated.

The sub-algorithms are:

I Find the extreme rays of the local cone Loc(A) (use CDD or
LRS or any other program)

I For any extreme ray r of Loc(A) find the adjacent perfect
form A′ in the Ryshkov polyhedron Rn

I Test equivalence of perfect forms using ISOM



Flipping on an edge I

Min(Ahex) = {±(1, 0),±(0, 1),±(1,−1)}

with

Ahex =

(
1 1/2

1/2 1

)
and D =

(
0 −1
−1 0

)

v
1

v
2

A
hex



Flipping on an edge II

Min(B) = {±(1, 0),±(0, 1)}

with

B =

(
1 1/4

1/4 1

)
= Ahex + D/4

v
1

v
2

A

B

hex



Flipping on an edge III

Min(Asqr ) = {±(1, 0),±(0, 1)}

with

Asqr =

(
1 0
0 1

)
= Ahex + D/2

v
1

v
2

Ahex

Asqr



Flipping on an edge IV

Min(Ãhex) = {±(1, 0),±(0, 1),±(1, 1)}

with

Ãhex =

(
1 −1/2

−1/2 1

)
= Ahex + D

v
1

v
2

A
hex

A
hex



The Ryshkov polyhedron R2

+ (1,−1)

+ (1,−2)

+ (1,0)

+ (2,−1)

+ (2,1)

+ (1,1)

+ (0,1)

+ (1,2)

1/2

1 1/2

1

−1/21

−1/2 1

3

3/2

1

3

3/2

3/2

1

3/2



Well rounded forms and retract

I A form Q is said to be well rounded if it admits vectors v1,
. . . , vn such that

I (v1, . . . , vn) form a R-basis of Rn (not necessarily a Z-basis)
I v1, . . . , vn are shortest vectors of Q.

I Well rounded forms correspond to bounded faces of Rn.

I Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of Rn onto a
polyhedral complex WRn of dimension n(n−1)

2 .

I Every face of WRn has finite stabilizer.
I Actually, in term of dimension, we cannot do better:

I A. Pettet and J. Souto, Minimality of the well rounded retract,
Geometry and Topology, 12 (2008), 1543-1556.

I We also cannot reduce ourselves to lattices whose shortest
vectors define a Z-basis of Zn.



Topological applications

I The fact that we have finite stabilizers for all faces means that
we can compute rational homology/cohomology of GLn(Z)
efficiently.

I This has been done for n ≤ 7
I P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory

and the cohomology of modular groups, Adv. Math 245
(2013) 587–624.

I As an application, we can compute Kn(Z) for n ≤ 8.

I By using perfect domains, we can compute the action of
Hecke operators on the cohomology.

I This has been done for n ≤ 4:
I P.E. Gunnells, Computing Hecke Eigenvalues Below the

Cohomological Dimension, Experimental Mathematics 9-3
(2000) 351–367.

I The above can, in principle, be extended to the case of
GLn(R) with R a ring of algebraic integers.



VII. Tessellations



Linear Reduction theories for Sn

Some GLn(Z) invariant tessellations of Sn
rat,≥0:

I The perfect form theory (Voronoi I) for lattice packings (full
face lattice known for n ≤ 7, perfect domains known for
n ≤ 8)

I The central cone compactification (Igusa & Namikawa)
(Known for n ≤ 6)

I The L-type reduction theory (Voronoi II) for Delaunay
tessellations (Known for n ≤ 5)

I The C -type reduction theory (Ryshkov & Baranovski) for
edges of Delaunay tessellations (Known for n ≤ 5)

I The Minkowski reduction theory (Minkowski) it uses the
successive minima of a lattice to reduce it (Known for n ≤ 7)
not face-to-face

I Venkov’s reduction theory also known as Igusa’s fundamental
cone (finiteness proved by Crisalli and Venkov)



Central cone compactification

I We consider the space of integral valued quadratic forms:

In = {A ∈ Sn
>0 s.t. A[x ] ∈ Z for all x ∈ Zn}

All the forms in In have integral coefficients on the diagonal
and half integral outside of it.

I The centrally perfect forms are the elements of In that are
vertices of conv In.

I For A ∈ In we have A[x ] ≥ 1. So, In ⊂ Rn

I Any root lattice is a vertex both of Rn and conv In.
I The centrally perfect forms are known for n ≤ 6:

dim. Centrally perfect forms
2 A2 (Igusa)
3 A3 (Igusa)
4 A4, D4 (Igusa)
5 A5, D5 (Namikawa)
6 A6, D6, E6 (Dutour Sikirić)

I By taking the dual we get tessellations of Sn
rat,≥0.



Non-polyhedral reduction theories

I Some works with non-polyhedral, but still manifold domains:
I R. MacPherson and M. McConnel, Explicit reduction theory for

Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.
I D. Yasaki, An explicit spine for the Picard modular group over

the Gaussian integers, Journal of Number Theory, 128 (2008)
207–234.

I Other works in complex hyperbolic space using Poincaré
polyhedron theorem:

I M. Deraux, Deforming the R-fuchsian (4, 4, 4)-lattice group
into a lattice.

I E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups
in complex hyperbolic geometry, Topology 39 (2000)
1209–1223.

I Other works for non-manifold setting would be:
I T. Brady, The integral cohomology of Out+(F3), Journal of

Pure and Applied Algebra 87 (1993) 123–167.
I K.N. Moss, Cohomology of SL(n,Z[1/p]), Duke Mathematical

Journa 47-4 (1980) 803–818.



VIII. Modular forms



Modular forms for SL(2,Z)

I We call H = {z ∈ C s.t. Im(z) > 0} the upper half-plane.
I A function f : H→ C is called a modular form of weight k for

SL(2,Z) if:
I f is holomorphic

I For any matrix A =

(
a b
c d

)
∈ SL(2,Z) we have

f

(
az + b

cz + d

)
= (cz + d)k f (z)

I f is holomorphic at the cusps.

I Modular forms are of primary importance in number theory.

I Let us call Mk the space of modular forms of weight k . We
have the Shimura-Eichler isomorphism:

Mk ' H1(SL2(Z),Rk−2)

with Rk the space of homogeneous polynomials of degree 2.

I Note that the space H can be mapped onto S2
>0.



The general case and Hecke operators

I We want to find modular forms for some finite index
subgroups Γ of SL(n,Z) with n > 2 (and other groups as
well).

I What is known is that the spaces of modular forms are
isomorphic to the space

Hk(Γ,Q)

I But in order to understand the operators we need more than
just the dimensio and the solution to that is to consider the
Hecke operators.

I This is the only way we know of extracting the arithmetic
informations.



IX. Hecke operators
on homology



Definitions

We take Γ a finite index subgoup of SL(n,Z).

I We consider elements g ∈ GL(n,Q) such that Γ ∩ g−1Γg has
finite index in Γ.

I We want to consider the action of g on the homology classes.
The problem is that the homology are obtained after killing
the Γ action, so we need to consider something else than just
g .

I The idea is to split the double coset

ΓgΓ = g1Γ ∪ g2Γ ∪ · · · ∪ gmΓ

into right cosets.
I The splitting can be done by a very simple iterative algorithm

if we have:
I A generating set for Γ.
I An oracle function φ for testing membership in Γ



Actions on the perfect form complex
I A k-dimensional face F of the perfect form complex is defined

as a family of vectors v1, . . . , vm with vi ∈ Zn.
I The image F .g is defined by the vectors v1g , . . . , vmg .
I In dimension k = 1 all is ok:

I They are spanned by just one vector. So the image F .g is
spanned by v1g .

I v1g is not necessarily integral, but it is a multiple of an
integral vector.

I So, we can define the action in dimension 1.

I For higher dimensions we want to do recursively. That is if:

dkF =
∑
i

αiFihi with hi ∈ Γ

then

dk(F .g) = b =
∑

i αiFihig
=

∑
i αiFigiki with ki ∈ Γ

So, we need to compute on all cosets. We must have
dk−1b = 0.



Two dimensional example

I Let us take the face F = {(1, 0), (0, 1)} and g =

(
2 0
1 1

)
.

I We then have

(0,1)

(1,1)

(1,2)

(3,2) (2,3)

(1,3)

(−1,2)

(−2,3)

(−1,3)

(2,1)

(3,1)

(1,0)

(−3,1)

(−2,1)

(−3,2)

(−1,1)

(0,1)

(1,1)

(1,2)

(3,2) (2,3)

(1,3)

(−1,2)

(−2,3)

(−1,3)

(2,1)

(3,1)

(1,0)

(−3,1)

(−2,1)

(−3,2)

(−1,1)

I So we set

F .g = F .

(
2 1
1 0

)
+ F



Computing on the perfect form complex: Groups

I We need to compute stabilizers of cells (possibly infinite) and
checking equivalence.

I What we can do is for a face F = {v1, . . . , vm} with
rank{v1, . . . , vm} = k < n is to:

I Find a subspace W ⊂ Zn of rank k with vi ∈ F and
W = (W ⊗ R) ∩ Zn.

I Compute the finite group of automorphism of F in W by using
AUTO.

I Determine directly the group preserving W pointwise.

This requires doing the number theory which is ok for Zn but
harder in other cases.

I An alternative is for a face F to consider all full dimensional
cells G with F ⊂ G . We then:

I have a finite set of such pairs (F ,G ) up to equivalence.
I We can enumerate all of them by using the full-dimensional

cells.

This is harder computationally but much simpler and general.



Computing on the perfect form complex: Equations I

I In order to build the Hecke operators, we need to be able to
solve

dkx = b

for x a k-dimensional chain and b a k − 1 dimensional chain.

I A necessary and sufficient condition for x to exist is
dk−1b = 0.

I In other words we have an infinite integral linear system.
I The chosen solution is to take a family C1, . . .Cr of

top-dimensional cells such that
I Any face occuring in b is contained in at least one Ci .
I The graph defined by all Ci with adjacency relation is

connected.

I If the system has no solution then we iterate by adding all
cells neighboring to the Ci .



Computing on the perfect form complex: Equations II

I We are thus led to trying to find solutions of equations

Ax = b

with A a very large matrix.

I We want to find sparse solutions because they are expected to
be the nicest and simplest (compressed sensing).

I When searching for sparse solutions, a good heuristic is to
svole the linear program

min ‖x‖1 with Ax = b

I We found good results with GLPK and bad ones with
LP SOLVE and cdd.

I Further improvement depend critically on improvements to
the solver.



The invariance problem I
We set F .g =

∑
i αiFigi .

I In order for the operator to be consistent we need that for
every s stabilizing F we have

F .sg = F .gεF (s)

I If sg = g ′v with g ′Γ 6= gΓ then we simply write

F .g ′ = (F .g)v−1εF (s)

I However if sg = gv with v ∈ Γ then we face a consistency
problem because the solution of our system is not necessarily
integral.

I Let us call Γ(F , g) the corresponding stabilizer (maybe
infinite).

I Let us call O(x) the orbit of the solution x under Γ(F , g).
I The following is invariant:

1

|O(x)|
∑

u∈O(x),u.g=x

uεF (g)



The invariance problem II

I For our example this gives

(0,1)

(1,1)

(1,2)

(3,2) (2,3)

(1,3)

(−1,2)

(−2,3)

(−1,3)

(2,1)

(3,1)

(1,0)

(−3,1)

(−2,1)

(−3,2)

(−1,1)

I In order to have O(x) finite we impose that the solution x has
the same singularities as F .g .

I If the solutions are not consistent then we cannot solve the
system.

I By taking the average we forfeit the integral solution and so
we can only compute the action on rational homology.



The action on homology

I Say, the group Hk(Γ,Q) has dimension p.

I It has a basis of cycles

ci =

nk∑
j=1

αi ,jFi

with αi ,j ∈ Z and Fi representatives of orbits of k-dimensional
faces of the cell-complex.

I The Hecke operator on a cycle c is defined as

Tg (c) =
∑
i

cgi

I Theorem: The operator Tg preserves Hk .

I The characteristic polynomial of Tg is the important
arithmetic information.
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