Lattices and perfect form theory

Mathieu Dutour Sikirić

Institute Rudjer Bošković, Croatia and Universität Rostock

March 11, 2014

I. Lattices and

Gram matrices

Lattice packings

- ▶ A lattice $L \subset \mathbb{R}^n$ is a set of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ with (v_1, \ldots, v_n) independent.
- ▶ A packing is a family of balls $B_n(x_i, r)$, $i \in I$ of the same radius r and center x_i such that their interiors are disjoint.

- ▶ If L is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha > 0$ such that $L + B_n(0, \alpha)$ is a packing.
- ▶ The maximum α is called $\lambda(L)$ and the determinant of (v_1, \ldots, v_n) is det L.

Gram matrix and lattices

- ▶ Denote by S^n the vector space of real symmetric $n \times n$ matrices, $S^n_{>0}$ the convex cone of real symmetric positive definite $n \times n$ matrices and $S^n_{\geq 0}$ the convex cone of real symmetric positive semidefinite $n \times n$ matrices.
- ▶ Take a basis $(v_1, ..., v_n)$ of a lattice L and associate to it the Gram matrix $G_{\mathbf{v}} = (\langle v_i, v_j \rangle)_{1 \leq i,j \leq n} \in S^n_{>0}$.
- Example: take the hexagonal lattice generated by $v_1=(1,0)$ and $v_2=\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$

$$G_{\mathbf{v}} = \frac{1}{2} \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right)$$

Isometric lattices

▶ Take a basis $(v_1, ..., v_n)$ of a lattice L with $v_i = (v_{i,1}, ..., v_{i,n}) \in \mathbb{R}^n$ and write the matrix

$$V = \left(\begin{array}{ccc} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{array}\right)$$

and $G_{\mathbf{v}} = V^T V$.

The matrix $G_{\mathbf{v}}$ is defined by $\frac{n(n+1)}{2}$ variables as opposed to n^2 for the basis V.

- ▶ If $M \in S_{>0}^n$, then there exists V such that $M = V^T V$ (Gram Schmidt orthonormalization)
- ▶ If $M = V_1^T V_1 = V_2^T V_2$, then $V_1 = OV_2$ with $O^T O = I_n$ (i.e. O corresponds to an isometry of \mathbb{R}^n).
- Also if L is a lattice of \mathbb{R}^n with basis \mathbf{v} and u an isometry of \mathbb{R}^n , then $G_{\mathbf{v}} = G_{u(\mathbf{v})}$.

Arithmetic minimum

▶ The arithmetic minimum of $A \in S_{>0}^n$ is

$$\min(A) = \min_{x \in \mathbb{Z}^n - \{0\}} x^T A x$$

▶ The minimal vector set of $A \in S_{>0}^n$ is

$$Min(A) = \left\{ x \in \mathbb{Z}^n \mid x^T A x = min(A) \right\}$$

- ▶ Both min(A) and Min(A) can be computed using some programs (for example SV by Vallentin)
- ► The matrix $A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ has

$$Min(A_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}.$$

Re-expression of previous definitions

▶ Take a lattice $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$. If $x \in L$,

$$x = x_1 v_1 + \cdots + x_n v_n$$
 with $x_i \in \mathbb{Z}$

we associate to it the column vector $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

• We get $||x||^2 = X^T G_{\mathbf{v}} X$ and

$$\det L = \sqrt{\det G_{\mathbf{v}}} \text{ and } \lambda(L) = \frac{1}{2} \sqrt{\min(G_{\mathbf{v}})}$$

▶ For $A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, det $A_{hex} = 3$ and min $(A_{hex}) = 2$

Changing basis

▶ If **v** and **v**' are two basis of a lattice *L* then V' = VP with $P \in GL_n(\mathbb{Z})$. This implies

$$G_{v'} = V'^T V' = (VP)^T VP = P^T \{V^T V\}P = P^T G_{v}P$$

▶ If $A, B \in S_{>0}^n$, they are called arithmetically equivalent if there is at least one $P \in GL_n(\mathbb{Z})$ such that

$$A = P^T B P$$

- ▶ Lattices up to isometric equivalence correspond to $S_{>0}^n$ up to arithmetic equivalence.
- In practice, Plesken/Souvignier wrote a program ISOM for testing arithmetic equivalence and a program AUTO for computing automorphism group of lattices. All such programs take Gram matrices as input.

Dual lattices

▶ For a lattice *L* the dual lattice is

$$L^* = \{ x \in \mathbb{R}^n \text{ s.t. } \langle x, y \rangle \in \mathbb{Z} \text{ for all } y \in L \}$$

▶ If $L = P\mathbb{Z}^n$ then we can take $L^* = (P^{-1})^T\mathbb{Z}^n$ and we get

$$G(L^*) = (G(L))^{-1}$$

- ▶ A lattice *L* is integral if $\langle x, y \rangle \in \mathbb{Z}$ for all $x, y \in \mathbb{Z}$.
- ▶ This is equivalent to say $L \subset L^*$
- ▶ A lattice is self-dual if $L = L^*$.
- ▶ A lattice is self-dual if and only if its Gram matrix is integral and of determinant 1.

Root lattices

- ▶ A root lattice is a lattice generated by a root system
- ▶ They are integral, $||x||^2 \in 2\mathbb{Z}$ and Min(L) is the root system
- Most classical example is

$$A_n = \left\{ x \in \mathbb{Z}^{n+1} \text{ s.t. } \sum_{i=1}^{n+1} x_i = 0 \right\}$$

Possible basis: $v_i = e_{i+1} - e_i$ for $1 \le i \le n$

▶ They have a strict ADE classification:

Name	Min	Min	det	Aut
A_n	$e_i - e_j$	2n(n+1)	n+1	2(n+1)!
D_n	$\pm e_i \pm e_j$	4n(n-1)	4	2 ⁿ n!
E ₆	complex	72	3	103680
E ₇	complex	126	2	2903040
E ₈	complex	240	1	696729600

Self-dual even lattice

- ▶ A lattice is even if for all $x \in L$, $\langle x, x \rangle \in 2\mathbb{Z}$.
- ▶ The Theta function of a self-dual even lattice of dimension *n* is

$$\Theta(L,q) = \sum_{x \in L} q^{\langle x,x \rangle}$$

and it is a modular form for $SL_2(\mathbb{Z})$ of weight n/2.

▶ This implies that they exist only for dimension *n* divisible by 8.

Dimension	lattices	
8	E ₈	
16	$E_8 \oplus E_8$ and D_{16^+}	
24	Leech lattice and 23 Niemeier lattices	
32	at least 40 million lattices	

- ► The key to above enumeration and estimates are the Siegel Mass formula and Kneser's algorithm
 - ▶ M. Kneser, *Quadratische Formen*, Springer Verlag.

The Leech lattice

- ▶ Every non-zero vector v has $||v||^2 \ge 4$ and det Leech = 1.
- ▶ It is the best lattice packing in dimension 24. Density is

$$\frac{\pi^{12}}{12!} \simeq 0.001930...$$

- ► There are 196280 shortest vectors (maximal number in dimension 24)
- ▶ The covering radius is $\sqrt{2}$ and covering density is

$$\frac{\pi^{12}}{12!} \left(\sqrt{2}\right)^{24} \simeq 7.903536...$$

It is conjectured to give the best covering in dimension 24.

- ▶ Its automorphism group quotiented by $\pm Id_{24}$ is the sporadic simple group Co_0 and it contains many sporadic simple groups as subgroups.
- It is also related to some Lorentzian lattices.

II. Computational techniques

Polytopes, definition

- ▶ A polytope $P \subset \mathbb{R}^n$ is defined alternatively as:
 - ▶ The convex hull of a finite number of points v^1, \ldots, v^m :

$$P = \{v \in \mathbb{R}^n \mid v = \sum_i \lambda_i v^i \text{ with } \lambda_i \geq 0 \text{ and } \sum \lambda_i = 1\}$$

► The following set of solutions:

$$P = \{x \in \mathbb{R}^n \mid f_j(x) \ge b_j \text{ with } f_j \text{ linear}\}\$$

with the condition that P is bounded.

- ▶ The cube is defined alternatively as
 - ▶ The convex hull of the 2ⁿ vertices

$$\{(x_1,\ldots,x_n) \text{ with } x_i=\pm 1\}$$

▶ The set of points $x \in \mathbb{R}^n$ satisfying to

$$x_i < 1$$
 and $x_i > -1$

Facets and vertices

- A vertex of a polytope P is a point $v \in P$, which cannot be expressed as $v = \lambda v^1 + (1 \lambda)v^2$ with $0 < \lambda < 1$ and $v^1 \neq v^2 \in P$.
- ► A polytope is the convex hull of its vertices and this is the minimal set defining it.
- ▶ A facet of a polytope is an inequality $f(x) b \ge 0$, which cannot be expressed as

$$f(x) - b = \lambda(f_1(x) - b_1) + (1 - \lambda)(f_2(x) - b_2)$$
 with $f_i(x) - b_i \ge 0$ on P .

- ▶ A polytope is defined by its facet inequalities. and this is the minimal set of linear inequalities defining it.
- ► The dual-description problem is the problem of passing from one description to another.
- ► There are several programs CDD, LRS for computing dual-description computations.
- In case of large problems, we can use the symmetries for faster computation.

Linear programs

► A linear program is the problem of maximizing a linear function f(x) over a set \mathcal{P} defined by linear inequalities.

$$\mathcal{P} = \{x \in \mathbb{R}^d \text{ such that } f_i(x) \geq b_i\}$$

with f_i linear and $b_i \in \mathbb{R}$.

- ightharpoonup The solution of linear programs is attained at vertices of \mathcal{P} .
- ▶ There are two classes of solution methods:

Simplex method Interior point method

- Simplex methods use exact arithmetic but have bad theoretical complexity
- Interior point methods have good theoretical complexity but only gives an approximate vertex.

III. Perfect forms and domains

Perfect forms

- ▶ A form A is extreme if it is a local maximum of the packing density.
- ▶ A matrix $A \in S_{>0}^n$ is perfect (Korkine & Zolotarev) if the equation

$$B \in S^n$$
 and $x^T B x = \min(A)$ for all $x \in \min(A)$

implies B = A.

- ► Theorem: (Korkine & Zolotarev) If a form is extreme then it is perfect.
- ▶ Up to a scalar multiple, perfect forms are rational.
- ▶ All root lattices are perfect, many other families are known.

A perfect form

▶ $A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ corresponds to the lattice:

▶ If $B = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ satisfies to $x^T B x = \min(A_{hex})$ for $x \in \text{Min}(A_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}$, then:

$$a = 2$$
, $c = 2$ and $a - 2b + c = 2$

which implies $B = A_{hex}$. A_{hex} is perfect.

A non-perfect form

- $A_{sqr} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ has $Min(A_{sqr}) = \{\pm(0,1), \pm(1,0)\}.$
- ▶ See below lattices L_B , L_{sqr} associated to matrices $B, A_{sqr} \in S^2_{>0}$ with $Min(B) = Min(A_{sqr})$:

Perfect domains and arithmetic closure

- ▶ If $v \in \mathbb{Z}^n$ then the corresponding rank 1 form is $p(v) = vv^T$.
- ▶ If *A* is a perfect form, its perfect domain is

$$\mathsf{Dom}(A) = \sum_{v \in \mathsf{Min}(A)} \mathbb{R}_+ p(v)$$

- ▶ If A has m shortest vectors then Dom(A) has $\frac{m}{2}$ extreme rays.
- ▶ So actually, the perfect domains realize a tessellation not of $S_{>0}^n$, nor $S_{>0}^n$ but of the rational closure $S_{rat,>0}^n$.
- ▶ The rational closure $S_{rat,>0}^n$ has a number of descriptions:
 - $ightharpoonup S_{rat,\geq 0}^n = \sum_{v \in \mathbb{Z}^n} \mathbb{R}_+ p(v)$
 - ▶ If $A \in S_{\geq 0}^n$ then $A \in S_{rat,\geq 0}^n$ if and only if $Ker\ A$ is defined by rational equations.
- So, actually, the stabilizers of some faces of the polyhedral complex are infinite.

Finiteness

- ► Theorem:(Voronoi) Up to arithmetic equivalence there is only finitely many perfect forms.
- ▶ The group $GL_n(\mathbb{Z})$ acts on $S_{>0}^n$:

$$Q \mapsto P^t Q P$$

and we have $Min(P^tQP) = P^{-1}Min(Q)$

- ▶ $Dom(P^TQP) = c(P)^T Dom(Q)c(P)$ with $c(P) = (P^{-1})^T$
- ▶ For n = 2, we get the classical picture:

Known results on lattice packing density maximization

dim.	Nr. of perfect forms	Best lattice packing	
2	1 (Lagrange)	A_2	
3	1 (Gauss)	A_3	
4	2 (Korkine & Zolotarev)	D_4	
5	3 (Korkine & Zolotarev)	D ₅	
6	7 (Barnes)	E ₆ (Blichfeldt & Watson)	
7	33 (Jaquet)	E ₇ (Blichfeldt & Watson)	
8	10916 (DSV)	E ₈ (Blichfeldt & Watson)	
9	≥500000	Λ_9 ?	
24	?	Leech (Cohn & Kumar)	

- ► The enumeration of perfect forms is done with the Voronoi algorithm.
- ▶ The number of orbits of faces of the perfect domain tessellation is much higher but finite (Known for $n \le 7$)
- Blichfeldt used Korkine-Zolotarev reduction theory.
- Cohn & Kumar used Fourier analysis and Linear programming.

Some algorithms

- ▶ Pb 1: Suppose we have a configuration of vector \mathcal{V} . Does there exist a matrix $A \in S_{>0}^n$ such that $Min(A) = \mathcal{V}$?
- Consider the linear program

$$\begin{array}{ll} \text{minimize} & \lambda \\ & \text{with} & \lambda = A[v] \text{ for } v \in \mathcal{V} \\ & A[v] \geq 1 \text{ for } v \in \mathbb{Z}^n - \{0\} - \mathcal{V} \end{array}$$

The value λ_{opt} determines the answer.

- ▶ In practice one replaces \mathbb{Z}^n by a finite set and iteratively increases it until a conclusion is reached.
- ▶ Pb 2: How given a matrix $A \in S_{>0}^n$ find B perfect with $A \in Dom(B)$?
- ► The method is to start from a perfect matrix B and test if A belongs to Dom(B). If not there exist a facet F of Dom(B) such that A is on the other side (found by LP). We flip over it. Eventually, one finds the right perfect form.

and the Voronoi algorithm

IV. Ryshkov polyhedron

The Ryshkov polyhedron

▶ The Ryshkov polyhedron R_n is defined as

$$R_n = \left\{ A \in S^n \text{ s.t. } x^T A x \ge 1 \text{ for all } x \in \mathbb{Z}^n - \{0\} \right\}$$

- ▶ The cone is invariant under the action of $GL_n(\mathbb{Z})$.
- ▶ The cone is locally polyhedral, i.e. for a given $A \in R_n$

$$\left\{x \in \mathbb{Z}^n \text{ s.t. } x^T A x = 1\right\}$$

is finite

- ▶ Vertices of R_n correspond to perfect forms.
- ▶ For a form $A \in R_n$ we define the local cone

$$Loc(A) = \left\{ Q \in S^n \text{ s.t. } x^T Q x \ge 0 \text{ if } x^T A x = 1 \right\}$$

The Voronoi algorithm

- ▶ Find a perfect form (say A_n), insert it to the list \mathcal{L} as undone.
- Iterate
 - For every undone perfect form A in L, compute the local cone Loc(A) and then its extreme rays.
 - For every extreme ray r of Loc(A) realize the flipping, i.e. compute the adjacent perfect form $A' = A + \alpha r$.
 - If A' is not equivalent to a form in L, then we insert it into L as undone.
- Finish when all perfect forms have been treated.

The sub-algorithms are:

- Find the extreme rays of the local cone Loc(A) (use CDD or LRS or any other program)
- For any extreme ray r of Loc(A) find the adjacent perfect form A' in the Ryshkov polyhedron R_n
- Test equivalence of perfect forms using ISOM

Flipping on an edge I

$$\mathsf{Min}(A_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}$$

$$A_{hex}=\left(egin{array}{cc} 1 & 1/2 \ 1/2 & 1 \end{array}
ight) \ \ {
m and} \ \ D=\left(egin{array}{cc} 0 & -1 \ -1 & 0 \end{array}
ight)$$

Flipping on an edge II

$$\mathsf{Min}(B) = \{\pm(1,0), \pm(0,1)\}$$

$$B = \begin{pmatrix} 1 & 1/4 \\ 1/4 & 1 \end{pmatrix} = A_{hex} + D/4$$

Flipping on an edge III

$$Min(A_{sqr}) = \{\pm(1,0), \pm(0,1)\}$$

$$A_{sqr} = \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight) = A_{hex} + D/2$$

Flipping on an edge IV

$$Min(\tilde{A}_{hex}) = \{\pm(1,0), \pm(0,1), \pm(1,1)\}$$

$$\widetilde{A}_{hex} = \left(egin{array}{cc} 1 & -1/2 \ -1/2 & 1 \end{array}
ight) = A_{hex} + D$$

The Ryshkov polyhedron R_2

Well rounded forms and retract

- A form Q is said to be well rounded if it admits vectors v_1 , ..., v_n such that
 - (v_1,\ldots,v_n) form a \mathbb{R} -basis of \mathbb{R}^n (not necessarily a \mathbb{Z} -basis)
 - \triangleright v_1, \ldots, v_n are shortest vectors of Q.
- ▶ Well rounded forms correspond to bounded faces of R_n .
- Every form can be continuously deformed to a well rounded form and this defines a retracting homotopy of R_n onto a polyhedral complex WR_n of dimension $\frac{n(n-1)}{2}$.
- Every face of WR_n has finite stabilizer.
- Actually, in term of dimension, we cannot do better:
 - A. Pettet and J. Souto, Minimality of the well rounded retract, Geometry and Topology, 12 (2008), 1543-1556.
- ▶ We also cannot reduce ourselves to lattices whose shortest vectors define a \mathbb{Z} -basis of \mathbb{Z}^n .

Topological applications

- ▶ The fact that we have finite stabilizers for all faces means that we can compute rational homology/cohomology of $GL_n(\mathbb{Z})$ efficiently.
- ▶ This has been done for $n \le 7$
 - P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory and the cohomology of modular groups, Adv. Math 245 (2013) 587–624.
- ▶ As an application, we can compute $K_n(\mathbb{Z})$ for $n \leq 8$.
- By using perfect domains, we can compute the action of Hecke operators on the cohomology.
- ▶ This has been done for $n \le 4$:
 - P.E. Gunnells, Computing Hecke Eigenvalues Below the Cohomological Dimension, Experimental Mathematics 9-3 (2000) 351–367.
- ► The above can, in principle, be extended to the case of GL_n(R) with R a ring of algebraic integers.

References

On lattice theory:

▶ J.H. Conway and N.J.A. Sloane, *Sphere Packings, Lattices and Groups* third edition, Springer–Verlag, 1998.

On perfect forms:

- ▶ G. Voronoi, Nouvelles applications des paramètres continues à la théorie des formes quadratiques 1: Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math 133 (1908) 97–178.
- ▶ A. Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.
- ▶ J. Martinet, *Perfect lattices in Euclidean spaces*, Springer, 2003.
- S.S. Ryshkov, E.P. Baranovski, Classical methods in the theory of lattice packings, Russian Math. Surveys 34 (1979) 1–68, translation of Uspekhi Mat. Nauk 34 (1979) 3–63.

V. Tessellations

Linear Reduction theories for S^n

Some $GL_n(\mathbb{Z})$ invariant tessellations of $S^n_{rat,\geq 0}$:

- ▶ The perfect form theory (Voronoi I) for lattice packings (full face lattice known for $n \le 7$, perfect domains known for $n \le 8$)
- ► The central cone compactification (Igusa & Namikawa) (Known for $n \le 6$)
- ► The *L*-type reduction theory (Voronoi II) for Delaunay tessellations (Known for $n \le 5$)
- ► The C-type reduction theory (Ryshkov & Baranovski) for edges of Delaunay tessellations (Known for $n \le 5$)
- ► The Minkowski reduction theory (Minkowski) it uses the successive minima of a lattice to reduce it (Known for $n \le 7$) not face-to-face
- Venkov's reduction theory also known as Igusa's fundamental cone (finiteness proved by Crisalli)

Toroidal compactifications of \mathcal{A}_g

- ▶ A polyhedral $GL_n(\mathbb{Z})$ -tessellation of $S_{rat,\geq 0}^n$ is admissible if it is a face-to-face tessellation and has finite number of orbits.
- Admissible $GL_n(\mathbb{Z})$ invariant tessellations of $S^n_{rat,\geq 0}$ give rise to toroidal compactifications of the moduli space \mathcal{A}_g of principally polarized abelian varieties.
- ▶ For the perfect form tessellation \mathcal{A}_g^{Perf} is a canonical model in the sense of the minimal model program if $g \ge 12$:
 - ▶ N. Shepherd-Barron, *Perfect forms and the moduli space of abelian varieties*, Invent. Math. 163-1 (2006) 25–45
- ► For Voronoi II tessellation A_g^{Vor} has its boundary corresponding to semi-abelic varieties:
 - ▶ V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. 155-3 (2002) 611–708
- ▶ Properties of the compactification being Q-Gorenstein, having canonical singularities, terminal singularities can be read off from properties of the tessellation.

Geometry of tessellation and compactifications

- ▶ Thm: (Namikawa) For a given admissible tessellation \mathcal{F} the corresponding tessellation is smooth if and only if
 - All cones are simplicial
 - ▶ For all cones, the set of generators of extreme rays can be extended to a basis of $\operatorname{Sym}^2(\mathbb{Z})$.
- ▶ For $\mathcal{A}^{Perf}_{\sigma}$ we prove
 - ▶ Every cone of dimension at most 9 in the perfect cone decomposition is basic. In particular the stack \mathcal{A}_g^{Perf} is smooth for $g \leq 3$ and the codimension of both the singular and the non-simplicial substack of \mathcal{A}_g^{Perf} is 10 if $g \geq 4$.
 - ▶ Every cone of dimension 10 is simplicial with the only exception the cone of the root lattice D₄.
- ▶ For A_g^{Vor} we prove
 - For g ≤ 4 every cone in the second Voronoi compactification is basic.
 - For $g \ge 5$ there are non-simplicial cones in dimension 3, in particular \mathcal{A}_g^{Vor} is singular in dimension 3.

Self-dual cones

For an open cone C in \mathbb{R}^n the dual cone is

$$C^* = \{x \in \mathbb{R}^n \text{ s.t. } \langle x, y \rangle > 0 \text{ for } y \in C\}$$

- Such cones are classified by Euclidean Jordan algebras and the classification gives:
 - $ightharpoonup S^n$: The cone of positive definite real quadratic forms
 - $ightharpoonup H^n$: The cone of positive definite Hermitian quadratic forms
 - $ightharpoonup Q^n$: The cone of positive definite quaternionic quadratic forms
 - \blacktriangleright The cone of 3×3 positive definite octonion matrices.
 - ▶ The hyperbolic cone H_n

$$H_n = \left\{ (x_1, \dots, x_n) \text{ s.t. } x_1 > 0 \text{ and } x_1^2 - x_2^2 - \dots - x_n^2 > 0 \right\}$$

- References
 - A. Ash, D. Mumford, M. Rapoport, Y. Tai Smooth compactifications of locally symmetric varieties, Cambridge University Press
 - M. Koecher, Beiträge zu einer Reduktionstheorie in Positivtätsbereichan I/II, Math. Annalen 141, 384–432, 144, 175–182

T-space theory

- ▶ A T-space \mathcal{F} is a vector space in S^n with $\mathcal{F}_{>0} = \mathcal{F} \cap S^n_{>0}$ being non-empty.
- All above reduction theories apply to that case.
- ▶ But some dead ends exist to the polyhedral tessellations.
- ▶ Relevant group is $Aut(\mathcal{F}) = \{g \in GL_n(\mathbb{Z}) \text{ s.t. } g\mathcal{F}g^T = \mathcal{F}\}.$
- ▶ For a finite group $G \subset GL_n(\mathbb{Z})$ of space

$$\mathcal{F}(G) = \left\{ A \in S^n \text{ s.t. } gAg^T = A \text{ for } g \in G \right\}$$

we have $\operatorname{Aut}(\mathcal{F}(G)) = \operatorname{Norm}(G, \operatorname{GL}_n(\mathbb{Z}))$ (Zassenhaus) and a finite number of \mathcal{F} -perfect forms.

- ▶ There exist some *T*-spaces having a rational basis and an infinity of perfect forms.
- Another finiteness case is for spaces obtained from $GL_n(R)$ with R number ring.

Non-polyhedral reduction theories

- ► Some works with non-polyhedral, but still manifold domains:
 - ▶ R. MacPherson and M. McConnel, Explicit reduction theory for Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.
 - D. Yasaki, An explicit spine for the Picard modular group over the Gaussian integers, Journal of Number Theory, 128 (2008) 207–234.
- ▶ Other works in complex hyperbolic space using Poincaré polyhedron theorem:
 - M. Deraux, Deforming the ℝ-fuchsian (4, 4, 4)-lattice group into a lattice.
 - ► E. Falbel and P.-V. Koseleff, *Flexibility of ideal triangle groups in complex hyperbolic geometry*, Topology **39** (2000) 1209–1223.
- ▶ Other works for non-manifold setting would be:
 - ► T. Brady, The integral cohomology of Out₊(F₃), Journal of Pure and Applied Algebra 87 (1993) 123–167.
 - ▶ K.N. Moss, *Cohomology of* $SL(n, \mathbb{Z}[1/p])$, Duke Mathematical Journa **47-4** (1980) 803–818.

VI. Central cone compactification

Central cone compactification

▶ We consider the space of integral valued quadratic forms:

$$I_n = \{ A \in S^n \text{ s.t. } A[x] \in \mathbb{Z} \text{ for all } x \in \mathbb{Z}^n \}$$

All the forms in I_n have integral coefficients on the diagonal and half integral outside of it.

- ▶ The centrally perfect forms are the elements of I_n that are vertices of conv I_n .
- ▶ For $A \in I_n$ we have $A[x] \ge 1$. So, $I_n \subset R_n$
- Any root lattice is a vertex both of R_n and conv I_n .
- ▶ The centrally perfect forms are known for $n \le 6$:

dim.	Centrally perfect forms		
2	A_2 ($lgusa$)		
3	A_3 (Igusa)		
4	A_4 , D_4 (Igusa)		
5	A_5 , D_5 (Namikawa)		
6	A_6 , D_6 , E_6 (Dutour Sikirić)		

▶ By taking the dual we get tessellations of $S_{rat,>0}^n$.

Enumeration of centrally perfect forms

- ▶ Suppose that we have a conjecturally correct list of centrally perfect forms A_1, \ldots, A_m . Suppose further that for each form A_i we have a conjectural list of neighbors $N(A_i)$.
- We form the cone

$$C(A_i) = \{X - A_i \text{ for } X \in N(A_i)\}$$

and we compute the orbits of facets of $C(A_i)$.

► For each orbit of facet of representative *f* we form the corresponding linear form *f* and solve the Integer Linear Problem

$$f_{opt} = \min_{X \in I_n} f(X)$$

We have to use GLPK program for that. It is done iteratively since I_n is defined by an infinity of inequalities.

▶ If $f_{opt} = f(A_i)$ always then the list is correct. If not then the X realizing $f(X) < f(A_i)$ need to be added to the full list.

VII. Voronoi II theory

Empty sphere and Delaunay polytopes

A sphere S(c, r) of radius r and center c in an n-dimensional lattice L is said to be an empty sphere if:

- (i) $||v-c|| \ge r$ for all $v \in L$,
- (ii) the set $S(c,r) \cap L$ contains n+1 affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

Equalities and inequalities

- ▶ Take $M = G_v$ with $v = (v_1, ..., v_n)$ a basis of lattice L.
- ▶ If $V = (w_1, ..., w_N)$ with $w_i \in \mathbb{Z}^n$ are the vertices of a Delaunay polytope of empty sphere S(c, r) then:

$$||w_i - c|| = r$$
 i.e. $w_i^T M w_i - 2 w_i^T M c + c^T M c = r^2$

Subtracting one obtains

$$\{w_i^T M w_i - w_j^T M w_j\} - 2\{w_i^T - w_j^T\} M c = 0$$

- ▶ Inverting matrices, one obtains $Mc = \psi(M)$ with ψ linear and so one gets linear equalities on M.
- Similarly $||w-c|| \ge r$ translates into linear inequalities on M: Take $V = (v_0, \ldots, v_n)$ a simplex $(v_i \in \mathbb{Z}^n)$, $w \in \mathbb{Z}^n$. If one writes $w = \sum_{i=0}^n \lambda_i v_i$ with $1 = \sum_{i=0}^n \lambda_i$, then one has

$$||w - c|| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0$$

Iso-Delaunay domains

- ▶ Take a lattice L and select a basis v_1, \ldots, v_n .
- ► We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.

An iso-Delaunay domain is the assignment of Delaunay polytopes. It is a polyhedral domain of $S_{rat.>0}^n$.

Primitive iso-Delaunay

- ▶ If one takes a generic matrix M in $S_{>0}^n$, then all its Delaunay are simplices and so no linear equality are implied on M.
- ► Hence the corresponding iso-Delaunay domain is of dimension $\frac{n(n+1)}{2}$, they are called primitive

Equivalence and enumeration

- ▶ The group $GL_n(\mathbb{Z})$ acts on $S_{>0}^n$ by arithmetic equivalence and preserve the primitive iso-Delaunay domains.
- Voronoi proved that after this action, there is a finite number of primitive iso-Delaunay domains.
- ▶ Bistellar flipping creates one iso-Delaunay from a given iso-Delaunay domain and a facet of the domain. In dim. 2:

- Enumerating primitive iso-Delaunay domains is done classically:
 - Find one primitive iso-Delaunay domain.
 - ▶ Find the adjacent ones and reduce by arithmetic equivalence.
- ▶ This is very similar to the Voronoi algorithm for perfect forms.

The partition of $S^2_{rat,\geq 0}\subset \mathbb{R}^3$ I

If $q(x,y) = ux^2 + 2vxy + wy^2$ then $q \in S_{>0}^2$ if and only if $v^2 < uw$ and u > 0.

The partition of $S^2_{rat,\geq 0}\subset \mathbb{R}^3$ II

We cut by the plane $\mathrm{u}+\mathrm{w}=1$ and get a circle representation.

The partition of $S^2_{rat,\geq 0}\subset \mathbb{R}^3$ III

Primitive iso-Delaunay domains in $S^2_{\mathit{rat}, \geq 0}$:

Enumeration of iso-Delaunay domains

- ► The covering density is equal to the maximum of the circumradius of the Delaunay polytopes.
- ▶ In principle if one knows all primitive iso-Delaunay then one can find the best covering lattice.
- ▶ A lattice is rigid (Grishukhin & Baranovski) if it is determined by its Delaunay polytopes (iso-Delaunay domain of dimension 1).

dim.	Best covering	Nr. of primitive iso-Delaunay	Nr. of rigid lattices
2	A ₂ (Kershner)	1 (Voronoi)	0
3	A ₃ (Bambah)	1 (Voronoi)	0
4	A ₄ (Delone & Ryshkov)	3 (Voronoi)	1
5	A ₅ (Ryshkov & Baranovski)	222 (Engel)	7
6	L_6 (conj. Vallentin)?	$\geq 2.10^8~({ m Engel})$	≥ 20000

- See for more details
 - ▶ A. Schürmann, *Computational geometry of positive definite quadratic forms*, University Lecture Notes, AMS.

THANK YOU