Lattices and perfect form theory

Mathieu Dutour Sikirić

Institute Rudjer Bošković, Croatia and Universität Rostock

March 11, 2014

I. Lattices and Gram matrices

Lattice packings

- ► A lattice $L \subset \mathbb{R}^n$ is a set of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ with $(v1, \ldots, v_n)$ independent.
- ► A packing is a family of balls $B_n(x_i, r)$, $i \in I$ of the same radius r and center x_i such that their interiors are disjoint.

- If L is a lattice, the lattice packing is the packing defined by taking the maximal value of $\alpha > 0$ such that $L + B_n(0, \alpha)$ is a packing.
- \blacktriangleright The maximum α is called $\lambda(L)$ and the determinant of (v_1, \ldots, v_n) is det L.

Gram matrix and lattices

- Denote by S^n the vector space of real symmetric $n \times n$ matrices, $S_{>0}^n$ the convex cone of real symmetric positive definite $n \times n$ matrices and $S_{\geq 0}^n$ the convex cone of real symmetric positive semidefinite $n \times n$ matrices.
- \blacktriangleright Take a basis (v_1, \ldots, v_n) of a lattice L and associate to it the Gram matrix $G_v = (\langle v_i, v_j \rangle)_{1 \le i,j \le n} \in S^n_{>0}$.
- Example: take the hexagonal lattice generated by $v_1 = (1, 0)$ and $v_2 = \left(\frac{1}{2}\right)$ $\frac{1}{2}$, √ 3 $\frac{\sqrt{3}}{2}$

Isometric lattices

 \blacktriangleright Take a basis (v_1, \ldots, v_n) of a lattice L with $v_i = (v_{i,1}, \ldots, v_{i,n}) \in \mathbb{R}^n$ and write the matrix

$$
V = \left(\begin{array}{ccc} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{array}\right)
$$

and $G_{\mathbf{v}} = V^{\mathcal{T}} V$. The matrix G_v is defined by $\frac{n(n+1)}{2}$ variables as opposed to n^2 for the basis V.

- ► If $M \in S^n_{>0}$, then there exists V such that $M = V^T$ V (Gram Schmidt orthonormalization)
- If $M = V_1^T V_1 = V_2^T V_2$, then $V_1 = OV_2$ with $O^T O = I_n$ (i.e. O corresponds to an isometry of \mathbb{R}^n).
- Also if L is a lattice of \mathbb{R}^n with basis **v** and u an isometry of \mathbb{R}^n , then $G_{\mathbf{v}} = G_{u(\mathbf{v})}$.

Arithmetic minimum

► The arithmetic minimum of $A \in S^n_{>0}$ is

$$
\min(A) = \min_{x \in \mathbb{Z}^n - \{0\}} x^T A x
$$

▶ The minimal vector set of $A \in S^n_{>0}$ is

$$
Min(A) = \left\{ x \in \mathbb{Z}^n \mid x^T A x = min(A) \right\}
$$

 \blacktriangleright Both min(A) and Min(A) can be computed using some programs (for example SV by Vallentin)

• The matrix
$$
A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$
 has

 $\text{Min}(A_{hex}) = {\pm (1, 0), \pm (0, 1), \pm (1, -1)}.$

Re-expression of previous definitions

$$
\blacktriangleright
$$
 Take a lattice $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$. If $x \in L$,

$$
x = x_1v_1 + \cdots + x_nv_n \text{ with } x_i \in \mathbb{Z}
$$

 \setminus

 $\Big\}$

we associate to it the column vector $X=\,$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ x_1 . . . x_n

• We get
$$
||x||^2 = X^T G_v X
$$
 and

$$
\det L = \sqrt{\det G_{\mathbf{v}}} \text{ and } \lambda(L) = \frac{1}{2} \sqrt{\min(G_{\mathbf{v}})}
$$

For
$$
A_{hex} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$
, det $A_{hex} = 3$ and min $(A_{hex}) = 2$

Changing basis

If **v** and **v**' are two basis of a lattice L then $V' = VP$ with $P \in GL_n(\mathbb{Z})$. This implies

$$
G_{v'} = V'^T V' = (VP)^T VP = P^T \{ V^T V \} P = P^T G_v P
$$

If $A, B \in S^n_{>0}$, they are called arithmetically equivalent if there is at least one $P \in GL_n(\mathbb{Z})$ such that

$$
A = P^T B P
$$

- \blacktriangleright Lattices up to isometric equivalence correspond to $S_{>0}^n$ up to arithmetic equivalence.
- \triangleright In practice, Plesken/Souvignier wrote a program ISOM for testing arithmetic equivalence and a program AUTO for computing automorphism group of lattices. All such programs take Gram matrices as input.

Dual lattices

 \blacktriangleright For a lattice L the dual lattice is

$$
L^* = \{x \in \mathbb{R}^n \text{ s.t. } \langle x, y \rangle \in \mathbb{Z} \text{ for all } y \in L\}
$$

► If $L = P\mathbb{Z}^n$ then we can take $L^* = (P^{-1})^T\mathbb{Z}^n$ and we get

$$
G(L^*)=(G(L))^{-1}
$$

- A lattice L is integral if $\langle x, y \rangle \in \mathbb{Z}$ for all $x, y \in \mathbb{Z}$.
- This is equivalent to say $L \subset L^*$
- A lattice is self-dual if $L = L^*$.
- \triangleright A lattice is self-dual if and only if its Gram matrix is integral and of determinant 1.

Root lattices

- \triangleright A root lattice is a lattice generated by a root system
- ▶ They are integral, $||x||^2 \in 2\mathbb{Z}$ and $\mathsf{Min}(L)$ is the root system
- \triangleright Most classical example is

$$
A_n = \left\{ x \in \mathbb{Z}^{n+1} \text{ s.t. } \sum_{i=1}^{n+1} x_i = 0 \right\}
$$

Possible basis: $v_i = e_{i+1} - e_i$ for $1 \le i \le n$

 \blacktriangleright They have a strict ADE classification:

Name	Min	Min	det	Aut
A_n	$e_i - e_i$	$2n(n+1)$	$n+1$	$2(n+1)!$
D_n	$\pm e_i \pm e_i$	$4n(n-1)$		2 ⁿ n!
E_6	complex	72		103680
E ₇	complex	126		2903040
E_8	complex	240		696729600

Self-dual even lattice

- A lattice is even if for all $x \in L$, $\langle x, x \rangle \in 2\mathbb{Z}$.
- \triangleright The Theta function of a self-dual even lattice of dimension *n* is

$$
\Theta(L,q)=\sum_{x\in L}q^{\langle x,x\rangle}
$$

and it is a modular form for $SL_2(\mathbb{Z})$ of weight $n/2$.

 \blacktriangleright This implies that they exist only for dimension *n* divisible by 8.

- \triangleright The key to above enumeration and estimates are the Siegel Mass formula and Kneser's algorithm
	- \triangleright M. Kneser, Quadratische Formen, Springer Verlag.

The Leech lattice

- \blacktriangleright Every non-zero vector v has $\|v\|^2 \geq 4$ and det Leech $= 1.2$
- It is the best lattice packing in dimension 24. Density is

$$
\frac{\pi^{12}}{12!} \simeq 0.001930...
$$

- \blacktriangleright There are 196280 shortest vectors (maximal number in dimension 24)
- Interfacent \pm if $\sqrt{2}$ and covering density is

$$
\frac{\pi^{12}}{12!}\left(\sqrt{2}\right)^{24}\simeq 7.903536...
$$

It is conjectured to give the best covering in dimension 24.

- Its automorphism group quotiented by $\pm Id_{24}$ is the sporadic simple group $Co₀$ and it contains many sporadic simple groups as subgroups.
- \blacktriangleright It is also related to some Lorentzian lattices.

II. Computational techniques

Polytopes, definition

- A polytope $P \subset \mathbb{R}^n$ is defined alternatively as:
	- If The convex hull of a finite number of points v^1, \ldots, v^m :

$$
P = \{v \in \mathbb{R}^n \mid v = \sum_i \lambda_i v^i \text{ with } \lambda_i \ge 0 \text{ and } \sum_i \lambda_i = 1\}
$$

 \blacktriangleright The following set of solutions:

$$
P = \{x \in \mathbb{R}^n \mid f_j(x) \ge b_j \text{ with } f_j \text{ linear}\}
$$

with the condition that P is bounded.

- \blacktriangleright The cube is defined alternatively as
	- The convex hull of the 2^n vertices

$$
\{(x_1,\ldots,x_n) \text{ with } x_i=\pm 1\}
$$

The set of points $x \in \mathbb{R}^n$ satisfying to

 $x_i \leq 1$ and $x_i \geq -1$

Facets and vertices

- A vertex of a polytope P is a point $v \in P$, which cannot be expressed as $v=\lambda v^1+(1-\lambda)v^2$ with $0<\lambda< 1$ and $v^1 \neq v^2 \in P$.
- \triangleright A polytope is the convex hull of its vertices and this is the minimal set defining it.
- A facet of a polytope is an inequality $f(x) b \ge 0$, which cannot be expressed as $f(x) - b = \lambda (f_1(x) - b_1) + (1 - \lambda)(f_2(x) - b_2)$ with

$$
f_i(x)-b_i\geq 0 \text{ on } P.
$$

- \triangleright A polytope is defined by its facet inequalities. and this is the minimal set of linear inequalities defining it.
- \triangleright The dual-description problem is the problem of passing from one description to another.
- \triangleright There are several programs CDD, LRS for computing dual-description computations.
- \blacktriangleright In case of large problems, we can use the symmetries for faster computation.

Linear programs

 \triangleright A linear program is the problem of maximizing a linear function $f(x)$ over a set $\mathcal P$ defined by linear inequalities.

 $\mathcal{P} = \{x \in \mathbb{R}^d \text{ such that } f_i(x) \geq b_i\}$

with f_i linear and $b_i \in \mathbb{R}$.

- \blacktriangleright The solution of linear programs is attained at vertices of P .
- \triangleright There are two classes of solution methods:

optimal solution vertex

Simplex method

Interior point method

- \triangleright Simplex methods use exact arithmetic but have bad theoretical complexity
- Interior point methods have good theoretical complexity but only gives an approximate vertex.

III. Perfect forms and domains

Perfect forms

- \triangleright A form A is extreme if it is a local maximum of the packing density.
- ► A matrix $A \in S^n_{>0}$ is perfect (Korkine & Zolotarev) if the equation

$$
B \in S^n \text{ and } x^T Bx = \min(A) \text{ for all } x \in \text{Min}(A)
$$

implies $B = A$.

- \triangleright Theorem: (Korkine & Zolotarev) If a form is extreme then it is perfect.
- \triangleright Up to a scalar multiple, perfect forms are rational.
- \triangleright All root lattices are perfect, many other families are known.

A perfect form

^I Ahex = 2 1 1 2 corresponds to the lattice: v 1 v 2 ^I If B = a b b c satisfies to x ^T Bx = min(Ahex) for x ∈ Min(Ahex) = {±(1, 0), ±(0, 1), ±(1, −1)}, then: a = 2, c = 2 and a − 2b + c = 2

which implies $B = A_{hex}$. A_{hex} is perfect.

A non-perfect form

$$
\blacktriangleright A_{\mathit{sqr}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \text{ has } \textsf{Min}(A_{\mathit{sqr}}) = \{\pm(0,1), \pm(1,0)\}.
$$

See below lattices L_B , L_{sar} associated to matrices $B, A_{\mathsf{sqr}} \in S^2_{>0}$ with $\mathsf{Min}(B) = \mathsf{Min}(A_{\mathsf{sqr}})$:

Perfect domains and arithmetic closure

- If $v \in \mathbb{Z}^n$ then the corresponding rank 1 form is $p(v) = vv^T$.
- If A is a perfect form, its perfect domain is

$$
\mathsf{Dom}(A) = \sum_{v \in \mathsf{Min}(A)} \mathbb{R}_+ p(v)
$$

- If A has m shortest vectors then Dom(A) has $\frac{m}{2}$ extreme rays.
- \triangleright So actually, the perfect domains realize a tessellation not of $S_{>0}^n$, nor $S_{\geq 0}^n$ but of the rational closure $S_{rat,\geq 0}^n$.
- ► The rational closure $S_{rat,\geq 0}^n$ has a number of descriptions:

$$
\blacktriangleright S_{rat,\geq 0}^n = \sum_{v\in\mathbb{Z}^n} \mathbb{R}_+ p(v)
$$

- ► If $A \in S_{\geq 0}^n$ then $A \in S_{rat,\geq 0}^n$ if and only if Ker A is defined by rational equations.
- \triangleright So, actually, the stabilizers of some faces of the polyhedral complex are infinite.

Finiteness

- \triangleright Theorem: (Voronoi) Up to arithmetic equivalence there is only finitely many perfect forms.
- \blacktriangleright The group $GL_n(\mathbb{Z})$ acts on $S^n_{>0}$:

 $Q \mapsto P^t Q P$

and we have $\mathsf{Min}(P^t Q P) = P^{-1} \mathsf{Min}(Q)$

- ▶ Dom $(P^{\mathsf{T}} Q P) = c(P)^{\mathsf{T}}$ Dom $(Q) c(P)$ with $c(P) = (P^{-1})^{\mathsf{T}}$
- For $n = 2$, we get the classical picture:

Known results on lattice packing density maximization

- \blacktriangleright The enumeration of perfect forms is done with the Voronoi algorithm.
- \triangleright The number of orbits of faces of the perfect domain tessellation is much higher but finite (Known for $n \leq 7$)
- Blichfeldt used Korkine-Zolotarev reduction theory.
- \triangleright Cohn & Kumar used Fourier analysis and Linear programming.

Some algorithms

- \triangleright Pb 1: Suppose we have a configuration of vector V. Does there exist a matrix $A\in S^n_{>0}$ such that $\mathsf{Min}(A)=\mathcal{V}$?
- \triangleright Consider the linear program

$$
\begin{array}{ll}\text{minimize} & \lambda\\ \text{with} & \lambda = A[v] \text{ for } v \in \mathcal{V}\\ & A[v] \ge 1 \text{ for } v \in \mathbb{Z}^n - \{0\} - \mathcal{V}\end{array}
$$

The value λ_{opt} determines the answer.

- In practice one replaces \mathbb{Z}^n by a finite set and iteratively increases it until a conclusion is reached.
- ► Pb 2: How given a matrix $A \in S_{>0}^n$ find B perfect with $A \in \textsf{Dom}(B)$?
- \triangleright The method is to start from a perfect matrix B and test if A belongs to $Dom(B)$. If not there exist a facet F of $Dom(B)$ such that A is on the other side (found by LP). We flip over it. Eventually, one finds the right perfect form.

IV. Ryshkov polyhedron and the Voronoi algorithm

The Ryshkov polyhedron

 \blacktriangleright The Ryshkov polyhedron R_n is defined as

$$
R_n = \left\{ A \in S^n \text{ s.t. } x^T A x \ge 1 \text{ for all } x \in \mathbb{Z}^n - \{0\} \right\}
$$

- \blacktriangleright The cone is invariant under the action of $GL_n(\mathbb{Z})$.
- ► The cone is locally polyhedral, i.e. for a given $A \in R_n$

$$
\left\{x \in \mathbb{Z}^n \text{ s.t. } x^T A x = 1\right\}
$$

is finite

- \triangleright Vertices of R_n correspond to perfect forms.
- ► For a form $A \in R_n$ we define the local cone

$$
Loc(A) = \left\{ Q \in S^n \text{ s.t. } x^T Q x \ge 0 \text{ if } x^T A x = 1 \right\}
$$

The Voronoi algorithm

 \blacktriangleright Find a perfect form (say A_n), insert it to the list $\mathcal L$ as undone.

 \blacktriangleright Iterate

- For every undone perfect form A in \mathcal{L} , compute the local cone $Loc(A)$ and then its extreme rays.
- For every extreme ray r of $Loc(A)$ realize the flipping, i.e. compute the adjacent perfect form $A'=A+\alpha r$.
- If A' is not equivalent to a form in $\mathcal L$, then we insert it into $\mathcal L$ as undone.
- \blacktriangleright Finish when all perfect forms have been treated.

The sub-algorithms are:

- \triangleright Find the extreme rays of the local cone $Loc(A)$ (use CDD or LRS or any other program)
- For any extreme ray r of $Loc(A)$ find the adjacent perfect form A' in the Ryshkov polyhedron R_n
- \triangleright Test equivalence of perfect forms using ISOM

Flipping on an edge I

Min(
$$
A_{hex}
$$
) = { \pm (1, 0), \pm (0, 1), \pm (1, -1)}

with

$$
A_{hex} = \left(\begin{array}{cc} 1 & 1/2 \\ 1/2 & 1 \end{array}\right) \text{ and } D = \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)
$$

Flipping on an edge II

 $Min(B) = {\pm(1,0), \pm(0,1)}$

with

$$
B=\left(\begin{array}{cc}1&1/4\\1/4&1\end{array}\right)=A_{hex}+D/4
$$

Flipping on an edge III

$$
\mathsf{Min}(\mathcal{A}_{\mathsf{sqr}}) = \{\pm(1,0), \pm(0,1)\}
$$

with

$$
A_{\mathit{sqr}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) = A_{\mathit{hex}} + D/2
$$

Flipping on an edge IV

with

 $\mathsf{Min}(\tilde{\mathsf{A}}_{\mathsf{hex}}) = \{\pm(1,0), \pm(0,1), \pm(1,1)\}$ $\tilde{A}_{hex}=\left(\begin{array}{cc} 1 & -1/2 \ -1/2 & 1 \end{array}\right)=A_{hex}+D$

The Ryshkov polyhedron R_2

Well rounded forms and retract

- A form Q is said to be well rounded if it admits vectors v_1 , \ldots , v_n such that
	- \blacktriangleright (v_1, \ldots, v_n) form a \mathbb{R} -basis of \mathbb{R}^n (not necessarily a \mathbb{Z} -basis)
	- \triangleright v_1, \ldots, v_n are shortest vectors of Q.
- \triangleright Well rounded forms correspond to bounded faces of R_n .
- \triangleright Every form can be continuously deformed to a well rounded form and this defines a retracting homotopy of R_n onto a polyhedral complex WR_n of dimension $\frac{n(n-1)}{2}$.
- Every face of WR_n has finite stabilizer.
- \triangleright Actually, in term of dimension, we cannot do better:
	- \triangleright A. Pettet and J. Souto, Minimality of the well rounded retract, Geometry and Topology, 12 (2008), 1543-1556.
- \triangleright We also cannot reduce ourselves to lattices whose shortest vectors define a $\mathbb Z$ -basis of $\mathbb Z^n$.

Topological applications

- \blacktriangleright The fact that we have finite stabilizers for all faces means that we can compute rational homology/cohomology of $GL_n(\mathbb{Z})$ efficiently.
- ► This has been done for $n \leq 7$
	- ▶ P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory and the cohomology of modular groups, Adv. Math 245 (2013) 587–624.
- As an application, we can compute $K_n(\mathbb{Z})$ for $n \leq 8$.
- \triangleright By using perfect domains, we can compute the action of Hecke operators on the cohomology.
- ► This has been done for $n < 4$:
	- ▶ P.E. Gunnells, Computing Hecke Eigenvalues Below the Cohomological Dimension, Experimental Mathematics 9-3 (2000) 351–367.
- \triangleright The above can, in principle, be extended to the case of $GL_n(R)$ with R a ring of algebraic integers.

References

On lattice theory:

▶ J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups third edition, Springer–Verlag, 1998.

On perfect forms:

- \triangleright G. Voronoi, Nouvelles applications des paramètres continues à la théorie des formes quadratiques $1:$ Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math 133 (1908) 97–178.
- \triangleright A. Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.
- ▶ J. Martinet, Perfect lattices in Euclidean spaces, Springer, 2003.
- ▶ S.S. Ryshkov, E.P. Baranovski, Classical methods in the theory of lattice packings, Russian Math. Surveys 34 (1979) 1–68, translation of Uspekhi Mat. Nauk 34 (1979) 3–63.

V. Tessellations

Linear Reduction theories for $Sⁿ$

Some $\mathsf{GL}_n(\mathbb{Z})$ invariant tessellations of $S^n_{rat,\geq 0}$:

- \triangleright The perfect form theory (Voronoi I) for lattice packings (full face lattice known for $n \leq 7$, perfect domains known for $n \leq 8$
- \triangleright The central cone compactification (Igusa & Namikawa) (Known for $n \leq 6$)
- \blacktriangleright The L-type reduction theory (Voronoi II) for Delaunay tessellations (Known for $n < 5$)
- \triangleright The C-type reduction theory (Ryshkov & Baranovski) for edges of Delaunay tessellations (Known for $n \leq 5$)
- \blacktriangleright The Minkowski reduction theory (Minkowski) it uses the successive minima of a lattice to reduce it (Known for $n \le 7$) not face-to-face
- \triangleright Venkov's reduction theory also known as Igusa's fundamental cone (finiteness proved by Crisalli)

Toroidal compactifications of \mathcal{A}_{g}

- ► A polyhedral GL_n(ℤ)-tessellation of $S_{rat,\geq 0}^n$ is admissible if it is a face-to-face tessellation and has finite number of orbits.
- Admissible $GL_n(\mathbb{Z})$ invariant tessellations of $S^n_{rat,\geq 0}$ give rise to toroidal compactifications of the moduli space A_g of principally polarized abelian varieties.
- For the perfect form tessellation A_g^{Perf} is a canonical model in the sense of the minimal model program if $g \ge 12$:
	- \triangleright N. Shepherd-Barron, Perfect forms and the moduli space of abelian varieties, Invent. Math. 163-1 (2006) 25–45
- \blacktriangleright For Voronoi II tessellation \mathcal{A}_g^{Vor} has its boundary corresponding to semi-abelic varieties:
	- \triangleright V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. 155-3 (2002) 611–708
- \triangleright Properties of the compactification being Q-Gorenstein, having canonical singularities, terminal singularities can be read off from properties of the tessellation.

Geometry of tessellation and compactifications

- \triangleright Thm: (Namikawa) For a given admissible tessellation \triangleright the corresponding tessellation is smooth if and only if
	- \triangleright All cones are simplicial
	- \triangleright For all cones, the set of generators of extreme rays can be extended to a basis of Sym²(\mathbb{Z}).
- \blacktriangleright For \mathcal{A}_g^{Perf} we prove
	- \blacktriangleright Every cone of dimension at most 9 in the perfect cone decomposition is basic. In particular the stack \mathcal{A}^{Perf}_g is smooth for $g \leq 3$ and the codimension of both the singular and the non-simplicial substack of ${\cal A}^{Perf}_g$ is 10 if $g\geq 4.$
	- \blacktriangleright Every cone of dimension 10 is simplicial with the only exception the cone of the root lattice D_4 .
- \blacktriangleright For $\mathcal{A}_g^{\mathit{Vor}}$ we prove
	- For $g < 4$ every cone in the second Voronoi compactification is basic.
	- For $g \geq 5$ there are non-simplicial cones in dimension 3, in particular \mathcal{A}_g^{Vor} is singular in dimension 3.

Self-dual cones

For an open cone C in \mathbb{R}^n the dual cone is

$$
C^* = \{x \in \mathbb{R}^n \text{ s.t. } \langle x, y \rangle > 0 \text{ for } y \in C\}
$$

- \triangleright Such cones are classified by Euclidean Jordan algebras and the classification gives:
	- \triangleright S^n : The cone of positive definite real quadratic forms
	- \blacktriangleright Hⁿ: The cone of positive definite Hermitian quadratic forms
	- \blacktriangleright Qⁿ: The cone of positive definite quaternionic quadratic forms
	- \blacktriangleright The cone of 3 \times 3 positive definite octonion matrices.
	- \blacktriangleright The hyperbolic cone H_n

$$
H_n = \{(x_1, \ldots, x_n) \text{ s.t. } x_1 > 0 \text{ and } x_1^2 - x_2^2 - \cdots - x_n^2 > 0\}
$$

\blacktriangleright References

- A. Ash, D. Mumford, M. Rapoport, Y. Tai Smooth compactifications of locally symmetric varieties, Cambridge University Press
- ▶ M. Koecher, Beiträge zu einer Reduktionstheorie in Positivtätsbereichan I/II, Math. Annalen 141, 384–432, 144, 175–182

T-space theory

- ► A T-space $\mathcal F$ is a vector space in S^n with $\mathcal F_{>0} = \mathcal F \cap S^n_{>0}$ being non-empty.
- \triangleright All above reduction theories apply to that case.
- \triangleright But some dead ends exist to the polyhedral tessellations.
- ► Relevant group is $Aut(\mathcal{F}) = \{g \in GL_n(\mathbb{Z}) \text{ s.t. } g\mathcal{F}g^\mathcal{T} = \mathcal{F}\}.$
- ► For a finite group $G \subset GL_n(\mathbb{Z})$ of space

$$
\mathcal{F}(G) = \left\{ A \in S^n \text{ s.t. } gAg^T = A \text{ for } g \in G \right\}
$$

we have $Aut(\mathcal{F}(G)) = \text{Norm}(G, GL_n(\mathbb{Z}))$ (Zassenhaus) and a finite number of F -perfect forms.

- \triangleright There exist some T-spaces having a rational basis and an infinity of perfect forms.
- Another finiteness case is for spaces obtained from $GL_n(R)$ with R number ring.

Non-polyhedral reduction theories

- \triangleright Some works with non-polyhedral, but still manifold domains:
	- \triangleright R. MacPherson and M. McConnel, Explicit reduction theory for Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.
	- \triangleright D. Yasaki, An explicit spine for the Picard modular group over the Gaussian integers, Journal of Number Theory, 128 (2008) 207–234.
- \triangleright Other works in complex hyperbolic space using Poincaré polyhedron theorem:
	- \blacktriangleright M. Deraux, Deforming the \mathbb{R} -fuchsian (4, 4, 4)-lattice group into a lattice.
	- \triangleright E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups in complex hyperbolic geometry, Topology 39 (2000) 1209–1223.
- \triangleright Other works for non-manifold setting would be:
	- \blacktriangleright T. Brady, The integral cohomology of Out₊(F_3), Journal of Pure and Applied Algebra 87 (1993) 123–167.
	- \triangleright K.N. Moss, Cohomology of SL(n, $\mathbb{Z}[1/p]$), Duke Mathematical Journa 47-4 (1980) 803–818.

VI. Central cone compactification

Central cone compactification

 \triangleright We consider the space of integral valued quadratic forms:

$$
I_n = \{A \in S^n \text{ s.t. } A[x] \in \mathbb{Z} \text{ for all } x \in \mathbb{Z}^n\}
$$

All the forms in I_n have integral coefficients on the diagonal and half integral outside of it.

- \blacktriangleright The centrally perfect forms are the elements of I_n that are vertices of conv I_n .
- **►** For $A \in I_n$ we have $A[x] \geq 1$. So, $I_n \subset R_n$
- Any root lattice is a vertex both of R_n and conv I_n .
- ► The centrally perfect forms are known for $n \leq 6$:

► By taking the dual we get tessellations of $S_{rat, \geq 0}^n$.

Enumeration of centrally perfect forms

- \triangleright Suppose that we have a conjecturally correct list of centrally perfect forms A_1, \ldots, A_m . Suppose further that for each form A_i we have a conjectural list of neighbors $N(A_i)$.
- \blacktriangleright We form the cone

$$
C(A_i) = \{X - A_i \text{ for } X \in N(A_i)\}
$$

and we compute the orbits of facets of $C(A_i)$.

 \blacktriangleright For each orbit of facet of representative f we form the corresponding linear form f and solve the Integer Linear Problem

$$
f_{\text{opt}} = \min_{X \in I_n} f(X)
$$

We have to use GLPK program for that. It is done iteratively since I_n is defined by an infinity of inequalities.

If $f_{opt} = f(A_i)$ always then the list is correct. If not then the X realizing $f(X) < f(A_i)$ need to be added to the full list.

VII. Voronoi II theory

Empty sphere and Delaunay polytopes

A sphere $S(c, r)$ of radius r and center c in an *n*-dimensional lattice L is said to be an empty sphere if:

(i)
$$
\|v - c\| \ge r
$$
 for all $v \in L$,

(ii) the set $S(c, r) \cap L$ contains $n + 1$ affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

Equalities and inequalities

- \blacktriangleright Take $M = G_v$ with $v = (v_1, \ldots, v_n)$ a basis of lattice L.
- If $V = (w_1, \ldots, w_N)$ with $w_i \in \mathbb{Z}^n$ are the vertices of a Delaunay polytope of empty sphere $S(c, r)$ then:

$$
||w_i - c|| = r
$$
 i.e. $w_i^T M w_i - 2w_i^T M c + c^T M c = r^2$

 \blacktriangleright Subtracting one obtains

$$
\{w_i^T M w_i - w_j^T M w_j\} - 2\{w_i^T - w_j^T\} M c = 0
$$

- Inverting matrices, one obtains $Mc = \psi(M)$ with ψ linear and so one gets linear equalities on M.
- \triangleright Similarly $||w c|| \geq r$ translates into linear inequalities on M: Take $V = (v_0, \ldots, v_n)$ a simplex $(v_i \in \mathbb{Z}^n)$, $w \in \mathbb{Z}^n$. If one writes $w=\sum_{i=0}^n\lambda_i v_i$ with $1=\sum_{i=0}^n\lambda_i$, then one has

$$
||w - c|| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0
$$

Iso-Delaunay domains

- \blacktriangleright Take a lattice L and select a basis v_1, \ldots, v_n .
- \triangleright We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.

 \triangleright An iso-Delaunay domain is the assignment of Delaunay polytopes. It is a polyhedral domain of $S^{n}_{rat, \geq 0}$.

Primitive iso-Delaunay

- If one takes a generic matrix M in $S_{>0}^n$, then all its Delaunay are simplices and so no linear equality are implied on M.
- \blacktriangleright Hence the corresponding iso-Delaunay domain is of dimension $n(n+1)$ 2 , they are called primitive

Equivalence and enumeration

- \blacktriangleright The group $GL_n(\mathbb{Z})$ acts on $S^n_{>0}$ by arithmetic equivalence and preserve the primitive iso-Delaunay domains.
- \triangleright Voronoi proved that after this action, there is a finite number of primitive iso-Delaunay domains.
- \triangleright Bistellar flipping creates one iso-Delaunay from a given iso-Delaunay domain and a facet of the domain. In dim. 2:

- \blacktriangleright Enumerating primitive iso-Delaunay domains is done classically:
	- \blacktriangleright Find one primitive iso-Delaunay domain.
	- \blacktriangleright Find the adjacent ones and reduce by arithmetic equivalence.
- \triangleright This is very similar to the Voronoi algorithm for perfect forms.

The partition of $S^2_{rat,\geq 0} \subset \mathbb{R}^3$ I

If $q(x, y) = u^2 + 2vxy + wy^2$ then $q \in S^2_{>0}$ if and only if v^2 $<$ uw and $u > 0$.

The partition of $S^2_{rat,\geq 0}\subset \mathbb{R}^3$ II

We cut by the plane $u + w = 1$ and get a circle representation.

The partition of $S^2_{rat,\geq 0}\subset \mathbb{R}^3$ III

Primitive iso-Delaunay domains in $S^2_{rat,\geq 0}$:

Enumeration of iso-Delaunay domains

- \triangleright The covering density is equal to the maximum of the circumradius of the Delaunay polytopes.
- \triangleright In principle if one knows all primitive iso-Delaunay then one can find the best covering lattice.
- \triangleright A lattice is rigid (Grishukhin & Baranovski) if it is determined by its Delaunay polytopes (iso-Delaunay domain of dimension 1).

- \blacktriangleright See for more details
	- \triangleright A. Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.

THANK YOU