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I. Lattices and

Gram matrices



Lattice packings

I A lattice L ⊂ Rn is a set of the form L = Zv1 + · · ·+ Zvn with
(v1, . . . , vn) independent.

I A packing is a family of balls Bn(xi , r), i ∈ I of the same
radius r and center xi such that their interiors are disjoint.

I If L is a lattice, the lattice packing is the packing defined by
taking the maximal value of α > 0 such that L + Bn(0, α) is a
packing.

I The maximum α is called λ(L) and the determinant of
(v1, . . . , vn) is det L.



Gram matrix and lattices

I Denote by Sn the vector space of real symmetric n × n
matrices, Sn

>0 the convex cone of real symmetric positive
definite n × n matrices and Sn

≥0 the convex cone of real
symmetric positive semidefinite n × n matrices.

I Take a basis (v1, . . . , vn) of a lattice L and associate to it the
Gram matrix Gv = (〈vi , vj〉)1≤i ,j≤n ∈ Sn

>0.

I Example: take the hexagonal lattice generated by v1 = (1, 0)

and v2 =
(
1
2 ,
√
3
2

)

2
v

v
1

Gv = 1
2

(
2 1
1 2

)



Isometric lattices

I Take a basis (v1, . . . , vn) of a lattice L with
vi = (vi ,1, . . . , vi ,n) ∈ Rn and write the matrix

V =

 v1,1 . . . vn,1
...

. . .
...

v1,n . . . vn,n


and Gv = V T V .
The matrix Gv is defined by n(n+1)

2 variables as opposed to n2

for the basis V .

I If M ∈ Sn
>0, then there exists V such that M = V T V (Gram

Schmidt orthonormalization)

I If M = V T
1 V1 = V T

2 V2, then V1 = OV2 with OT O = In
(i.e. O corresponds to an isometry of Rn).

I Also if L is a lattice of Rn with basis v and u an isometry of
Rn, then Gv = Gu(v).



Arithmetic minimum

I The arithmetic minimum of A ∈ Sn
>0 is

min(A) = min
x∈Zn−{0}

xTAx

I The minimal vector set of A ∈ Sn
>0 is

Min(A) =
{

x ∈ Zn | xTAx = min(A)
}

I Both min(A) and Min(A) can be computed using some
programs (for example SV by Vallentin)

I The matrix Ahex =

(
2 1
1 2

)
has

Min(Ahex) = {±(1, 0),±(0, 1),±(1,−1)}.



Re-expression of previous definitions

I Take a lattice L = Zv1 + · · ·+ Zvn. If x ∈ L,

x = x1v1 + · · ·+ xnvn with xi ∈ Z

we associate to it the column vector X =

 x1
...

xn


I We get ||x ||2 = XTGvX and

det L =
√

det Gv and λ(L) =
1

2

√
min(Gv)

λ (L)

I For Ahex =

(
2 1
1 2

)
, det Ahex = 3 and min(Ahex) = 2



Changing basis

I If v and v′ are two basis of a lattice L then V ′ = VP with
P ∈ GLn(Z). This implies

Gv′ = V ′
T

V ′ = (VP)TVP = PT{V TV }P = PTGvP

I If A,B ∈ Sn
>0, they are called arithmetically equivalent if there

is at least one P ∈ GLn(Z) such that

A = PTBP

I Lattices up to isometric equivalence correspond to Sn
>0 up to

arithmetic equivalence.

I In practice, Plesken/Souvignier wrote a program ISOM for
testing arithmetic equivalence and a program AUTO for
computing automorphism group of lattices.
All such programs take Gram matrices as input.



Dual lattices

I For a lattice L the dual lattice is

L∗ = {x ∈ Rn s.t. 〈x , y〉 ∈ Z for all y ∈ L}

I If L = PZn then we can take L∗ = (P−1)TZn and we get

G (L∗) = (G (L))−1

I A lattice L is integral if 〈x , y〉 ∈ Z for all x , y ∈ Z.

I This is equivalent to say L ⊂ L∗

I A lattice is self-dual if L = L∗.

I A lattice is self-dual if and only if its Gram matrix is integral
and of determinant 1.



Root lattices

I A root lattice is a lattice generated by a root system

I They are integral, ‖x‖2 ∈ 2Z and Min(L) is the root system

I Most classical example is

An =

{
x ∈ Zn+1

s.t.

n+1∑
i=1

xi = 0

}

Possible basis: vi = ei+1 − ei for 1 ≤ i ≤ n

I They have a strict ADE classification:

Name Min |Min| det |Aut |
An ei − ej 2n(n + 1) n + 1 2(n + 1)!
Dn ±ei ± ej 4n(n − 1) 4 2nn!
E6 complex 72 3 103680
E7 complex 126 2 2903040
E8 complex 240 1 696729600



Self-dual even lattice

I A lattice is even if for all x ∈ L, 〈x , x〉 ∈ 2Z.

I The Theta function of a self-dual even lattice of dimension n is

Θ(L, q) =
∑
x∈L

q〈x ,x〉

and it is a modular form for SL2(Z) of weight n/2.

I This implies that they exist only for dimension n divisible by 8.

Dimension lattices

8 E8

16 E8 ⊕ E8 and D+
16

24 Leech lattice and 23 Niemeier lattices
32 at least 40 million lattices

I The key to above enumeration and estimates are the Siegel
Mass formula and Kneser’s algorithm

I M. Kneser, Quadratische Formen, Springer Verlag.



The Leech lattice

I Every non-zero vector v has ‖v‖2 ≥ 4 and det Leech = 1.

I It is the best lattice packing in dimension 24. Density is

π12

12!
' 0.001930...

I There are 196280 shortest vectors (maximal number in
dimension 24)

I The covering radius is
√

2 and covering density is

π12

12!

(√
2
)24
' 7.903536...

It is conjectured to give the best covering in dimension 24.

I Its automorphism group quotiented by ±Id24 is the sporadic
simple group Co0 and it contains many sporadic simple groups
as subgroups.

I It is also related to some Lorentzian lattices.



II. Computational

techniques



Polytopes, definition

I A polytope P ⊂ Rn is defined alternatively as:
I The convex hull of a finite number of points v1, . . . , vm:

P = {v ∈ Rn | v =
∑
i

λiv
i with λi ≥ 0 and

∑
λi = 1}

I The following set of solutions:

P = {x ∈ Rn | fj(x) ≥ bj with fj linear}

with the condition that P is bounded.

I The cube is defined alternatively as
I The convex hull of the 2n vertices

{(x1, . . . , xn) with xi = ±1}

I The set of points x ∈ Rn satisfying to

xi ≤ 1 and xi ≥ −1



Facets and vertices
I A vertex of a polytope P is a point v ∈ P, which cannot be

expressed as v = λv1 + (1− λ)v2 with 0 < λ < 1 and
v1 6= v2 ∈ P.

I A polytope is the convex hull of its vertices and this is the
minimal set defining it.

I A facet of a polytope is an inequality f (x)− b ≥ 0, which
cannot be expressed as
f (x)− b = λ(f1(x)− b1) + (1− λ)(f2(x)− b2) with
fi (x)− bi ≥ 0 on P.

I A polytope is defined by its facet inequalities. and this is the
minimal set of linear inequalities defining it.

I The dual-description problem is the problem of passing from
one description to another.

I There are several programs CDD, LRS for computing
dual-description computations.

I In case of large problems, we can use the symmetries for
faster computation.



Linear programs
I A linear program is the problem of maximizing a linear

function f (x) over a set P defined by linear inequalities.

P = {x ∈ Rd such that fi (x) ≥ bi}

with fi linear and bi ∈ R.
I The solution of linear programs is attained at vertices of P.
I There are two classes of solution methods:

optimal solution vertex

Simplex method

optimal solution vertex

Interior point method
I Simplex methods use exact arithmetic but have bad

theoretical complexity
I Interior point methods have good theoretical complexity but

only gives an approximate vertex.



III. Perfect forms

and domains



Perfect forms

I A form A is extreme if it is a local maximum of the packing
density.

I A matrix A ∈ Sn
>0 is perfect (Korkine & Zolotarev) if the

equation

B ∈ Sn and xTBx = min(A) for all x ∈ Min(A)

implies B = A.

I Theorem: (Korkine & Zolotarev) If a form is extreme then it
is perfect.

I Up to a scalar multiple, perfect forms are rational.

I All root lattices are perfect, many other families are known.



A perfect form

I Ahex =

(
2 1
1 2

)
corresponds to the lattice:

v
1

v
2

I If B =

(
a b
b c

)
satisfies to xTBx = min(Ahex) for

x ∈ Min(Ahex) = {±(1, 0),±(0, 1),±(1,−1)}, then:

a = 2, c = 2 and a− 2b + c = 2

which implies B = Ahex . Ahex is perfect.



A non-perfect form

I Asqr =

(
1 0
0 1

)
has Min(Asqr ) = {±(0, 1),±(1, 0)}.

I See below lattices LB , Lsqr associated to matrices
B,Asqr ∈ S2

>0 with Min(B) = Min(Asqr ):

v
1

v
2

v
1

v
2



Perfect domains and arithmetic closure

I If v ∈ Zn then the corresponding rank 1 form is p(v) = vvT .

I If A is a perfect form, its perfect domain is

Dom(A) =
∑

v∈Min(A)

R+p(v)

I If A has m shortest vectors then Dom(A) has m
2 extreme rays.

I So actually, the perfect domains realize a tessellation not of
Sn
>0, nor Sn

≥0 but of the rational closure Sn
rat,≥0.

I The rational closure Sn
rat,≥0 has a number of descriptions:

I Sn
rat,≥0 =

∑
v∈Zn R+p(v)

I If A ∈ Sn
≥0 then A ∈ Sn

rat,≥0 if and only if Ker A is defined by
rational equations.

I So, actually, the stabilizers of some faces of the polyhedral
complex are infinite.



Finiteness
I Theorem:(Voronoi) Up to arithmetic equivalence there is only

finitely many perfect forms.
I The group GLn(Z) acts on Sn

>0:

Q 7→ PtQP

and we have Min(PtQP) = P−1 Min(Q)

I Dom(PTQP) = c(P)T Dom(Q)c(P) with c(P) =
(
P−1

)T
I For n = 2, we get the classical picture:

(0,1)

(1,1)

(1,2)

(3,2) (2,3)

(1,3)

(−1,2)

(−2,3)

(−1,3)

(2,1)

(3,1)

(1,0)

(−3,1)

(−2,1)

(−3,2)

(−1,1)



Known results on lattice packing density maximization

dim. Nr. of perfect forms Best lattice packing
2 1 (Lagrange) A2

3 1 (Gauss) A3

4 2 (Korkine & Zolotarev) D4

5 3 (Korkine & Zolotarev) D5

6 7 (Barnes) E6 (Blichfeldt & Watson)
7 33 (Jaquet) E7 (Blichfeldt & Watson)
8 10916 (DSV) E8 (Blichfeldt & Watson)
9 ≥500000 Λ9?

24 ? Leech (Cohn & Kumar)

I The enumeration of perfect forms is done with the Voronoi
algorithm.

I The number of orbits of faces of the perfect domain
tessellation is much higher but finite (Known for n ≤ 7)

I Blichfeldt used Korkine-Zolotarev reduction theory.

I Cohn & Kumar used Fourier analysis and Linear programming.



Some algorithms

I Pb 1: Suppose we have a configuration of vector V. Does
there exist a matrix A ∈ Sn

>0 such that Min(A) = V?

I Consider the linear program

minimize λ
with λ = A[v ] for v ∈ V

A[v ] ≥ 1 for v ∈ Zn − {0} − V

The value λopt determines the answer.

I In practice one replaces Zn by a finite set and iteratively
increases it until a conclusion is reached.

I Pb 2: How given a matrix A ∈ Sn
>0 find B perfect with

A ∈ Dom(B)?

I The method is to start from a perfect matrix B and test if A
belongs to Dom(B). If not there exist a facet F of Dom(B)
such that A is on the other side (found by LP).
We flip over it. Eventually, one finds the right perfect form.



IV. Ryshkov polyhedron
and the Voronoi algorithm



The Ryshkov polyhedron

I The Ryshkov polyhedron Rn is defined as

Rn =
{

A ∈ Sn s.t. xTAx ≥ 1 for all x ∈ Zn − {0}
}

I The cone is invariant under the action of GLn(Z).

I The cone is locally polyhedral, i.e. for a given A ∈ Rn{
x ∈ Zn s.t. xTAx = 1

}
is finite

I Vertices of Rn correspond to perfect forms.

I For a form A ∈ Rn we define the local cone

Loc(A) =
{

Q ∈ Sn s.t. xTQx ≥ 0 if xTAx = 1
}



The Voronoi algorithm

I Find a perfect form (say An), insert it to the list L as undone.
I Iterate

I For every undone perfect form A in L, compute the local cone
Loc(A) and then its extreme rays.

I For every extreme ray r of Loc(A) realize the flipping, i.e.
compute the adjacent perfect form A′ = A + αr .

I If A′ is not equivalent to a form in L, then we insert it into L
as undone.

I Finish when all perfect forms have been treated.

The sub-algorithms are:

I Find the extreme rays of the local cone Loc(A) (use CDD or
LRS or any other program)

I For any extreme ray r of Loc(A) find the adjacent perfect
form A′ in the Ryshkov polyhedron Rn

I Test equivalence of perfect forms using ISOM



Flipping on an edge I

Min(Ahex) = {±(1, 0),±(0, 1),±(1,−1)}

with

Ahex =

(
1 1/2

1/2 1

)
and D =

(
0 −1
−1 0

)

v
1

v
2

A
hex



Flipping on an edge II

Min(B) = {±(1, 0),±(0, 1)}

with

B =

(
1 1/4

1/4 1

)
= Ahex + D/4

v
1

v
2

A

B

hex



Flipping on an edge III

Min(Asqr ) = {±(1, 0),±(0, 1)}

with

Asqr =

(
1 0
0 1

)
= Ahex + D/2

v
1

v
2

Ahex

Asqr



Flipping on an edge IV

Min(Ãhex) = {±(1, 0),±(0, 1),±(1, 1)}

with

Ãhex =

(
1 −1/2

−1/2 1

)
= Ahex + D

v
1

v
2

A
hex

A
hex



The Ryshkov polyhedron R2

+ (1,−1)

+ (1,−2)

+ (1,0)

+ (2,−1)

+ (2,1)

+ (1,1)

+ (0,1)

+ (1,2)

1/2

1 1/2

1

−1/21

−1/2 1

3

3/2

1

3

3/2

3/2

1

3/2



Well rounded forms and retract

I A form Q is said to be well rounded if it admits vectors v1,
. . . , vn such that

I (v1, . . . , vn) form a R-basis of Rn (not necessarily a Z-basis)
I v1, . . . , vn are shortest vectors of Q.

I Well rounded forms correspond to bounded faces of Rn.

I Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of Rn onto a
polyhedral complex WRn of dimension n(n−1)

2 .

I Every face of WRn has finite stabilizer.
I Actually, in term of dimension, we cannot do better:

I A. Pettet and J. Souto, Minimality of the well rounded retract,
Geometry and Topology, 12 (2008), 1543-1556.

I We also cannot reduce ourselves to lattices whose shortest
vectors define a Z-basis of Zn.



Topological applications

I The fact that we have finite stabilizers for all faces means that
we can compute rational homology/cohomology of GLn(Z)
efficiently.

I This has been done for n ≤ 7
I P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory

and the cohomology of modular groups, Adv. Math 245
(2013) 587–624.

I As an application, we can compute Kn(Z) for n ≤ 8.

I By using perfect domains, we can compute the action of
Hecke operators on the cohomology.

I This has been done for n ≤ 4:
I P.E. Gunnells, Computing Hecke Eigenvalues Below the

Cohomological Dimension, Experimental Mathematics 9-3
(2000) 351–367.

I The above can, in principle, be extended to the case of
GLn(R) with R a ring of algebraic integers.
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V. Tessellations



Linear Reduction theories for Sn

Some GLn(Z) invariant tessellations of Sn
rat,≥0:

I The perfect form theory (Voronoi I) for lattice packings (full
face lattice known for n ≤ 7, perfect domains known for
n ≤ 8)

I The central cone compactification (Igusa & Namikawa)
(Known for n ≤ 6)

I The L-type reduction theory (Voronoi II) for Delaunay
tessellations (Known for n ≤ 5)

I The C -type reduction theory (Ryshkov & Baranovski) for
edges of Delaunay tessellations (Known for n ≤ 5)

I The Minkowski reduction theory (Minkowski) it uses the
successive minima of a lattice to reduce it (Known for n ≤ 7)
not face-to-face

I Venkov’s reduction theory also known as Igusa’s fundamental
cone (finiteness proved by Crisalli)



Toroidal compactifications of Ag

I A polyhedral GLn(Z)-tessellation of Sn
rat,≥0 is admissible if it is

a face-to-face tessellation and has finite number of orbits.

I Admissible GLn(Z) invariant tessellations of Sn
rat,≥0 give rise

to toroidal compactifications of the moduli space Ag of
principally polarized abelian varieties.

I For the perfect form tessellation APerf
g is a canonical model in

the sense of the minimal model program if g ≥ 12:
I N. Shepherd-Barron, Perfect forms and the moduli space of

abelian varieties, Invent. Math. 163-1 (2006) 25–45

I For Voronoi II tessellation AVor
g has its boundary

corresponding to semi-abelic varieties:
I V. Alexeev, Complete moduli in the presence of semiabelian

group action, Ann. of Math. 155-3 (2002) 611–708

I Properties of the compactification being Q-Gorenstein, having
canonical singularities, terminal singularities can be read off
from properties of the tessellation.



Geometry of tessellation and compactifications

I Thm: (Namikawa) For a given admissible tessellation F the
corresponding tessellation is smooth if and only if

I All cones are simplicial
I For all cones, the set of generators of extreme rays can be

extended to a basis of Sym2(Z).

I For APerf
g we prove

I Every cone of dimension at most 9 in the perfect cone
decomposition is basic. In particular the stack APerf

g is smooth
for g ≤ 3 and the codimension of both the singular and the
non-simplicial substack of APerf

g is 10 if g ≥ 4.
I Every cone of dimension 10 is simplicial with the only

exception the cone of the root lattice D4.

I For AVor
g we prove

I For g ≤ 4 every cone in the second Voronoi compactification is
basic.

I For g ≥ 5 there are non-simplicial cones in dimension 3, in
particular AVor

g is singular in dimension 3.



Self-dual cones
I For an open cone C in Rn the dual cone is

C ∗ = {x ∈ Rn s.t. 〈x , y〉 > 0 for y ∈ C}
I Such cones are classified by Euclidean Jordan algebras and the

classification gives:
I Sn: The cone of positive definite real quadratic forms
I Hn: The cone of positive definite Hermitian quadratic forms
I Qn: The cone of positive definite quaternionic quadratic forms
I The cone of 3× 3 positive definite octonion matrices.
I The hyperbolic cone Hn

Hn =
{

(x1, . . . , xn) s.t. x1 > 0 and x2
1 − x2

2 − · · · − x2
n > 0

}
I References

I A. Ash, D. Mumford, M. Rapoport, Y. Tai Smooth
compactifications of locally symmetric varieties, Cambridge
University Press

I M. Koecher, Beiträge zu einer Reduktionstheorie in
Positivtätsbereichan I/II, Math. Annalen 141, 384–432, 144,
175–182



T -space theory

I A T -space F is a vector space in Sn with F>0 = F ∩ Sn
>0

being non-empty.

I All above reduction theories apply to that case.

I But some dead ends exist to the polyhedral tessellations.

I Relevant group is Aut(F) = {g ∈ GLn(Z) s.t. gFgT = F}.
I For a finite group G ⊂ GLn(Z) of space

F(G ) =
{

A ∈ Sn s.t. gAgT = A for g ∈ G
}

we have Aut(F(G )) = Norm(G ,GLn(Z)) (Zassenhaus) and a
finite number of F-perfect forms.

I There exist some T -spaces having a rational basis and an
infinity of perfect forms.

I Another finiteness case is for spaces obtained from GLn(R)
with R number ring.



Non-polyhedral reduction theories

I Some works with non-polyhedral, but still manifold domains:
I R. MacPherson and M. McConnel, Explicit reduction theory for

Siegel modular threefolds, Invent. Math. 111 (1993) 575–625.
I D. Yasaki, An explicit spine for the Picard modular group over

the Gaussian integers, Journal of Number Theory, 128 (2008)
207–234.

I Other works in complex hyperbolic space using Poincaré
polyhedron theorem:

I M. Deraux, Deforming the R-fuchsian (4, 4, 4)-lattice group
into a lattice.

I E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups
in complex hyperbolic geometry, Topology 39 (2000)
1209–1223.

I Other works for non-manifold setting would be:
I T. Brady, The integral cohomology of Out+(F3), Journal of

Pure and Applied Algebra 87 (1993) 123–167.
I K.N. Moss, Cohomology of SL(n,Z[1/p]), Duke Mathematical

Journa 47-4 (1980) 803–818.



VI. Central cone

compactification



Central cone compactification

I We consider the space of integral valued quadratic forms:

In = {A ∈ Sn s.t. A[x ] ∈ Z for all x ∈ Zn}

All the forms in In have integral coefficients on the diagonal
and half integral outside of it.

I The centrally perfect forms are the elements of In that are
vertices of conv In.

I For A ∈ In we have A[x ] ≥ 1. So, In ⊂ Rn

I Any root lattice is a vertex both of Rn and conv In.
I The centrally perfect forms are known for n ≤ 6:

dim. Centrally perfect forms
2 A2 (Igusa)
3 A3 (Igusa)
4 A4, D4 (Igusa)
5 A5, D5 (Namikawa)
6 A6, D6, E6 (Dutour Sikirić)

I By taking the dual we get tessellations of Sn
rat,≥0.



Enumeration of centrally perfect forms

I Suppose that we have a conjecturally correct list of centrally
perfect forms A1, . . . , Am. Suppose further that for each form
Ai we have a conjectural list of neighbors N(Ai ).

I We form the cone

C (Ai ) = {X − Ai for X ∈ N(Ai )}

and we compute the orbits of facets of C (Ai ).

I For each orbit of facet of representative f we form the
corresponding linear form f and solve the Integer Linear
Problem

fopt = min
X∈In

f (X )

We have to use GLPK program for that. It is done iteratively
since In is defined by an infinity of inequalities.

I If fopt = f (Ai ) always then the list is correct. If not then the
X realizing f (X ) < f (Ai ) need to be added to the full list.



VII. Voronoi II
theory



Empty sphere and Delaunay polytopes

A sphere S(c , r) of radius r and center c in an n-dimensional
lattice L is said to be an empty sphere if:

(i) ‖v − c‖ ≥ r for all v ∈ L,

(ii) the set S(c, r) ∩ L contains n + 1 affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose
vertex-set is L ∩ S(c , r).

c
r



Equalities and inequalities

I Take M = Gv with v = (v1, . . . , vn) a basis of lattice L.

I If V = (w1, . . . ,wN) with wi ∈ Zn are the vertices of a
Delaunay polytope of empty sphere S(c , r) then:

||wi − c || = r i.e. wT
i Mwi − 2wT

i Mc + cTMc = r2

I Subtracting one obtains

{wT
i Mwi − wT

j Mwj} − 2{wT
i − wT

j }Mc = 0

I Inverting matrices, one obtains Mc = ψ(M) with ψ linear and
so one gets linear equalities on M.

I Similarly ||w − c || ≥ r translates into linear inequalities on M:
Take V = (v0, . . . , vn) a simplex (vi ∈ Zn), w ∈ Zn. If one
writes w =

∑n
i=0 λivi with 1 =

∑n
i=0 λi , then one has

||w − c || ≥ r ⇔ wTMw −
n∑

i=0

λiv
T
i Mvi ≥ 0



Iso-Delaunay domains

I Take a lattice L and select a basis v1, . . . , vn.

I We want to assign the Delaunay polytopes of a lattice.
Geometrically, this means that

1
v

2
v

2
v’

1
v’

are part of the same iso-Delaunay domain.

I An iso-Delaunay domain is the assignment of Delaunay
polytopes. It is a polyhedral domain of Sn

rat,≥0.

Primitive iso-Delaunay

I If one takes a generic matrix M in Sn
>0, then all its Delaunay

are simplices and so no linear equality are implied on M.

I Hence the corresponding iso-Delaunay domain is of dimension
n(n+1)

2 , they are called primitive



Equivalence and enumeration

I The group GLn(Z) acts on Sn
>0 by arithmetic equivalence and

preserve the primitive iso-Delaunay domains.

I Voronoi proved that after this action, there is a finite number
of primitive iso-Delaunay domains.

I Bistellar flipping creates one iso-Delaunay from a given
iso-Delaunay domain and a facet of the domain. In dim. 2:

I Enumerating primitive iso-Delaunay domains is done
classically:

I Find one primitive iso-Delaunay domain.
I Find the adjacent ones and reduce by arithmetic equivalence.

I This is very similar to the Voronoi algorithm for perfect forms.



The partition of S2
rat,≥0 ⊂ R3 I

If q(x , y) = ux2 + 2vxy + wy2 then q ∈ S2
>0 if and only if

v2 < uw and u > 0.

w

v

u



The partition of S2
rat,≥0 ⊂ R3 II

We cut by the plane u + w = 1 and get a circle representation.

u

v

w



The partition of S2
rat,≥0 ⊂ R3 III

Primitive iso-Delaunay domains in S2
rat,≥0:



Enumeration of iso-Delaunay domains

I The covering density is equal to the maximum of the
circumradius of the Delaunay polytopes.

I In principle if one knows all primitive iso-Delaunay then one
can find the best covering lattice.

I A lattice is rigid (Grishukhin & Baranovski) if it is determined
by its Delaunay polytopes (iso-Delaunay domain of dimension
1).

dim. Best covering Nr. of primitive iso-Delaunay Nr. of rigid lattices
2 A2 (Kershner) 1 (Voronoi) 0
3 A∗3 (Bambah) 1 (Voronoi) 0
4 A∗4 (Delone & Ryshkov) 3 (Voronoi) 1
5 A∗5 (Ryshkov & Baranovski) 222 (Engel) 7
6 L6 (conj. Vallentin)? ≥ 2.108 (Engel) ≥ 20000

I See for more details
I A. Schürmann, Computational geometry of positive definite

quadratic forms, University Lecture Notes, AMS.
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