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I. Fullerenes



Fullerenes

I A fullerene is a 3-valent plane graph, whose faces are 5 or
6-gonal.

I They exist for any even n ≥ 20, n 6= 22.

I There exist extremely efficient programs to enumerate them
(FullGen by G. Brinkman, CPF by T. Harmuth)

I Fullerenes with isolated pentagons have n ≥ 60. The smallest
one:

Truncated icosahedron,
soccer ball,

Buckminsterfullerene



Euler formula and positive curvature
I For a 3-valent plane graph Euler formula can be rewritten as∑

i≥3

(6− i)pi = 12

with pi the number of i-gons.
I We restrict ourselves to graphs of positive curvature, i.e.

those with ci = 6− i ≥ 0.
I Thus we have the following possibilities for (p3, p4, p5):

(0, 0, 12) (0, 1, 10) (0, 2, 8) (0, 3, 6) (0, 4, 4)
(0, 5, 2) (0, 6, 0) (1, 0, 9) (1, 1, 7) (1, 2, 5)
(1, 3, 3) (1, 4, 1) (2, 0, 6) (2, 1, 4) (2, 2, 2)
(2, 3, 0) (3, 0, 3) (3, 1, 1) (4, 0, 0)

I The goal is to try to understand how one can describe such
graphs:

I W.P. Thurston, Shapes of polyhedra and triangulations of the
sphere, The Epstein birthday schrift, 511–549 (electronic),
Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry,
1998.



Symmetry groups and number of fullerenes

I The possible symmetry groups of fullerenes are

class all group # param

C1 C1, Cs , Ci 10
C2 C2, C2h, C2v 6
C3 C3, C3h, C3v 4
D2 D2, D2h, D2d 4
D3 D3, D3h, D3d 3
D5 D5, D5h, D5d 2
D6 D6, D6h, D6d 2
T T , Th, Td 2
I I , Ih 1

I The number of fullerene grows polynomially with the number
of vertices.

I The goal is to describe the fullerenes by those parameters.



II. Simple parameterizations



The case of 1 parameter: Goldberg-Coxeter construction

I Take a 3-valent plane graph G0 and two parameters k , l ≥ 0.

I The graph G ∗
0 is a triangulation.

I Break the triangles of G ∗
0 into smaller triangles:

3−valent case

k=5

l=2

I Glue all those pices together and get another triangulation

I Take the dual and get a 3-valent plane graph GCk,l(G0).



Example of GC2,1(Cube)



Example of GC2,1(Cube)



Example of GC2,1(Cube)



Example of GC2,1(Cube)



Example of GC2,1(Cube)



Example of GC2,1(Cube)



Properties of Goldberg Coxeter construction

I It is more convenient to work with the dual.

I If a fullerene is of symmetry (I , Ih) then it is of the form
GCk,l(Dodecahedron) for some k, l .
Similarly, if a (0, 6, 0)-, (4, 0, 0) is of symmetry (O,Oh),
(T ,Td) then it is GCk,l(Cube), GCk,l(Tetrahedron).

I M. Goldberg, A class of multi-symmetric polyhedra, Tohoku
Mathematical Journal 43 (1937) 104–108.

I It is useful to embed k , l as an Eisenstein integer, i.e.
z = k + lω with ω = e iπ/3.

I GCk,l(G0) has (k2 + kl + l2)|G0| = |z |2|G0| vertices.

I The parameter symmetry z 7→ zωr does not change the graph.



One case of 2 parameters: symmetry D5

I The 5-fold axis has to pass through a vertices of degree 5.
There are 5 vertices of degree 5 around it.



Parameter symmetries in D5 case
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I Operation 1: (z1, z2) 7→ (z1, z1 + z2)



Parameter symmetries in D5 case
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I Operation 2: (z1, z2) 7→ (z1 + ω2z2, z1 − z2)

I Operation 3: (z1, z2) 7→ (z1, z2)ωr

I For a given parameter (z1, z2) a graph may not exist.

I ntriangle(z1, z2) = 10{z1z1 − (z1z2 − z1z2)(ω − ω)/3}.



III. General Thurston
theory



Parameterization of (p3, p4, p5)-graphs

I For a class of 3-valent plane graph (p3, p4, p5) the number of
complex parameters needed to describe it is

m = p3 + p4 + p5 − 2

We denote by z1, . . . , zm the set of parameters.

I The number of vertices is expressed as a Hermitian form q in
the parameters (z1, . . . , zm)

I The signature of q is (1,m − 1).

I Denote by Hm the cone of (z1, . . . , zm) ∈ Cm such that
q(z1, . . . , zm) > 0.



Monodromy group

I The set of parameters describing the group is not unique,
some operations generalizing the previous ones occur.

I The Hermitian form is invariant under those transformations
I The group defined by them is a monodromy group

M(p3, p4, p5):
I P. Deligne, G.D. Mostow, Monodromy of hypergeometric

functions and nonlattice integral monodromy, Inst. Hautes
tudes Sci. Publ. Math. 63 (1986) 5–89.

I G.D. Mostow, Generalized Picard lattices arising from
half-integral conditions, Inst. Hautes tudes Sci. Publ. Math.
63 (1986) 91–106.

(The groups M(p3, p4, p5) form 18 of the 94 discrete such
groups)

I Those monodromy groups are image of the braid group Bm

and the invariant form q corresponds to the intersection form
on H1(S2 − {p1, . . . , pm+2}, L) with L a line bundle.

I As a consequence M(p3, p4, p5) acts discretely over Hm.



Representability and covolume

I Thurston states that if z ∈ Z[ω]m and q(z) > 0 then there
exists g ∈ M(p4, p4, p5) such that g(z1, . . . , zm) is realizable
as a (p3, p4, p5)-graph.

I Thus Hm ∩ Z[ω]m up to the action of the monodromy group
M(p3, p4, p5) is a parameter space for the (p3, p4, p5)-graphs.

I The quotient
Hm/(R>0 ×M(p3, p4, p5))

is of finite covolume.
I The number of (p3, p4, p5)-graphs with n vertices grows like

O(nm−1).
I C.H. Sah, A generalized leapfrog for fullerene structures,

Fullerenes Science and Technology 2-4 (1994) 445–458.



Non-compacity
I The quotient Hm/(R>0 ×M(p3, p4, p5)) is non-compact.
I But the direction of non-compacity are well understood.
I They correspond to partition of (p3, p4, p5) faces into two

(pi3, p
i
4, p

i
5) with i = 1, 2 and 3pi3 + 2pi4 + pi5 = 6.

I Geometrically those are nanotubes



Possible generalizations?

I We can consider 4-valent plane graphs. Euler formula for
them is ∑

i≥3

(4− i)pi = 8

with pi the number of i-gons. A priori those correspond to
some Deligne-Mostow orbifolds.

I What is not clear is how the theory depends on
I The positive curvature. What can go wrong if p7 = 1?
I Parameterization of orientable surfaces. There Euler formula is∑

i≥3

(6− i)pi = 6(2− 2g)

There is no doubt that such parameterization are possible.
But what is the geometric structure of the quotient?



IV. Angle description



Alternative parameterization: by angles

I Suppose we have a triangulation of a 2-dimensional manifold
with t triangles.

I If we assign the angles of a triangle then the length of the
edges is specified up to some multiple. So, we can describe a
structure by its angles.

I The problem is with cycles:
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since going over the cycle we see that only length 0 is
coherent.



Dihedral angles

I For an edge e between two triangles:

e

α

β

the dihedral angle is π(e) = π − α− β. We can assume
π(e) ≥ 0 since otherwise we can switch the edge e.

I For a triangle t of angle α, β, γ the hyperbolic volume is:

L(t) = L(α, β, γ) = L(α) + L(β) + L(γ)

with

L(x) = −
∫ x

0
log(2 sin t)dt

a strictly concave function.



Rivin’s theory

I For a triangulation t1, . . . , tN with a set of dihedral angles
Π = {π(e)} we minimize over the set of all possible angles the
sum ∑

i

L(ti )

subject to the constraint that its set of dihedral angles is Π

I Necessarily the minimum is unique and is attained by a set of
angles all positive.

I The derivative with respect to angle being 0 are equivalent to
the coherency of the length.

I So, dihedral angles form a set of parameters. For fullerene this
is 18 parameters.

I I. Rivin, Euclidean structure on simplicial surfaces and
hyperbolic volume, The Annals of mathematics 139 (1994)
553–580.



V. Spectrum



Eigenvalues of graphs

I For a 3-valent plane graph G the adjacency matrix A is a
symmetric matrix with

A(i , j) =

{
1 if (i , j) is an edge
0 otherwise

I 3 is always an eigenvalue while −3 is an eigenvalue if and only
if G is bipartite that is has faces of only even size.

I The infinite plane tiling by hexagon has spectrum [−3, 3].
I P. E. John and H. Sachs, Spectra of toroidal graphs, Discrete

Mathematics 309 (2009) 2663.

I This is also the case of infinite nanotubes:
I L. F. Chibotaru, D. Compernolle and A. Ceulemans, Electron

transmission through atom-contacted carbon nanotubes,
Physical Review B 68 (2003) 125412 (31 pp).



General finiteness theorem

Consider a class of (p3, p4, p5)-graphs
I Lemma: If the number n is large enough then a

(p3, p4, p5)-graph contains
I a large enough patch of hexagons or
I a long enough nanotube.

I Two proof methods:
I One is based on a simple covering argument (by J. Graver).
I Another on Thuston’s parameterizations and the fact that the

compactifications of the parameter space are indexed by the
partititions of the 5-gons into two sets of six 5-gons.

I Theorem: For any interval I = [a, b] ⊂ [−3, 3] with a < b the
set of (p3, p4, p5)-graphs having no eigenvalue in I is finite.

I M. Dutour Sikirić and P. Fowler, Cubic ramapolyhedra with
face size no larger than 6, Journal of Mathematical Chemistry
49 (2011) 843–858.



VI. Zigzags



Definition

I In a plane graph a zigzag is a circuit of edges such that two
consecutive share a face and vertex but three do not share a
face.



Zigzag structure of Goldberg Coxeter construction

I For a 3-valent plane graph G0 we define a permutation group
Mov(G0) and two elements L and R.

I The length of zigzags of GCk,l(G0) is computed from the
cycle structure of L�k,l R:

I L�1,0 R = L and L�0,1 R = R.
I If gcd(k, l) = 1 then we have{

L�k,l R = L �k−ql , l RLq if k − ql ≥ 0
L�k,l R = RqL �k , l−qk R if l − qk ≥ 0

The product is defined only up to conjugacy.

I If gcd(k , l) = m > 1 then we simply multiply the length of
zigzags by m:

I M. Dutour and M. Deza, Goldberg-Coxeter construction for 3-
and 4-valent plane graphs, Electronic Journal of Combinatorics
11-1 (2004) R20.



The structure of (4, 0, 0)-graphs

4 triangles in Z[ω]
The corresponding

triangulation

A (4, 0, 0)-graph of symmetry
D2d



Zigzags in (4, 0, 0)- and (0, 6, 0)-graphs

I All zigzags of (4, 0, 0)-graphs are simple.

I The vector enumerating length of zigzags of (4, 0, 0)-graphs is

(4s1)m1 , (4s2)m2 , (4s3)m3 with simi =
n

4
.

I Conjecture: All (0, 6, 0)-graphs with only simple zigzags are:
I GCk,0(Cube), GCk,k(Cube) and
I the family of graphs with parameters (m, i) with

n = 4m(2m − 3i) vertices and a vector of zigzags

z = (6m − 6i)3m−3i , (6m)m−2i , (12m − 18i)i

They have symmetry D3d or Oh or D6h
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