The parametrization of fullerenes

Mathieu Dutour Sikirić Rudjer Bošković Institute, Croatia

April 27, 2012

I. Fullerenes

Fullerenes

- A fullerene is a 3-valent plane graph, whose faces are 5 or 6-gonal.
- ▶ They exist for any even $n \ge 20$, $n \ne 22$.

- ► There exist extremely efficient programs to enumerate them (FullGen by G. Brinkman, CPF by T. Harmuth)
- ▶ Fullerenes with isolated pentagons have $n \ge 60$. The smallest one:

Truncated icosahedron, soccer ball, Buckminsterfullerene

Euler formula and positive curvature

▶ For a 3-valent plane graph Euler formula can be rewritten as

$$\sum_{i\geq 3} (6-i)p_i = 12$$

with p_i the number of i-gons.

- ▶ We restrict ourselves to graphs of positive curvature, i.e. those with $c_i = 6 i > 0$.
- ▶ Thus we have the following possibilities for (p_3, p_4, p_5) :

$$(0,0,12)$$
 $(0,1,10)$ $(0,2,8)$ $(0,3,6)$ $(0,4,4)$ $(0,5,2)$ $(0,6,0)$ $(1,0,9)$ $(1,1,7)$ $(1,2,5)$ $(1,3,3)$ $(1,4,1)$ $(2,0,6)$ $(2,1,4)$ $(2,2,2)$ $(2,3,0)$ $(3,0,3)$ $(3,1,1)$ $(4,0,0)$

- The goal is to try to understand how one can describe such graphs:
 - ▶ W.P. Thurston, *Shapes of polyhedra and triangulations of the sphere*, The Epstein birthday schrift, 511–549 (electronic), Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998.

Symmetry groups and number of fullerenes

▶ The possible symmetry groups of fullerenes are

class	all group	# param
C_1	C_1 , C_s , C_i	10
C_2	C_2 , C_{2h} , C_{2v}	6
C_3	C_3 , C_{3h} , C_{3v}	4
D_2	D_2 , D_{2h} , D_{2d}	4
D_3	D_3 , D_{3h} , D_{3d}	3
D_5	D_5 , D_{5h} , D_{5d}	2
D_6	D_6 , D_{6h} , D_{6d}	2
Τ	T , T_h , T_d	2
I	1, I _h	1

- ► The number of fullerene grows polynomially with the number of vertices.
- ▶ The goal is to describe the fullerenes by those parameters.

II. Simple parameterizations

The case of 1 parameter: Goldberg-Coxeter construction

- ▶ Take a 3-valent plane graph G_0 and two parameters $k, l \ge 0$.
- ▶ The graph G_0^* is a triangulation.
- ▶ Break the triangles of G_0^* into smaller triangles:

- ▶ Glue all those pices together and get another triangulation
- ▶ Take the dual and get a 3-valent plane graph $GC_{k,l}(G_0)$.

Properties of Goldberg Coxeter construction

- ▶ It is more convenient to work with the dual.
- ▶ If a fullerene is of symmetry (I, I_h) then it is of the form $GC_{k,l}(Dodecahedron)$ for some k, l. Similarly, if a (0,6,0)-, (4,0,0) is of symmetry (O,O_h) , (T,T_d) then it is $GC_{k,l}(Cube)$, $GC_{k,l}(Tetrahedron)$.
 - M. Goldberg, A class of multi-symmetric polyhedra, Tohoku Mathematical Journal 43 (1937) 104–108.
- It is useful to embed k, l as an Eisenstein integer, i.e. $z = k + l\omega$ with $\omega = e^{i\pi/3}$.
- $GC_{k,l}(G_0)$ has $(k^2 + kl + l^2)|G_0| = |z|^2|G_0|$ vertices.
- ▶ The parameter symmetry $z \mapsto z\omega^r$ does not change the graph.

One case of 2 parameters: symmetry D_5

► The 5-fold axis has to pass through a vertices of degree 5. There are 5 vertices of degree 5 around it.

Parameter symmetries in D_5 case

▶ Operation 1: $(z_1, z_2) \mapsto (z_1, z_1 + z_2)$

Parameter symmetries in D_5 case

- Operation 2: $(z_1, z_2) \mapsto (z_1 + \omega^2 z_2, z_1 z_2)$
- Operation 3: $(z_1, z_2) \mapsto (z_1, z_2)\omega^r$
- ▶ For a given parameter (z_1, z_2) a graph may not exist.
- $\qquad n_{triangle}(z_1, z_2) = 10\{z_1\overline{z_1} (z_1\overline{z_2} \overline{z_1}z_2)(\omega \overline{\omega})/3\}.$

III. General Thurston theory

Parameterization of (p_3, p_4, p_5) -graphs

▶ For a class of 3-valent plane graph (p_3, p_4, p_5) the number of complex parameters needed to describe it is

$$m = p_3 + p_4 + p_5 - 2$$

We denote by z_1, \ldots, z_m the set of parameters.

- ▶ The number of vertices is expressed as a Hermitian form q in the parameters (z_1, \ldots, z_m)
- ▶ The signature of q is (1, m-1).
- ▶ Denote by \mathbb{H}^m the cone of $(z_1, \ldots, z_m) \in \mathbb{C}^m$ such that $q(z_1, \ldots, z_m) > 0$.

Monodromy group

- ► The set of parameters describing the group is not unique, some operations generalizing the previous ones occur.
- ▶ The Hermitian form is invariant under those transformations
- ► The group defined by them is a monodromy group $M(p_3, p_4, p_5)$:
 - P. Deligne, G.D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes tudes Sci. Publ. Math. 63 (1986) 5–89.
 - ▶ G.D. Mostow, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes tudes Sci. Publ. Math. 63 (1986) 91–106.

(The groups $M(p_3, p_4, p_5)$ form 18 of the 94 discrete such groups)

- ▶ Those monodromy groups are image of the braid group B_m and the invariant form q corresponds to the intersection form on $H^1(S^2 \{p_1, \dots, p_{m+2}\}, L)$ with L a line bundle.
- As a consequence $M(p_3, p_4, p_5)$ acts discretely over \mathbb{H}^m .

Representability and covolume

- ▶ Thurston states that if $z \in \mathbb{Z}[\omega]^m$ and q(z) > 0 then there exists $g \in M(p_4, p_4, p_5)$ such that $g(z_1, \ldots, z_m)$ is realizable as a (p_3, p_4, p_5) -graph.
- ▶ Thus $\mathbb{H}^m \cap \mathbb{Z}[\omega]^m$ up to the action of the monodromy group $M(p_3, p_4, p_5)$ is a parameter space for the (p_3, p_4, p_5) -graphs.
- The quotient

$$\mathbb{H}^m/(\mathbb{R}_{>0}\times M(p_3,p_4,p_5))$$

is of finite covolume.

- ▶ The number of (p_3, p_4, p_5) -graphs with n vertices grows like $O(n^{m-1})$.
 - C.H. Sah, A generalized leapfrog for fullerene structures,
 Fullerenes Science and Technology 2-4 (1994) 445–458.

Non-compacity

- ▶ The quotient $\mathbb{H}^m/(\mathbb{R}_{>0} \times M(p_3, p_4, p_5))$ is non-compact.
- ▶ But the direction of non-compacity are well understood.
- ▶ They correspond to partition of (p_3, p_4, p_5) faces into two (p_3^i, p_4^i, p_5^i) with i = 1, 2 and $3p_3^i + 2p_4^i + p_5^i = 6$.
- Geometrically those are nanotubes

Possible generalizations?

We can consider 4-valent plane graphs. Euler formula for them is

$$\sum_{i>3} (4-i)p_i = 8$$

with p_i the number of i-gons. A priori those correspond to some Deligne-Mostow orbifolds.

- What is not clear is how the theory depends on
 - ▶ The positive curvature. What can go wrong if $p_7 = 1$?
 - ▶ Parameterization of orientable surfaces. There Euler formula is

$$\sum_{i\geq 3} (6-i)p_i = 6(2-2g)$$

There is no doubt that such parameterization are possible. But what is the geometric structure of the quotient?

IV. Angle description

Alternative parameterization: by angles

- ▶ Suppose we have a triangulation of a 2-dimensional manifold with *t* triangles.
- ▶ If we assign the angles of a triangle then the length of the edges is specified up to some multiple. So, we can describe a structure by its angles.
- ► The problem is with cycles:

since going over the cycle we see that only length 0 is coherent.

Dihedral angles

► For an edge *e* between two triangles:

the dihedral angle is $\pi(e) = \pi - \alpha - \beta$. We can assume $\pi(e) \ge 0$ since otherwise we can switch the edge e.

▶ For a triangle t of angle α , β , γ the hyperbolic volume is:

$$L(t) = L(\alpha, \beta, \gamma) = L(\alpha) + L(\beta) + L(\gamma)$$

with

$$L(x) = -\int_0^x \log(2\sin t) dt$$

a strictly concave function.

Rivin's theory

▶ For a triangulation t_1, \ldots, t_N with a set of dihedral angles $\Pi = \{\pi(e)\}$ we minimize over the set of all possible angles the sum

$$\sum_{i} L(t_i)$$

subject to the constraint that its set of dihedral angles is Π

- Necessarily the minimum is unique and is attained by a set of angles all positive.
- ► The derivative with respect to angle being 0 are equivalent to the coherency of the length.
- ▶ So, dihedral angles form a set of parameters. For fullerene this is 18 parameters.
- ▶ I. Rivin, Euclidean structure on simplicial surfaces and hyperbolic volume, The Annals of mathematics **139** (1994) 553–580.

V. Spectrum

Eigenvalues of graphs

► For a 3-valent plane graph *G* the adjacency matrix *A* is a symmetric matrix with

$$A(i,j) = \left\{ egin{array}{ll} 1 & ext{if } (i,j) ext{ is an edge} \\ 0 & ext{otherwise} \end{array}
ight.$$

- ▶ 3 is always an eigenvalue while -3 is an eigenvalue if and only if G is bipartite that is has faces of only even size.
- ▶ The infinite plane tiling by hexagon has spectrum [-3,3].
 - ▶ P. E. John and H. Sachs, *Spectra of toroidal graphs*, Discrete Mathematics **309** (2009) 2663.
- ▶ This is also the case of infinite nanotubes:
 - L. F. Chibotaru, D. Compernolle and A. Ceulemans, *Electron transmission through atom-contacted carbon nanotubes*, Physical Review B **68** (2003) 125412 (31 pp).

General finiteness theorem

Consider a class of (p_3, p_4, p_5) -graphs

- ► Lemma: If the number n is large enough then a (p_3, p_4, p_5) -graph contains
 - ▶ a large enough patch of hexagons or
 - a long enough nanotube.
- ► Two proof methods:
 - One is based on a simple covering argument (by J. Graver).
 - Another on Thuston's parameterizations and the fact that the compactifications of the parameter space are indexed by the partititions of the 5-gons into two sets of six 5-gons.
- ▶ Theorem: For any interval $I = [a, b] \subset [-3, 3]$ with a < b the set of (p_3, p_4, p_5) -graphs having no eigenvalue in I is finite.
 - M. Dutour Sikirić and P. Fowler, Cubic ramapolyhedra with face size no larger than 6, Journal of Mathematical Chemistry 49 (2011) 843–858.

VI. Zigzags

Definition

▶ In a plane graph a zigzag is a circuit of edges such that two consecutive share a face and vertex but three do not share a face.

Zigzag structure of Goldberg Coxeter construction

- ▶ For a 3-valent plane graph G_0 we define a permutation group $Mov(G_0)$ and two elements L and R.
- ▶ The length of zigzags of $GC_{k,l}(G_0)$ is computed from the cycle structure of $L \odot_{k,l} R$:
 - ▶ $L \odot_{1,0} R = L$ and $L \odot_{0,1} R = R$.
 - If gcd(k, l) = 1 then we have

$$\left\{ \begin{array}{lll} L \odot_{k,l} R & = & L & \odot_{k-ql} \ , \ l & RL^q & \text{if } k-ql \geq 0 \\ L \odot_{k,l} R & = & R^q L & \odot_{k} \ , \ l-qk & R & \text{if } l-qk \geq 0 \end{array} \right.$$

The product is defined only up to conjugacy.

- If gcd(k, l) = m > 1 then we simply multiply the length of zigzags by m:
 - M. Dutour and M. Deza, Goldberg-Coxeter construction for 3and 4-valent plane graphs, Electronic Journal of Combinatorics 11-1 (2004) R20.

The structure of (4,0,0)-graphs

Zigzags in (4,0,0)- and (0,6,0)-graphs

- ► All zigzags of (4,0,0)-graphs are simple.
- ▶ The vector enumerating length of zigzags of (4,0,0)-graphs is

$$(4s_1)^{m_1}, (4s_2)^{m_2}, (4s_3)^{m_3}$$
 with $s_i m_i = \frac{n}{4}$.

- ► Conjecture: All (0,6,0)-graphs with only simple zigzags are:
 - $ightharpoonup GC_{k,0}(Cube)$, $GC_{k,k}(Cube)$ and
 - ▶ the family of graphs with parameters (m, i) with n = 4m(2m 3i) vertices and a vector of zigzags

$$z = (6m - 6i)^{3m-3i}, (6m)^{m-2i}, (12m - 18i)^{i}$$

They have symmetry D_{3d} or O_h or D_{6h}

THANK YOU