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I. Packing

with

rigid boundaries
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1-dim. random packing

Put sequentially at random intervals [0, 1] into [0, x] until
one cannot do it any more.

step 0

step 1

step 2

step 3

Denote by M(x) the number of intervals put in [0, x].

Renyi (1958) proved that

limx→∞

E(M(x))
x

= β1 =
∫

∞

0 exp{−2
∫ t

0
1−e−u

u
du}dt

= 0.748...
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d-dimensional random packing

Put sequentially at random cubes [0, 1]d into [0, x]d until
one cannot do it any more.

Denote by Md(x) the number of cubes put in [0, x]d.

Palasti conjectured that limx→∞

E(Md(x))
xd exists and is

equal to βd
1 .

Existence of the limit was proved by Penrose (2001) but
the second conjecture is probably false.
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A simplified model

We consider the cube [0, 4]d.

We put sequentially at random cubes z + [0, 2]d with
z ∈ Z

d in it

0 1 2 3
0

1

2

3

until one cannot insert cubes any more.

Denote by Md the number of cubes in the obtained
non-extendible packing.

We want to estimate the packing density

γd =
1

2d
E(Md)
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Value of γd
Computer simulations (Itoh and Ueda, (1983)) suggest
that γd is asymptotically d−α with α = 0.44 . . .

dim. γd d−α γd
1

1 0.8348 1 0.8348

2 0.7112 0.736113 0.696891

3 0.6157 0.615336 0.581765

4 0.5481 0.541863 0.485657

5 0.4927 0.49097 0.405427

6 0.4508 0.452957 0.33845

7 0.4212 0.423123 0.282538

8 0.3958 0.398873 0.235863

9 0.3762 0.378639 0.196898

10 0.3631 0.36141 0.164371

11 0.3516 0.346501 0.137217 – p. 6



Extended model

Consider the cube [0, 2N ]d.

We put sequentially at random cubes z + [0, N ]d with
z ∈ Z

d in it until one cannot insert cubes any more.

Denote by Md(N) the number of cubes in the obtained
non-extendible packing.

The main problem is to estimate the packing density:

γd(N) =
1

2d
E(Md(N))

Poyarkov, (2004) proved that γd ≥ (1 + 1
N
)d
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Lemma

Lemma First put the cube z + [0, N ]d in [0, 2N ]d and write

k = #{i | zi = 0 or N}

Second put cube at random until one cannot do it any
more. Then:

The minimal number of cubes is k + 1.
The expectation of the number of cubes put is
k + 1 +O( 1

N+1)

k = 0 k = 1 k = 2
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Expansion ofE(Md(N))

Denote by E(Md(N)|k) the expected number of cubes
in a non-extendible random packing, while imposing
that the first cube z + [0, N ]d has z with k coordinates
equal to 0 or N .

One has the expression

E(Md(N)) =

d
∑

k=0

(
2

N + 1
)k(

N − 1

N + 1
)d−k

(

k

d

)

E(Md(N)|k)

So, one gets

E(Md(N)) = (N−1
N+1)

dE(Md(N)|0) + d 2
N+1(

N−1
N+1)

d−1E(Md(N)|1)

+ d(d− 1) 2
(N+1)2

(N−1
N+1)

d−2E(Md(N)|2) +O( 1
N+1)

3
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Expansion ofE(Md(N))

Clearly E(Md(N)|0) = 1 and
E(Md(N)|1) = 1 + E(Md−1(N)).

By above lemma, E(Md(N)|2) = 3 + O( 1
N+1)

First, one has E(Md(N)) = 1 + O( 1
N+1)

Second, one gets

E(Md(N)) = (1− 2
N+1)

d + 2d
N+1(1−

2
N+1)

d−1(2 +O( 1
N+1))

+ O( 1
(N+1)2 )

= {1− 2d
N+1 + O( 1

(N+1)2
)}+ 4d

N+1 +O( 1
(N+1)2

)

= 1 + 2d
N+1 +O( 1

(N+1)2
)
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Expansion ofE(Md(N))

Inserting this expression one gets

E(Md(N)) = 1 +
2d

N + 1
+

4d(d− 1)

(N + 1)2
+O(

1

N + 1
)3

One proves that for fixed d, there exists an asymptotic
expansion

E(Md(N)) =

∞
∑

k=0

ck,d
1

(N + 1)k

But finding the coefficients ck,d for k ≥ 3 is less easy.
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II. Torus

cube tilings and

packings
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Torus cube tilings and packings

A cube tiling is a 4Zd-periodic tiling of Rd by integral
translates of the cube [0, 2]d.

There is only one cube tiling in dimension 1.

There are two cube tilings in dimension 2:

A cube packing is a packing of Rd by integral translates
of cubes [0, 2]d, which is 4Zd-periodic.

If we cannot extend a cube packing by adding another
cube, then it is called non-extendible.

No non-extendible cube packings in dimension 1 and 2.
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3-dim. non-extendible cube packing
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Results ford ≤ 4

In dimension 3, there is a unique non-extendible cube
packing and there are 9 types of cube tilings.
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Results ford ≤ 4

In dimension 3, there is a unique non-extendible cube
packing and there are 9 types of cube tilings.

In dimension 4, the repartition is as follows:

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

nb 0 0 0 0 0 0 0 38 6 24 0 71 0 0 0 744
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Low density cube packings

Denote by f(d) the smallest number of cubes of
non-extendible cube packing.

f(3) = 4 and f(4) = 8.

For any n,m ∈ N, the following inequality holds:

f(n+m) ≤ f(n)f(m) .

The cube packing realizing this is constructed by
“product” of two cube packings of Rn and R

m

Conjecture: f(5) = 12 and f(6) = 16.
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III. Continuous

torus cube

packings
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Torus cube packings

We consider the torus Z
d/2NZ

d and do sequential
random packing by cubes z + [0, N ]d with z ∈ Z

d.

We denote Md(N) the number of cubes in the obtained
torus cube packing and

αd(N) = E(Md(N))

As in the case of rigid boundaries, we are interested in
the limit N → ∞.

In the rigid boundary case, in the limit N → ∞, one has
a single cube in the middle of another cube and no
possibility of adding any other cube.

But for torus case, the limit N → ∞ is more interesting.
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Continuous cube packings

We consider the torus R
d/2Zd and do sequential

random packing by cubes z + [0, 1]d with z ∈ R
d.

Two cubes z + [0, 1]d and z′ + [0, 1]d are non-overlapping
if and only if there is 1 ≤ i ≤ d with z′i ≡ zi + 1 (mod 2)

Fix a cube C = z + [0, 1]d.

We want to insert a cube z′ + [0, 1]d, which do not
overlap with C.
The condition z′i = zi + 1 defines an hyperplane in

the torus R
d/2Zd.

Those d hyperplanes have the same
(d− 1)-dimensional volume.
In doing the sequential random packing, every one
of the d hyperplanes is chosen with equal probability.
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Several cubes

One has several non-overlapping cubes z1 + [0, 1]d, . . . ,
zr + [0, 1]d. We want to add one more cube z + [0, 1]d.

For every cube zj + [0, 1]d, there should exist some
1 ≤ i ≤ d such that zji ≡ zi + 1 (mod 2)

After enumerating all possible choices, one gets
different planes.

Their dimension might differ.

Only the one with maximal dimension have strictly
positive probability of being attained.

All planes of the highest dimension have the same
volume in the torus R

d/2Zd and so, the same probability
of being attained.
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The two dimensional case

Put a cube z + [0, 1]2 in R
2/2Z2. z = (t1, t2)

In putting the next cube, two possibilities: (t1 + 1, t3) or
(t3, t2 + 1). They correspond geometrically to:

(t1, t2)

(t1 + 1, t3)
(t1, t2)

(t3, t2 + 1)

and they are equivalent.

Continuing the process, up to equivalence, one obtains:

– p. 19



The 3-dimensional case

At first step, one puts the vector z1 = (t1, t2, t3)

At second step, up to equivalence, z2 = (t1 + 1, t4, t5)

At third step, one generates six possibilities, all with
equal probabilities:

(t1 + 1, t4 + 1, t6) (t1, t2 + 1, t6) (t1, t6, t3 + 1)

(t1 + 1, t6, t5 + 1) (t6, t2 + 1, t5 + 1) (t6, t4 + 1, t3 + 1)

Up to equivalence, those possibilities split into 2 cases:
{(t1, t2, t3), (t1 + 1, t4, t5), (t1, t6, t3 + 1)} with
probability 2

3

{(t1, t2, t3), (t1 + 1, t4, t5), (t6, t2 + 1, t5 + 1)} with
probability 1

3
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The 3-dimensional case

Possible extensions of {(t1, t2, t3), (t1 + 1, t4, t5),
(t1, t6, t3 + 1)} with probability 2

3 are:

(t1 + 1, t7, t5 + 1) with 1 parameter
(t1 + 1, t4 + 1, t7) with 1 parameter
(t1, t2 + 1, t3) with 0 parameter
(t1, t6 + 1, t3 + 1) with 0 parameter

Cases with 0 parameters have probability 0, so can be
neglected.

So, up to equivalence, one obtains
{(t1, t2, t3), . . . , (t6, t2 + 1, t5 + 1), (t1, t6, t3 + 1), (t1 +

1, t7, t5 + 1) with probability 1
3

{(t1, t2, t3), . . . , (t6, t2 + 1, t5 + 1), (t1, t6, t3 + 1), (t1 +

1, t4 + 1, t7) with probability 1
3
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The 3-dimensional case

Possible extensions of {(t1, t2, t3), (t1 + 1, t4, t5),
(t6, t2 + 1, t5 + 1)} with probability 1

3 are:

(t6 + 1, t4 + 1, t3 + 1) (t1 + 1, t2, t5 + 1) (t1, t2 + 1, t5)

(t6 + 1, t2 + 1, t5 + 1) (t1 + 1, t4 + 1, t5) (t1, t2, t3 + 1)

All those choices have 0 parameter.

Those possibilities are in two groups:
{(t1, t2, t3), . . . , (t6, t2 + 1, t5 + 1), (t6 + 1, t4 + 1, t3 + 1)}

with probability 1
18

5 other cases with probability 5
18 .
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The 3-dimensional case

At the end of the process, one obtains

7 parameters,
probability 1

3

7 parameters,
probability 1

3

6 parameters,
probability 5

18

Also, with probability 1
18 , one obtains the non-extendible

cube packing with 4 cubes and 6 parameters.
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The 4-dimensional case
Doing the enumeration by computer, one obtains

31 non-extendible continuous cube packings
32 continuous cube tilings.

The number are lower than in the case N = 2, since we
do the enumeration only of the one with strictly positive
probability.

One of 31 non-extendible continuous cube-packing has
6 cubes:

z1 z2 z3 z4 z5 z6

t1 t1 + 1 t8 t10 t8 + 1 t10 + 1

t2 t5 t2 + 1 t5 + 1 t2 + 1 t2

t3 t6 t6 + 1 t3 + 1 t3 t6 + 1

t4 t7 t9 t9 + 1 t7 + 1 t4 + 1
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Packing density

Denote by αd(∞) the packing density for continuous
cube packing and αd(N) the packing density in
Z
d/2NZ

d.

One has

α1(∞) = α2(∞) = 1, α3(∞) = 35
36 = 0.972.

and α4(∞) = 15258791833
16102195200 = 0.947...

Thm. For any d ≥ 3, one has αd(∞) < 1.

Thm. One has the limit

lim
N→∞

αd(N) = αd(∞)
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Non-extendible cube packings

The number of cubes in non-extendible cube packings
is at least n+ 1.

Problem find better lower bound on size of
non-extendible cube packing.

In dimension 5, we found a continuous non-extendible
cube packing with 8 cubes. But is it with strictly positive
probability?

Problem Does there exist continuous non-extendible
cube packing of lower number of cubes than the one of
strictly positive probability?

Problem Prove that there is no non-extendible cube
packing with 2n − δ cubes with δ ≤ 3.

– p. 23
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