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1-dim. random packing

- N

# Put sequentially at random intervals [0, 1] into [0, | until
one cannot do it any more.

step O ® o
sepl @ Eae—— @
sep2 O a0
sep3 O A es— O

# Denote by M (x) the number of intervals put in [0, x|.
# Renyi (1958) proved that

Mmoo E(]\i(x)) =3 = fooo exp{—2 fg 1_5_u du }dt

L = 0.748... J
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d-dimensional random packing

Put sequentially at random cubes [0, 1]¢ into [0, z]¢ until
one cannot do it any more.

# Denote by M,(x) the number of cubes put in [0, z].

Palasti conjectured that lim,,_. = U‘i‘jﬁ(x)) exists and Is

equal to 3¢,

Existence of the limit was proved by Penrose (2001) but
the second conjecture Is probably false.
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A simplified model

We consider the cube [0, 4]. T

We put sequentially at random cubes z + [0, 2]¢ with
e Z%in it

y
y

01 2 3

until one cannot insert cubes any more.

Denote by M, the number of cubes in the obtained
non-extendible packing.

We want to estimate the packing density

14 = 5 B(My) |
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Value of ~,

f.o Computer simulations (Itoh and Ueda, (1983)) suggest T

that ~, Is asymptotically = with o« = 0.44 . ..

dim.
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0.8348
0.7112
0.6157
0.5481
0.4927
0.4508
0.4212
0.3958
0.3762
0.3631
0.3516

1
0.736113
0.615336
0.541863
0.49097
0.452957
0.423123
0.398873
0.378639
0.36141
0.346501

0.8348
0.696891
0.581765
0.485657
0.405427
0.33845
0.282538
0.235863
0.196898
0.164371
0.137217
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Extended model

-

Consider the cube [0, 2N]¢.

We put sequentially at random cubes z + [0, N]¢ with
» € Z% in it until one cannot insert cubes any more.

Denote by M;(N) the number of cubes in the obtained
non-extendible packing.

The main problem is to estimate the packing density:
1
Ya(N) = 55 E(Ma(N))

Poyarkov, (2004) proved that 74 > (1 + )
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Lemma

® Lemma First put the cube 2z + [0, N]¢ in [0,2N]¢ and write
k=#{i | zz=00r N}

Second put cube at random until one cannot do it any
more. Then:

» The minimal number of cubes is k + 1.
» The expectation of the number of cubes put is
k4 1+ O0(557)

5
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Expansion of £(M;(N))

- N

# Denote by E(My(N)|k) the expected number of cubes
In a non-extendible random packing, while imposing
that the first cube z + [0, N]¢ has z with k& coordinates
equalto 0 or N.

# One has the expression

=2 (v N+1 N:)d k<Z>E(Md(N)’k)

d
k=0

® S0, one gets

E(My(N)) = (NIE(My(N)|0) + dy2 (Nh)d1 B(My(N)[1)
. + dld - e (ve) ™ QE(Md(N)‘Q)—I—O(%)U




E(My(N))

o

Expansion of E(M;(N))

Clearly E(My4(N)|0) =1 and
E(Mg(N)|1) =14 E(Mg_1(N)).

» By above lemma, E(My(N)|2) =3 + O(527)

First, one has E(My(N)) =1+ O(ﬁ)

Second, one gets

(1 - )+ (1= )2
Ol 1p)
{1 — 35+ O(ame)} + wig + O

L+ w1 + Ol

+




Expansion of E(M;(N))
- N

# Inserting this expression one gets

B(M(N)) =1+ — 4 2= ] +O(N;+1

N+1 (N+1)2 )

#® One proves that for fixed d, there exists an asymptotic
expansion

o

1

EOG) = 3 enari oy

# But finding the coefficients ¢ 4 for & > 3 is less easy.

o |
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Torus cube tilings and packings

A cube tiling is a 4Z“-periodic tiling of R? by integral T
translates of the cube [0, 2]¢.

There is only one cube tiling in dimension 1.
There are two cube tilings in dimension 2:

A cube packing is a packing of R? by integral translates
of cubes [0, 2]¢, which is 4Z“-periodic.

If we cannot extend a cube packing by adding another
cube, then it is called non-extendible.

No non-extendible cube packings in dimension 1 and 2. J
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3-dim. non-extendible cube packing
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Results ford < 4

- N

# In dimension 3, there is a unigue non-extendible cube
packing and there are 9 types of cube tilings.

Yy
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- N

# In dimension 3, there is a unigue non-extendible cube
packing and there are 9 types of cube tilings.
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Results ford < 4

- N

# In dimension 3, there is a unigue non-extendible cube
packing and there are 9 types of cube tilings.

Yy WV av ﬂ

# In dimension 4, the repartition is as follows:

N|1l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L nb000000038624071000744J
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Low density cube packings

-

Denote by f(d) the smallest number of cubes of
non-extendible cube packing.

f(3) =4and f(4) =8.
For any n,m € N, the following inequality holds:

fn+m) < f(n)f(m).

The cube packing realizing this is constructed by
“product” of two cube packings of R"” and R™

: f(5) =12 and f(6) = 16.
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Torus cube packings
-

We consider the torus Z¢/2yz¢ and do sequential
random packing by cubes z + [0, N]¢ with z € Z<.

We denote M;(N) the number of cubes in the obtained
torus cube packing and

ag(N) = E(Mg(N))
As In the case of rigid boundaries, we are interested In
the limit N — ~c.

In the rigid boundary case, in the limit N — oo, one has
a single cube in the middle of another cube and no
possibility of adding any other cube.

But for torus case, the limit N — oc is more interesting.

-p. 16



.

Continuous cube packings

We consider the torus R%/27d and do sequential
random packing by cubes =z + [0, 1]¢ with z € R

Two cubes = + [0,1]¢ and 2’ + [0, 1]¢ are non-overlapping

if and only if thereis 1 <i < dwith 2z, = z; + 1 (mod 2)

Fix a cube C = z + [0, 1]“.

» We want to insert a cube 2’ + [0, 1], which do not
overlap with C.

s The condition z; = z; + 1 defines an hyperplane in
the torus R%/o74.

» Those d hyperplanes have the same
(d — 1)-dimensional volume.

s In doing the sequential random packing, every one

-

of the d hyperplanes is chosen with equal probability.J
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Several cubes

-

One has several non-overlapping cubes z! + [0, 1]¢, ...,
2" + [0, 1]¢. We want to add one more cube z + [0, 1]¢.

» For every cube 2/ + [0,1]¢, there should exist some
1 <i<dsuchthatz =z +1 (mod 2)

o After enumerating all possible choices, one gets
different planes.

# Their dimension might differ.

# Only the one with maximal dimension have strictly
positive probability of being attained.

# All planes of the highest dimension have the same
volume In the torus Rd/zzd and so, the same probabillity

L of being attained. J
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The two dimensional case

Put a cube z + [0,1]% in R*/72. 2z = (t1,t2)

In putting the next cube, two possibilities: (¢; + 1,t3) or
(t3,t2 + 1). They correspond geometrically to:

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

and they are equivalent.
Continuing the process, up to equivalence, one obtains:

-

|
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The 3-dimensional case

- N

»® At first step, one puts the vector z! = (¢1, t9, t3)

°

At second step, up to equivalence, z* = (t; + 1,14, t5)

# At third step, one generates six possibilities, all with
equal probabilities:

(b1 + 1, ta+1,%6) (1,62 +1,16) (t1,t6,13 + 1)
(tl + 1,26, 15 + 1) (tﬁ,tz + 1,15 + 1) (t6,t4 + 1,13 + 1)

# Up to equivalence, those possibilities split into 2 cases:
o {(t1,t2,13), (t1 + 1,%4,t5), (t1, %6, t3 + 1)} With
probability 2
o {(t1,t2,t3), (t1 + 1,%4,t5), (tg,t2 + 1,15 + 1)} with

L probability J
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The 3-dimensional case

#® Possible extensions of {(¢1,1,13), (t1 + 1,14,15),

(11,16, 15 + 1)} with probability = are:

K

>

K

>

# Cases with 0 parameters have probability 0, so can be

(t1 + 1,t7,t5 + 1) with 1 parameter
(t1 + 1,t4 + 1,t7) with 1 parameter
(t1,t2 + 1,t3) with 0 parameter

(t1,t6 + 1,t3 + 1) with 0 parameter

neglected.

#® S0, up to equivalence, one obtains

o {(t1,t2,13),...,(te,t2 + 1,15 + 1), (t1, 6, t3 + 1), (t1 +

L o {(t1,t2,13),..., (e, t2 + 1,5 + 1), (t1, 6, t3 + 1), (t1 +

1, 17,15 + 1) with probability

1,t4 + 1,¢7) with probability

-

|
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The 3-dimensional case

- N

® Possible extensions of {(t1,t2,t3), (t1 + 1,t4,15),
(te, 12 + 1,t5 + 1)} with probability + are:

(tg + 1,t4+ 1,t5+ 1) (t1 4+ 1, to,t5+ 1) (t1,t2+ 1,t5)
(tg + 1,to+ 1,t5+1) (t1+1,t4+ 1,t5) (t1,t2,t3+1)

All those choices have 0 parameter.

#® Those possibilities are in two groups:
o {(t1,t2,t3),...,(te,t2 +1,t5+1),(t6 + 1,24+ 1,83+ 1)}
with probability

s 5 other cases with probability .

o |
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The 3-dimensional case

-

#® At the end of the process, one obtains

Yy ﬁ%

7 parameters, 7 parameters, 6 parameters,
probability probability probability 2.

® Also, with probability - 15, One obtains the non-extendible

cube packing with 4 cubes and 6 parameters.

o |
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The 4-dimensional case

f.’ Doing the enumeration by computer, one obtains T
» 31 non-extendible continuous cube packings
» 32 continuous cube tilings.

® The number are lower than in the case N = 2, since we
do the enumeration only of the one with strictly positive

probability.
# One of 31 non-extendible continuous cube-packing has
6 cubes:
Zl 22 23 24 25 26

t1 t1+1 s tiop ts+1 tio+1
9 s to+1 t5+1 to+1 19
3 tg te +1 t3+1 3 tg + 1

L ta tr tg to+1 t74+1 t4+4+1 J
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Packing density

Denote by a4(oc) the packing density for continuous
cube packing and a4(/N) the packing density In

Z%/oN7Zd.
One has

a1(00) = ag(oo0) =1, ag(oo) = 52 = 0.972.

__ 15258791833 __

Thm. For any d > 3, one has a4(c0) < 1.
Thm. One has the limit

lim ag(N) = agq(o0)
N—o0

-
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Non-extendible cube packings
-

The number of cubes in non-extendible cube packings
IS at least n + 1.

find better lower bound on size of
non-extendible cube packing.

In dimension 5, we found a continuous non-extendible
cube packing with 8 cubes. But is it with strictly positive
probability?

Does there exist continuous non-extendible
cube packing of lower number of cubes than the one of
strictly positive probability?

Prove that there is no non-extendible cube
packing with 2™ — § cubes with § < 3.

|
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