Simple random sequential packing of cubes

Mathieu Dutour Sikirić

Yoshiaki Itoh

Rudjer Bošković institute, Zagreb

Institut Statistical Mathematics, Tokyo

Alexei Poyarkov

Moscow State University, Moscow

I. Packing with

rigid boundaries

1-dim. random packing

Put sequentially at random intervals [0, 1] into [0, x] until one cannot do it any more.

• Denote by M(x) the number of intervals put in [0, x].

Renyi (1958) proved that

$$\lim_{x \to \infty} \frac{E(M(x))}{x} = \beta_1 = \int_0^\infty \exp\{-2\int_0^t \frac{1-e^{-u}}{u} du\} dt$$

= 0.748...

d-dimensional random packing

- Put sequentially at random cubes $[0,1]^d$ into $[0,x]^d$ until one cannot do it any more.
- Denote by $M_d(x)$ the number of cubes put in $[0, x]^d$.
- Palasti conjectured that $\lim_{x\to\infty} \frac{E(M_d(x))}{x^d}$ exists and is equal to β_1^d .
- Existence of the limit was proved by Penrose (2001) but the second conjecture is probably false.

A simplified model

- We consider the cube $[0, 4]^d$.
- We put sequentially at random cubes $z + [0, 2]^d$ with $z \in \mathbb{Z}^d$ in it

until one cannot insert cubes any more.

- Denote by M_d the number of cubes in the obtained non-extendible packing.
- We want to estimate the packing density

$$\gamma_d = \frac{1}{2^d} E(M_d)$$

Value of γ_d

• Computer simulations (Itoh and Ueda, (1983)) suggest that γ_d is asymptotically $d^{-\alpha}$ with $\alpha = 0.44...$

dim.	γ_d	$d^{-\alpha}$	γ_1^d
1	0.8348	1	0.8348
2	0.7112	0.736113	0.696891
3	0.6157	0.615336	0.581765
4	0.5481	0.541863	0.485657
5	0.4927	0.49097	0.405427
6	0.4508	0.452957	0.33845
7	0.4212	0.423123	0.282538
8	0.3958	0.398873	0.235863
9	0.3762	0.378639	0.196898
10	0.3631	0.36141	0.164371
11	0.3516	0.346501	0.137217

Extended model

- Consider the cube $[0, 2N]^d$.
- We put sequentially at random cubes $z + [0, N]^d$ with $z \in \mathbb{Z}^d$ in it until one cannot insert cubes any more.
- Denote by $M_d(N)$ the number of cubes in the obtained non-extendible packing.
- The main problem is to estimate the packing density:

$$\gamma_d(N) = \frac{1}{2^d} E(M_d(N))$$

• Poyarkov, (2004) proved that $\gamma_d \ge (1 + \frac{1}{N})^d$

Lemma

Lemma First put the cube $z + [0, N]^d$ in $[0, 2N]^d$ and write

$$k = \#\{i \mid z_i = 0 \text{ or } N\}$$

Second put cube at random until one cannot do it any more. Then:

- The minimal number of cubes is k + 1.
- The expectation of the number of cubes put is $k + 1 + O(\frac{1}{N+1})$

Expansion of $E(M_d(N))$

- Denote by $E(M_d(N)|k)$ the expected number of cubes in a non-extendible random packing, while imposing that the first cube $z + [0, N]^d$ has z with k coordinates equal to 0 or N.
- One has the expression

$$E(M_d(N)) = \sum_{k=0}^d \left(\frac{2}{N+1}\right)^k \left(\frac{N-1}{N+1}\right)^{d-k} \binom{k}{d} E(M_d(N)|k)$$

So, one gets

$$E(M_d(N)) = \left(\frac{N-1}{N+1}\right)^d E(M_d(N)|0) + d\frac{2}{N+1}\left(\frac{N-1}{N+1}\right)^{d-1} E(M_d(N)|1) + d(d-1)\frac{2}{(N+1)^2}\left(\frac{N-1}{N+1}\right)^{d-2} E(M_d(N)|2) + O(\frac{1}{N+1})^3$$

Expansion of $E(M_d(N))$

- Clearly $E(M_d(N)|0) = 1$ and $E(M_d(N)|1) = 1 + E(M_{d-1}(N)).$
- **•** By above lemma, $E(M_d(N)|2) = 3 + O(\frac{1}{N+1})$
- First, one has $E(M_d(N)) = 1 + O(\frac{1}{N+1})$
- Second, one gets

$$E(M_d(N)) = (1 - \frac{2}{N+1})^d + \frac{2d}{N+1}(1 - \frac{2}{N+1})^{d-1}(2 + O(\frac{1}{N+1})) + O(\frac{1}{(N+1)^2}) = \{1 - \frac{2d}{N+1} + O(\frac{1}{(N+1)^2})\} + \frac{4d}{N+1} + O(\frac{1}{(N+1)^2}) = 1 + \frac{2d}{N+1} + O(\frac{1}{(N+1)^2})$$

Expansion of $E(M_d(N))$

Inserting this expression one gets

$$E(M_d(N)) = 1 + \frac{2d}{N+1} + \frac{4d(d-1)}{(N+1)^2} + O(\frac{1}{N+1})^3$$

One proves that for fixed d, there exists an asymptotic expansion

$$E(M_d(N)) = \sum_{k=0}^{\infty} c_{k,d} \frac{1}{(N+1)^k}$$

• But finding the coefficients $c_{k,d}$ for $k \ge 3$ is less easy.

II. Torus cube tilings and packings

Torus cube tilings and packings

- A cube tiling is a $4\mathbf{Z}^d$ -periodic tiling of \mathbf{R}^d by integral translates of the cube $[0, 2]^d$.
- There is only one cube tiling in dimension 1.
- There are two cube tilings in dimension 2:

- A cube packing is a packing of \mathbf{R}^d by integral translates of cubes $[0, 2]^d$, which is $4\mathbf{Z}^d$ -periodic.
- If we cannot extend a cube packing by adding another cube, then it is called non-extendible.
- No non-extendible cube packings in dimension 1 and 2.

3-dim. non-extendible cube packing

Results for $d \le 4$

In dimension 3, there is a unique non-extendible cube packing and there are 9 types of cube tilings.

Results for $d \le 4$

In dimension 3, there is a unique non-extendible cube packing and there are 9 types of cube tilings.

Results for $d \leq 4$

In dimension 3, there is a unique non-extendible cube packing and there are 9 types of cube tilings.

In dimension 4, the repartition is as follows:

Low density cube packings

- Denote by f(d) the smallest number of cubes of non-extendible cube packing.
- f(3) = 4 and f(4) = 8.
- **•** For any $n, m \in \mathbb{N}$, the following inequality holds:

 $f(n+m) \le f(n)f(m) \; .$

The cube packing realizing this is constructed by "product" of two cube packings of \mathbf{R}^n and \mathbf{R}^m

• Conjecture: f(5) = 12 and f(6) = 16.

III. Continuous torus cube packings

Torus cube packings

- We consider the torus $\mathbf{Z}^d/_{2N}\mathbf{Z}^d$ and do sequential random packing by cubes $z + [0, N]^d$ with $z \in \mathbf{Z}^d$.
- We denote $M_d(N)$ the number of cubes in the obtained torus cube packing and

$$\alpha_d(N) = E(M_d(N))$$

- As in the case of rigid boundaries, we are interested in the limit $N \to \infty$.
- In the rigid boundary case, in the limit $N \to \infty$, one has a single cube in the middle of another cube and no possibility of adding any other cube.
- **•** But for torus case, the limit $N \to \infty$ is more interesting.

Continuous cube packings

- We consider the torus $\mathbf{R}^d/2\mathbf{Z}^d$ and do sequential random packing by cubes $z + [0, 1]^d$ with $z \in \mathbf{R}^d$.
- Two cubes $z + [0, 1]^d$ and $z' + [0, 1]^d$ are non-overlapping if and only if there is $1 \le i \le d$ with $z'_i \equiv z_i + 1 \pmod{2}$

• Fix a cube
$$C = z + [0, 1]^d$$
.

- We want to insert a cube $z' + [0, 1]^d$, which do not overlap with C.
- The condition $z'_i = z_i + 1$ defines an hyperplane in the torus $\mathbf{R}^d/2\mathbf{Z}^d$.
- Those d hyperplanes have the same (d-1)-dimensional volume.
- In doing the sequential random packing, every one of the d hyperplanes is chosen with equal probability.

Several cubes

One has several non-overlapping cubes $z^1 + [0, 1]^d$, ..., $z^r + [0, 1]^d$. We want to add one more cube $z + [0, 1]^d$.

- For every cube $z^j + [0,1]^d$, there should exist some
 $1 \le i \le d$ such that $z_i^j \equiv z_i + 1 \pmod{2}$
- After enumerating all possible choices, one gets different planes.
- Their dimension might differ.
- Only the one with maximal dimension have strictly positive probability of being attained.
- All planes of the highest dimension have the same volume in the torus $\mathbf{R}^d/2\mathbf{Z}^d$ and so, the same probability of being attained.

The two dimensional case

- **•** Put a cube $z + [0,1]^2$ in $\mathbb{R}^2/_2\mathbb{Z}^2$. $z = (t_1, t_2)$
- In putting the next cube, two possibilities: $(t_1 + 1, t_3)$ or $(t_3, t_2 + 1)$. They correspond geometrically to:

and they are equivalent.

Continuing the process, up to equivalence, one obtains:

- At first step, one puts the vector $z^1 = (t_1, t_2, t_3)$
- At second step, up to equivalence, $z^2 = (t_1 + 1, t_4, t_5)$
- At third step, one generates six possibilities, all with equal probabilities:

 $\begin{array}{ll} (t_1+1,t_4+1,t_6) & (t_1,t_2+1,t_6) & (t_1,t_6,t_3+1) \\ (t_1+1,t_6,t_5+1) & (t_6,t_2+1,t_5+1) & (t_6,t_4+1,t_3+1) \end{array}$

- Up to equivalence, those possibilities split into 2 cases:
 - { $(t_1, t_2, t_3), (t_1 + 1, t_4, t_5), (t_1, t_6, t_3 + 1)$ } with probability $\frac{2}{3}$
 - { $(t_1, t_2, t_3), (t_1 + 1, t_4, t_5), (t_6, t_2 + 1, t_5 + 1)$ } with probability $\frac{1}{3}$

- Possible extensions of { (t_1, t_2, t_3) , $(t_1 + 1, t_4, t_5)$, ($t_1, t_6, t_3 + 1$)} with probability $\frac{2}{3}$ are:
 - $(t_1 + 1, t_7, t_5 + 1)$ with 1 parameter
 - $(t_1 + 1, t_4 + 1, t_7)$ with 1 parameter
 - $(t_1, t_2 + 1, t_3)$ with 0 parameter
 - $(t_1, t_6 + 1, t_3 + 1)$ with 0 parameter
- Cases with 0 parameters have probability 0, so can be neglected.
- So, up to equivalence, one obtains
 - { $(t_1, t_2, t_3), \dots, (t_6, t_2 + 1, t_5 + 1), (t_1, t_6, t_3 + 1), (t_1 + 1, t_7, t_5 + 1)$ with probability $\frac{1}{3}$
 - { $(t_1, t_2, t_3), \ldots, (t_6, t_2 + 1, t_5 + 1), (t_1, t_6, t_3 + 1), (t_1 + 1, t_4 + 1, t_7)$ with probability $\frac{1}{3}$

Possible extensions of { (t_1, t_2, t_3) , $(t_1 + 1, t_4, t_5)$, ($t_6, t_2 + 1, t_5 + 1$)} with probability $\frac{1}{3}$ are:

 $\begin{array}{ll} (t_6+1,t_4+1,t_3+1) & (t_1+1,t_2,t_5+1) & (t_1,t_2+1,t_5) \\ (t_6+1,t_2+1,t_5+1) & (t_1+1,t_4+1,t_5) & (t_1,t_2,t_3+1) \end{array}$

All those choices have 0 parameter.

- Those possibilities are in two groups:
 - $\{(t_1, t_2, t_3), \dots, (t_6, t_2 + 1, t_5 + 1), (t_6 + 1, t_4 + 1, t_3 + 1)\}$ with probability $\frac{1}{18}$
 - 5 other cases with probability $\frac{5}{18}$.

At the end of the process, one obtains

7 parameters, probability $\frac{1}{3}$

7 parameters, probability $\frac{1}{3}$

6 parameters, probability $\frac{5}{18}$

Also, with probability $\frac{1}{18}$, one obtains the non-extendible cube packing with 4 cubes and 6 parameters.

- Doing the enumeration by computer, one obtains

 - 32 continuous cube tilings.
- The number are lower than in the case N = 2, since we do the enumeration only of the one with strictly positive probability.
- One of 31 non-extendible continuous cube-packing has 6 cubes:

z^1	z^2	z^3	z^4	z^5	z^6
t_1	$t_1 + 1$	t_8	t_{10}	$t_8 + 1$	$t_{10} + 1$
t_2	t_5	$t_2 + 1$	$t_{5} + 1$	$t_2 + 1$	t_2
t_3	t_6	$t_{6} + 1$	$t_3 + 1$	t_3	$t_{6} + 1$
t_4	t_7	t_9	$t_9 + 1$	$t_7 + 1$	$t_4 + 1$

Packing density

- Denote by $\alpha_d(\infty)$ the packing density for continuous cube packing and $\alpha_d(N)$ the packing density in $\mathbf{Z}^d/2N\mathbf{Z}^d$.
- One has

$$\alpha_1(\infty) = \alpha_2(\infty) = 1, \ \alpha_3(\infty) = \frac{35}{36} = 0.972.$$

and
$$\alpha_4(\infty) = \frac{15258791833}{16102195200} = 0.947...$$

- Thm. For any $d \geq 3$, one has $\alpha_d(\infty) < 1$.
- Thm. One has the limit

$$\lim_{N \to \infty} \alpha_d(N) = \alpha_d(\infty)$$

Non-extendible cube packings

- The number of cubes in non-extendible cube packings is at least n + 1.
- Problem find better lower bound on size of non-extendible cube packing.
- In dimension 5, we found a continuous non-extendible cube packing with 8 cubes. But is it with strictly positive probability?
- Problem Does there exist continuous non-extendible cube packing of lower number of cubes than the one of strictly positive probability?
- Problem Prove that there is no non-extendible cube packing with $2^n \delta$ cubes with $\delta \leq 3$.