Torus Cube packings

Mathieu Dutour Sikirić

Rudjer Bošković Institute, Zagreb

Yoshiaki Itoh

Institut Statistical Mathematics, Tokyo

Alexei Poyarkov

Moscow State University, Moscow

I. Torus cube tilings and packings

Cube packings

- A N-cube packing is a $2N\mathbb{Z}^n$ -periodic packing of \mathbb{R}^n by integral translates of the cube $[0, N]^n$.
- A N-cube tiling is a N-cube packing with 2^n translation classes of cubes.
- \triangleright There are two types of 2-cube tilings in dimension 2:

 \triangleright Any N-cube packing with m translation classes corresponds in the torus $(\mathbb{Z}/2N\mathbb{Z})^n$ to a packing with m cubes.

Keller conjecture

- \blacktriangleright Conjecture: for any cube tiling of \mathbb{R}^n , there exist at least one face-to-face adjacency.
- \triangleright This conjecture was proved by Perron (1940) for dimension $n \leq 6$.
- \triangleright Szabo (1986): if there is a counter-example to the conjecture, then there is a counter-example, which is 2-cube tiling.
	- \triangleright Lagarias & Shor (1992) have constructed counter-example to the Keller conjecture in dimension $n > 10$
	- ▶ Mackey (2002) has constructed a counter-example in dimension $n \geq 8$.
	- Dimension $n = 7$ remains open.

Extensibility

If we cannot extend a N -cube packing by adding another cube, then it is called non-extensible.

No non-extensible N-cube packings in dimensions 1 and 2.

Denote by $f_N(n)$ the smallest number of cubes of non-extensible cube packing.

$$
\blacktriangleright f_N(3) = 4 \text{ and } 6 \le f_N(4) \le 8.
$$

For any $n, m \in \mathbb{N}$, the following inequality holds:

 $f_N(n + m) \le f_N(n) f_N(m)$.

• Conjecture: $f_2(5) = 12$ and $f_2(6) = 16$.

Clique formalism (case $N = 2$)

- Associate to every cube C its center $c \in \{0,1,2,3\}^n$
- Two cubes with centers c and c' are non-overlapping if and only if there exist a coordinate *i*, such that $|c_i - c'_i| = 2$.
- The graph G_n is the graph with vertex set $\{0, 1, 2, 3\}^n$ and two vertices being adjacent if and only if the corresponding cubes do not overlap. $|Aut(G_n)| = n!8^n$.
- \triangleright A clique S in a graph is a set of vertices such that any two vertices in S are adjacent.
- Eube tilings correspond to cliques of size 2^n in the graph G_n .
- \blacktriangleright We set $L_1 = \{\{v\}\}\$ and iterate *i* from 2 to 2ⁿ:
	- ► For every subset in L_{i-1} , consider all vertices, which are adjacent to all element in L_{i-1} .
	- \triangleright Test if they are isomorphic to existing elements in L_i and if not, insert them into L_i .
- \triangleright Isomorphism tests are done using the action OnSets of GAP, which uses backtrack and is very efficient.

Results in dimension 3 (case $N = 2$)

In dimension 3, there is a unique non-extensible cube packing and there are 9 types of cube tilings.

Results in dimension 4 (case $N = 2$)

In dimension 4, the number of combinatorial types of cube packings with N cubes is as follows:

 \triangleright Furthermore all cube packings in dimension 4 can be obtained from the regular cube tiling by following operations:

Complement of cube packings (case $N = 2$)

- \triangleright The complement of an non-extensible cube packing \mathcal{CP} is the set $\mathbb{R}^n - \mathcal{CP}$.
- \triangleright Theorem: There is no complement of size smaller than 4.
- \triangleright Conjecture: If \mathcal{CP} is a non-extensible cube packing with $2ⁿ - 4$ tiles, then its complement has "same shape", as the one in dimension 3.
- \triangleright Conjecture: If \mathcal{CP} is a cube packing with $2^n 5$ cubes, then it is extensible by at least one cube.
- \triangleright Conjecture: If \mathcal{CP} is a non-extensible cube packing with $2^n - 6$ or $2^n - 7$ cubes, then its complement has "same shape", as the ones in dimension 4.

II. Continuous torus cube packings

Torus cube packings

- \blacktriangleright We consider the torus $\mathbb{Z}^n/2N\mathbb{Z}^n$ and do sequential random packing by cubes $z + [0, N]^n$ with $z \in \mathbb{Z}^n$.
- \blacktriangleright We denote $M^T_N(n)$ the number of cubes in the obtained torus cube packing and the average density of cube packing:

$$
\frac{1}{2^n}E(M_N^T(n))
$$

- \triangleright We are interested in the limit $N \to \infty$.
- \blacktriangleright The cube packings obtained in the limit will be called continuous cube packings and we will develop a combinatorial formalism for dealing with them.

Continuous cube packings

- \blacktriangleright We consider the torus $\mathbb{R}^n / 2 \mathbb{Z}^n$ and do sequential random packing by cubes $z + [0,1]^n$ with $z \in \mathbb{R}^n$.
- Two cubes $z + [0, 1]^n$ and $z' + [0, 1]^n$ are non-overlapping if and only if there is $1 \leq i \leq n$ with $z'_i \equiv z_i + 1 \pmod{2}$

• Fix a cube
$$
C = z^1 + [0, 1]^n
$$
.

- \blacktriangleright We want to insert a cube $z + [0,1]^n$, which do not overlap with C.
- In the condition $z_i = z_i^1 + 1$ defines an hyperplane in the torus $\mathbb{R}^n/2\mathbb{Z}^n$.
- ► Those *n* hyperplanes have the same $(n 1)$ -dimensional volume.
- In doing the sequential random packing, every one of the n hyperplanes is chosen with equal probability.

Several cubes

One has several non-overlapping cubes $z^1 + [0,1]^n$, ..., $z^{r} + [0,1]^{n}$. We want to add one more cube $z + [0,1]^{n}$.

- ► For every cube $z^j + [0,1]^n$, there should exist some $1 \le i \le n$ such that $z_i \equiv z_i^j + 1 \pmod{2}$
- \triangleright After enumerating all possible choices, one gets different planes.
- \blacktriangleright Their dimension might differ.
- \triangleright Only the one with maximal dimension have strictly positive probability of being attained.
- \triangleright All planes of the highest dimension have the same volume in the torus $\mathbb{R}^n/\text{2}\mathbb{Z}^n$ and so, the same probability of being attained.

Definition: The number of cubes of a continuous cube packing is $N(\mathcal{CP})$ and its number of parameters is $m(\mathcal{CP})$.

The two dimensional case

▶ Put a cube $z + [0, 1]^2$ in $\mathbb{R}^2/2\mathbb{Z}^2$. $z = (t_1, t_2)$

In putting the next cube, two possibilities: $(t_1 + 1, t_3)$ or $(t_3, t_2 + 1)$. They correspond geometrically to:

and they are equivalent.

 \triangleright Continuing the process, up to equivalence, one obtains:

The 3-dimensional case

- \blacktriangleright At first step, one puts the vector $c^1=(t_1,t_2,t_3)$
- At second step, up to equivalence, $c^2=(t_1+1,t_4,t_5)$
- \triangleright At third step, one generates six possibilities, all with equal probabilities:

 $(t_1 + 1, t_4 + 1, t_6)$ $(t_1, t_2 + 1, t_6)$ $(t_1, t_6, t_3 + 1)$ $(t_1 + 1, t_6, t_5 + 1)$ $(t_6, t_2 + 1, t_5 + 1)$ $(t_6, t_4 + 1, t_3 + 1)$

- \triangleright Up to equivalence, those possibilities split into 2 cases:
	- $\blacktriangleright \{ (t_1, t_2, t_3), (t_1 + 1, t_4, t_5), (t_1, t_6, t_3 + 1) \}$ with probability $\frac{2}{3}$
	- $\blacktriangleright \{ (t_1, t_2, t_3), (t_1 + 1, t_4, t_5), (t_6, t_2 + 1, t_5 + 1) \}$ with probability $\frac{1}{3}$
- ▶ Possible extensions of $\{(t_1,t_2,t_3), (t_1 + 1, t_4, t_5),$ $(t_1, t_6, t_3 + 1)$ } with probability $\frac{2}{3}$ are:
	- $(t_1 + 1, t_7, t_5 + 1)$ with 1 parameter
	- \blacktriangleright $(t_1 + 1, t_4 + 1, t_7)$ with 1 parameter
	- \blacktriangleright $(t_1, t_2 + 1, t_3)$ with 0 parameter
	- \blacktriangleright $(t_1, t_6 + 1, t_3 + 1)$ with 0 parameter
- \triangleright Cases with 0 parameters have probability 0, so can be neglected.
- \triangleright So, up to equivalence, one obtains
	- \blacktriangleright { $(t_1,t_2,t_3), \ldots, (t_6,t_2+1,t_5+1), (t_1,t_6,t_3+1), (t_1+1,t_7,t_5+1)$ with probability $\frac{1}{3}$
	- $\blacktriangleright \{ (t_1,t_2,t_3), \ldots, (t_6,t_2+1,t_5+1), (t_1,t_6,t_3+1), (t_1+1,t_4+1,t_7) \}$ with probability $\frac{1}{3}$

▶ Possible extensions of $\{(t_1,t_2,t_3), (t_1 + 1, t_4, t_5),$ $(t_6, t_2 + 1, t_5 + 1)$ with probability $\frac{1}{3}$ are:

 $(t_6 + 1, t_4 + 1, t_3 + 1)$ $(t_1 + 1, t_2, t_5 + 1)$ $(t_1, t_2 + 1, t_5)$ $(t_6 + 1, t_2 + 1, t_5 + 1)$ $(t_1 + 1, t_4 + 1, t_5)$ $(t_1, t_2, t_3 + 1)$

All those choices have 0 parameter.

- \triangleright Those possibilities are in two groups:
	- $\blacktriangleright \{ (t_1, t_2, t_3), \ldots, (t_6, t_2 + 1, t_5 + 1), (t_6 + 1, t_4 + 1, t_3 + 1) \}$ with probability $\frac{1}{18}$
	- ► 5 other cases with probability $\frac{5}{18}$.

 \triangleright At the end of the process, one obtains

Also, with probability $\frac{1}{18}$, one obtains the non-extensible cube packing with 4 cubes and 6 parameters.

IV. Computer methods

Automorphy/isomorphy questions

- \triangleright The program nauty of Brendan McKay allows to find the automorphism group of a finite graph G and to test if two graphs are isomorphic.
- \triangleright Those two problems are not expected to be solvable in polynomial time, but nauty is extremely efficient in doing those computations.
- If one has a finite combinatorial object (edge colored graphs, set-system, etc.), we associate to it a graph, which encodes all its properties.
- \triangleright We then use nauty to test if the combinatorial objects are isomorphic, to compute their automorphism groups, etc.
- \triangleright nauty can deal with directed graph but this is not recommended, it can also deal with vertex colors.
- \triangleright Another feature is to be able to get a canonical representative of a graph, which is helpful in enumeration purposes.

The combinatorial object used here

- \triangleright We want to define a characteristic graph $G(\mathcal{CP})$ for any continuous cube packing \mathcal{CP} such that:
	- If \mathcal{CP}_1 and \mathcal{CP}_2 are two cube packings, then \mathcal{CP}_1 and \mathcal{CP}_2 are isomorphic if and only if $G(\mathcal{CP}_1)$ and $G(\mathcal{CP}_2)$ are isomorphic.
	- If \mathcal{CP} is a cube packing, then the group $Aut(\mathcal{CP})$ is isomorphic to the group $Aut(G(\mathcal{CP}))$.
- If \mathcal{CP} is a *n*-dimensional cube packing then we define a graph with $n \times N(\mathcal{CP}) + 2 \times m(\mathcal{CP})$ vertices:
	- Every cube of center $v^i = (v_1^i, \ldots, v_n^i)$ correspond to *n* vertices v_j^i .

Every parameter t_i correspond to two vertices t_i , $t_i + 1$. and the following edges:

- ► Every v_j^i is adjacent to all $v_j^{i'}$ and to all $v_{j'}^{i}$
- \blacktriangleright The vertices t_i and $t_i + 1$ are adjacent.
- If v_j^i is t_i , then we make it adjacent to the vertex t_i .

Example of the non-extensible cube packing in dimension 3

 \triangleright The non-extensible cube packing of dimension 3 with 4 cubes:

$$
\begin{matrix}c^1&=&\left(\begin{array}{ccc} &t_1,& &t_2,& &t_3\\ c^2&=&\left(\begin{array}{ccc} &t_1+1,& t_4,& &t_5\\ t_6,& &t_2+1,& t_5+1\end{array}\right)\right.\\ c^3&=&\left(\begin{array}{ccc} &t_6,& &t_2+1,& t_5+1\\ t_6+1,& t_4+1,& t_3+1\end{array}\right)\end{matrix}
$$

 \blacktriangleright The corresponding graph is

 \triangleright The symmetric group of the structure is $Sym(4)$, the group on the cubes is Sym(4), the group on the coordinates is Sym(3) and the group on the parameter is Sym(4) acting on 6 points.

How to enumerate continuous cube packings

- \blacktriangleright The basic technique is to enumerate all continuous cube packings with n cubes and then to add in all possible ways another cube.
- \triangleright We use nauty to resolve isomorphy questions between the generated cube packings.
- In dimension 4 this technique works in 4 days.
- \triangleright Suppose that we have a hole in a cube packing and that there is only one way to put a cube and that this choice will not overlap with other choices:

Enumeration time reduces to 5 minutes.

Enumeration results

- ► $f_{\infty}(n)$ is the minimum number of cubes of non-extensible n-dimensional continuous cube packings.
- \triangleright f_{>0,∞}(n) is the minimum number of cubes of non-extensible n-dimensional continuous cube packings, obtained with strictly positive probability.

Test positive probability

- \triangleright Suppose that one has a continuous cube packing \mathcal{CP} and we want to check if it can be obtained with strictly positive probability.
- In The cubes are of the form $z^1 + [0,1]^n$, ..., $z^M + [0,1]^n$.
- \triangleright To be obtainable with strictly positive probability, means there exist a permutation $\sigma \in \text{Sym}(M)$ such that we can obtain

$$
z^{\sigma(1)} + [0,1]^n
$$
, $z^{\sigma(2)} + [0,1]^n$, ..., $z^{\sigma(M)} + [0,1]^n$

in this order.

 \triangleright The method of obtention is to consider all possibilities sequentially and backtrack when

$$
z^{\sigma(1)} + [0,1]^n, \ \ldots, \ z^{\sigma(M')} + [0,1]^n \text{ with } M' \leq M
$$

is obtained with zero probability.

III. Lamination and packing density

Product construction

If \mathcal{CP} , \mathcal{CP}' are n-, n'-dimensional continuous cube packings, we want to construct a product $\mathcal{CP} \times \mathcal{CP}'$.

- If the cubes of \mathcal{CP} , \mathcal{CP}' are $(z^i + [0,1]^n)_{1 \leq i \leq N}$, $(z'^{j} + [0,1]^{n'})_{1 \leq j \leq N'}$ then:
	- ▶ We form N independent copies of \mathcal{CP}' : $(z'^{i,j} + [0,1]^{n'})_{1\leq j\leq N'}$
	- \triangleright We form the cube packing $\mathcal{CP} \ltimes \mathcal{CP}'$ with cubes $(z^{i}, z'^{i,j}) + [0, 1]^{n+n'}$ for $1 \leq i \leq N$ and $1 \leq j \leq N'$.
- This product $\mathcal{CP} \ltimes \mathcal{CP}'$ has the following properties:
	- $\blacktriangleright m(\mathcal{CP} \ltimes \mathcal{CP}') = m(\mathcal{CP}) + N(\mathcal{CP})m(\mathcal{CP}')$
	- If \mathcal{CP} and \mathcal{CP}' are non-extensible then $\mathcal{CP} \ltimes \mathcal{CP}'$ is non-extensible.
	- If \mathcal{CP} and \mathcal{CP}' are obtained with strictly positive probability and $\cal CP$ is non-extensible then $\cal CP \ltimes \cal CP'$ is obtained with strictly positive probability.

Packing density

- \triangleright Denote by $\alpha_n(\infty)$ the packing density for continuous cube packing and $\alpha_n(N)$ the packing density in $\mathbb{Z}^n/2N\mathbb{Z}^n$.
- \triangleright One has

$$
\alpha_1(\infty) = \alpha_2(\infty) = 1, \quad \alpha_3(\infty) = \frac{35}{36} = 0.972.
$$

$$
\text{and}\ \ \alpha_4(\infty)=\tfrac{15258791833}{16102195200}=0.947...
$$

- ► Theorem: For any $n \geq 3$, one has $\alpha_{\infty}(n) < 1$. Proof: Take the 3-dimensional continuous non-extensible cube packing \mathcal{CP}_1 with 4 cubes (with > 0). Take a continuous non-extensible cube packing \mathcal{CP}_2 of dimension $n-3$ (with > 0). Then the product $\mathcal{CP}_1 \ltimes \mathcal{CP}_2$ is non-extensible and obtained with strictly positive probability, which proves $\alpha_n(\infty) < 1$.
- \triangleright Theorem: One has the limit

$$
\lim_{N\to\infty}\alpha_N(n)=\alpha_\infty(n)
$$

Non-extensible cube packings

- \triangleright Theorem: If a *n*-dimensional continuous cube packing has $2^n - \delta$ cubes with $\delta \leq 3$ then it is extensible.
- \triangleright Take \mathcal{CP} such a continuous cube packing and assign a value α_i to the parameters t_i such that if $i\neq j$ then $\alpha_i\neq \alpha_j, \alpha_j+2$ (mod 2).
- \blacktriangleright Lemma: Given
	- ► a cube packing with $2^n \delta$ cubes of coordinates x^i , $1\leq i\leq 2^n-\delta,$
	- **Exercice** and a value $\alpha \in \mathbb{R}$

The induced cube packing is the cube packing of \mathbb{R}^{n-1} obtained by taking all vectors x^i with $x^i_k \in [\alpha, \alpha + 1[$ and removing the k -th coordinate.

Such cube packings have at least $2^{n-1} - \delta$ tiles.

 \blacktriangleright The proof is then by induction.

II. Number of parameters

The numbers $N_k(\mathcal{CP})$

- Exect Let \mathcal{CP} be a non-extensible cube packing obtained with strictly positive probability.
	- \triangleright We denote by $N_k(\mathcal{CP})$ the number of cubes which occurs with k new parameters.
	- \triangleright We have $N_n(\mathcal{CP}) = 1$ and $N_{n-1}(\mathcal{CP}) = 1$.
	- $\blacktriangleright N_k(\mathcal{CP}) \geq 1$
- \blacktriangleright The total number of cubes is $N(\mathcal{CP}) = \sum_{k=0}^{n} N_k(\mathcal{CP})$; $N(\mathcal{CP}) \geq n+1$.
- The total number of parameters is $m(\mathcal{CP}) = \sum_{k=1}^{n} kN_k(\mathcal{CP})$; $m(\mathcal{CP}) \geq \frac{n(n+1)}{2}$ $\frac{(n+1)}{2}$.
- \triangleright Conjecture: If \mathcal{CP} is a non-extensible continuous cube packing obtained with strictly positive probability then:
	- ► For all $k \geq 1$ we have $\sum_{l=0}^k N_{n-l} \leq 2^k$
	- We have $m(\mathcal{CP}) \leq 2^n 1$

Minimal number of cubes

- \triangleright Theorem: If \mathcal{CP} is a non-extensible cube packing with $n+1$ cubes then:
	- Its number of parameter is $\frac{n(n+1)}{2}$
	- In every coordinate a parameter appear exactly one time as t and exactly one time as $t + 1$
- \blacktriangleright Consequences:
	- If n is even there is no such cube packing
	- If n is odd such cube packings correspond to 1-factorization of the graph K_{n+1} , i.e. a set of *n* perfect matching in K_{n+1} , which partitions the edge set.

One-factorizations of K_{n+1}

 \triangleright The graph K_6 has exactly one 1-factorization with symmetry group Sym(5), i.e. the group Sym(5) acts on 6 elements.

- Every graph K_{2p} has at least one 1-factorization.
- \triangleright So, for *n* odd, there is a non-extensible cube packing with $n + 1$ cubes.

Minimal number of cubes in even dimension

If *n* is even, then
$$
f_{\infty}(n) \ge n + 1
$$
.

For $n = 4$, this minimum is attained by the following structure:

$$
H=\left(\begin{array}{ccccc}t_1&t_2&t_3&t_4\\t_5&t_6&t_7&t_4+1\\t_1+1&t_8&t_7+1&t_9\\t_5+1&t_8+1&t_3+1&t_{10}\\t_1+1&t_6+1&t_7&t_{10}+1\\t_5&t_2+1&t_7+1&t_9+1\end{array}\right)
$$

with probability $\frac{1}{480}$. $|Aut(H)|=4$ and $m(H)=\frac{4(4+1)}{2}=10$

► Conjecture: If *n* is even then $f_{\infty}(n) = n + 2$ and one of the structures realizing it has $\frac{n(n+1)}{2}$ parameters.

Minimal 6-dimensional non-extensible cube packings

- Instead of adding rows, we add columns. We first determine columns types and then add columns in all possible ways and reduce by isomorphism.
- \triangleright We find 9 non-extensible continuous cube packings with at least $\frac{6(6+1)}{2} = 21$ parameters, all with zero probability. So, $8 = f_{\infty}(6) < f_{>0,\infty}(6)$.
- \triangleright One of them has 21 parameters and $|Aut| = 4$:

$$
\left(\begin{array}{ccccc} t_1 & t_5 & t_9 & t_{14}+1 & t_{17}+1 & t_{19} \\ t_1+1 & t_6 & t_{10} & t_{13}+1 & t_{16}+1 & t_{19} \\ t_2 & t_5+1 & t_{11} & t_{13} & t_{18} & t_{20} \\ t_2+1 & t_7 & t_9+1 & t_{15} & t_{16} & t_{21} \\ t_3 & t_6+1 & t_{12} & t_{14} & t_{18}+1 & t_{21}+1 \\ t_3+1 & t_8 & t_{10}+1 & t_{15}+1 & t_{17} & t_{20}+1 \\ t_4 & t_7+1 & t_{12}+1 & t_{13}+1 & t_{17}+1 & t_{19}+1 \\ t_4+1 & t_8+1 & t_{11}+1 & t_{14}+1 & t_{16}+1 & t_{19}+1 \end{array}\right)
$$

Column types:

 $(1, 1)^4$ (3 times), $(1, 1), (2, 1)^2$ (2 times), $(1, 1)^2, (2, 2)$ (1 time).

Full cube tilings with minimal number of parameters

- \triangleright Question For which *n*, there is a non-extensible cube tiling with $\frac{n(n+1)}{2}$ parameters?
- **►** There is existence and unicity for $n \leq 4$.
- \triangleright We concentrate on the existence question.
- For $n = 5$, we obtain by random computer search one such structure.
- \triangleright The first 5 cubes are organized in the following way.

$$
\mathcal{H}_5=\left(\begin{array}{cccc}t_1'&t_3+1&t_6+1&t_8&t_9\\t_1&t_2't_5+1&t_8+1&t_{10}\\t_2&t_3&t_3't_3't_7+1&t_{10}+1\\t_2+1&t_4&t_5&t_4't_9+1\\t_1+1&t_4+1&t_6&t_7&t_5'\end{array}\right)
$$

This block structure can be generalized immediately for n odd. Its symmetry group is the dihedral group D_{2n} .

Search of structures

 \blacktriangleright The next 5 cubes have a specific form:

$$
\mathcal{H}_5 + \mathcal{I}_5 = \left(\begin{array}{cccccc} t'_1+1 & t_3+1 & t_6+1 & t_8 & t_9 \\ t_1 & t'_2+1 & t_5+1 & t_8+1 & t_{10} \\ t_2 & t_3 & t'_3+1 & t_7+1 & t_{10}+1 \\ t_2+1 & t_4 & t_5 & t'_4+1 & t_9+1 \\ t_1+1 & t_4+1 & t_6 & t_7 & t'_5+1 \end{array}\right)
$$

 \triangleright Then we have 2 cubes of coordinates

$$
\left(\begin{array}{cccc} t_1 & t_3 & t_5 & t_7 & t_9 \\ t_1+1 & t_3+1 & t_5+1 & t_7+1 & t_9+1 \end{array}\right)
$$

 \blacktriangleright Then we have 2 orbits of 10 cubes with a more complicate structure.

Permutation formalism

 \blacktriangleright Consider the block structure

$$
\left(\begin{array}{cccccc} t'_1 & t_3+1 & t_6+1 & t_8 & t_9 \\ t_1 & t'_2 & t_5+1 & t_8+1 & t_{10} \\ t_2 & t_3 & t'_3 & t_7+1 & t_{10}+1 \\ t_2+1 & t_4 & t_5 & t'_4 & t_9+1 \\ t_1+1 & t_4+1 & t_6 & t_7 & t'_5 \end{array}\right)
$$

of 5 cubes C_i , $1 \leq i \leq 5$.

- If C is non-overlapping cube, then for every *i* it should have a coordinate $\sigma(i)$, different from 1 with the cube \mathcal{C}_i .
- \triangleright A coordinate can differ from 1 with only one cube. This means that no new parameter can show up and that new cubes are encoded by a permutation σ of Sym(5).

Equivariant computer search

- \triangleright We consider the $n + n + 2$ cubes obtained in case $n = 5$. We impose the symmetry D_{2n} and search for all possibilities of extension.
- For $n = 7$ and $n = 9$ we found exactly one such continuous cube tiling.
- \blacktriangleright For $n = 11$, the number of possibilities is much larger. We needed to reprogram in C++ and doing a computer search we found no such cube tiling.

II. Further research

Parallelotope extension

 \triangleright A parallelotope is a polytope P, which tiles the space by translation.

The set of translation vector form a lattice

If P is a parallelotope in \mathbb{R}^n of lattice L, then we consider random packing of $P + 2L$ in \mathbb{R}^n :

THANK

YOU

- \triangleright M. Dutour Sikirić, Y. Itoh and A. Poyarkov, Cube packing, second moment and holes, European Journal of Combinatorics 28-3 (2007) 715–725.
- \triangleright M. Dutour Sikirić and Y. Itoh, Continuous random cube packings in cube and torus, in preparation.
- ▶ Programs at [http://www.liga.ens.fr/~dutour/](http://www.liga.ens.fr/~dutour/Documents/PackingProbability.tar.gz) [Documents/PackingProbability.tar.gz](http://www.liga.ens.fr/~dutour/Documents/PackingProbability.tar.gz)