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I. Torus

cube tilings and

packings



Cube packings

I A N-cube packing is a 2NZn-periodic packing of Rn by
integral translates of the cube [0,N]n.

I A N-cube tiling is a N-cube packing with 2n translation
classes of cubes.

I There are two types of 2-cube tilings in dimension 2:

I Any N-cube packing with m translation classes corresponds in
the torus (Z/2NZ)n to a packing with m cubes.



Keller conjecture

I Conjecture: for any cube tiling of Rn, there exist at least one
face-to-face adjacency.

I This conjecture was proved by Perron (1940) for dimension
n ≤ 6.

I Szabo (1986): if there is a counter-example to the conjecture,
then there is a counter-example, which is 2-cube tiling.

I Lagarias & Shor (1992) have constructed counter-example to
the Keller conjecture in dimension n ≥ 10

I Mackey (2002) has constructed a counter-example in
dimension n ≥ 8.

I Dimension n = 7 remains open.



Extensibility

I If we cannot extend a N-cube packing by adding another
cube, then it is called non-extensible.

No non-extensible N-cube
packings in dimensions

1 and 2.

I Denote by fN(n) the smallest number of cubes of
non-extensible cube packing.

I fN(3) = 4 and 6 ≤ fN(4) ≤ 8.

I For any n,m ∈ N, the following inequality holds:

fN(n + m) ≤ fN(n)fN(m) .

I Conjecture: f2(5) = 12 and f2(6) = 16.



Clique formalism (case N = 2)

I Associate to every cube C its center c ∈ {0, 1, 2, 3}n

I Two cubes with centers c and c ′ are non-overlapping if and
only if there exist a coordinate i , such that |ci − c ′i | = 2.

I The graph Gn is the graph with vertex set {0, 1, 2, 3}n and
two vertices being adjacent if and only if the corresponding
cubes do not overlap. |Aut(Gn)| = n!8n.

I A clique S in a graph is a set of vertices such that any two
vertices in S are adjacent.

I Cube tilings correspond to cliques of size 2n in the graph Gn.
I We set L1 = {{v}} and iterate i from 2 to 2n:

I For every subset in Li−1, consider all vertices, which are
adjacent to all element in Li−1.

I Test if they are isomorphic to existing elements in Li and if
not, insert them into Li .

I Isomorphism tests are done using the action OnSets of GAP,
which uses backtrack and is very efficient.



Results in dimension 3 (case N = 2)
In dimension 3, there is a unique non-extensible cube packing and
there are 9 types of cube tilings.



Results in dimension 4 (case N = 2)

I In dimension 4, the number of combinatorial types of cube
packings with N cubes is as follows:

N 8 9 10 11 12 13 14 15 16

nb 38 6 24 0 71 0 0 0 744

I Furthermore all cube packings in dimension 4 can be obtained
from the regular cube tiling by following operations:



Complement of cube packings (case N = 2)

I The complement of an non-extensible cube packing CP is the
set Rn − CP.

I Theorem: There is no complement of size smaller than 4.

I Conjecture: If CP is a non-extensible cube packing with
2n − 4 tiles, then its complement has “same shape”, as the
one in dimension 3.

I Conjecture: If CP is a cube packing with 2n − 5 cubes, then it
is extensible by at least one cube.

I Conjecture: If CP is a non-extensible cube packing with
2n − 6 or 2n − 7 cubes, then its complement has “same
shape”, as the ones in dimension 4.



II. Continuous

torus cube

packings



Torus cube packings

I We consider the torus Zn/2NZn and do sequential random
packing by cubes z + [0,N]n with z ∈ Zn.

I We denote MT
N (n) the number of cubes in the obtained torus

cube packing and the average density of cube packing:

1

2n
E (MT

N (n))

I We are interested in the limit N →∞.

I The cube packings obtained in the limit will be called
continuous cube packings and we will develop a combinatorial
formalism for dealing with them.



Continuous cube packings

I We consider the torus Rn/2Zn and do sequential random
packing by cubes z + [0, 1]n with z ∈ Rn.

I Two cubes z + [0, 1]n and z ′ + [0, 1]n are non-overlapping if
and only if there is 1 ≤ i ≤ n with z ′i ≡ zi + 1 (mod 2)

I Fix a cube C = z1 + [0, 1]n.
I We want to insert a cube z + [0, 1]n, which do not overlap

with C .
I The condition zi = z1i + 1 defines an hyperplane in the torus

Rn/2Zn.
I Those n hyperplanes have the same (n − 1)-dimensional

volume.
I In doing the sequential random packing, every one of the n

hyperplanes is chosen with equal probability.



Several cubes

One has several non-overlapping cubes z1 + [0, 1]n, . . . ,
z r + [0, 1]n. We want to add one more cube z + [0, 1]n.

I For every cube z j + [0, 1]n, there should exist some 1 ≤ i ≤ n
such that zi ≡ z ji + 1 (mod 2)

I After enumerating all possible choices, one gets different
planes.

I Their dimension might differ.

I Only the one with maximal dimension have strictly positive
probability of being attained.

I All planes of the highest dimension have the same volume in
the torus Rn/2Zn and so, the same probability of being
attained.

Definition: The number of cubes of a continuous cube packing is
N(CP) and its number of parameters is m(CP).



The two dimensional case

I Put a cube z + [0, 1]2 in R2/2Z2. z = (t1, t2)

I In putting the next cube, two possibilities: (t1 + 1, t3) or
(t3, t2 + 1). They correspond geometrically to:

and they are equivalent.

I Continuing the process, up to equivalence, one obtains:



The 3-dimensional case

I At first step, one puts the vector c1 = (t1, t2, t3)

I At second step, up to equivalence, c2 = (t1 + 1, t4, t5)

I At third step, one generates six possibilities, all with equal
probabilities:

(t1 + 1, t4 + 1, t6) (t1, t2 + 1, t6) (t1, t6, t3 + 1)
(t1 + 1, t6, t5 + 1) (t6, t2 + 1, t5 + 1) (t6, t4 + 1, t3 + 1)

I Up to equivalence, those possibilities split into 2 cases:
I {(t1, t2, t3), (t1 + 1, t4, t5), (t1, t6, t3 + 1)} with probability 2

3
I {(t1, t2, t3), (t1 + 1, t4, t5), (t6, t2 + 1, t5 + 1)} with probability 1

3



I Possible extensions of {(t1, t2, t3), (t1 + 1, t4, t5),
(t1, t6, t3 + 1)} with probability 2

3 are:
I (t1 + 1, t7, t5 + 1) with 1 parameter
I (t1 + 1, t4 + 1, t7) with 1 parameter
I (t1, t2 + 1, t3) with 0 parameter
I (t1, t6 + 1, t3 + 1) with 0 parameter

I Cases with 0 parameters have probability 0, so can be
neglected.

I So, up to equivalence, one obtains
I {(t1, t2, t3), . . . , (t6, t2+1, t5+1), (t1, t6, t3+1), (t1+1, t7, t5+1)

with probability 1
3

I {(t1, t2, t3), . . . , (t6, t2+1, t5+1), (t1, t6, t3+1), (t1+1, t4+1, t7)
with probability 1

3



I Possible extensions of {(t1, t2, t3), (t1 + 1, t4, t5),
(t6, t2 + 1, t5 + 1)} with probability 1

3 are:

(t6 + 1, t4 + 1, t3 + 1) (t1 + 1, t2, t5 + 1) (t1, t2 + 1, t5)
(t6 + 1, t2 + 1, t5 + 1) (t1 + 1, t4 + 1, t5) (t1, t2, t3 + 1)

All those choices have 0 parameter.
I Those possibilities are in two groups:

I {(t1, t2, t3), . . . , (t6, t2 + 1, t5 + 1), (t6 + 1, t4 + 1, t3 + 1)} with
probability 1

18
I 5 other cases with probability 5

18 .



I At the end of the process, one obtains

7 parameters,
probability 1

3

7 parameters,
probability 1

3

6 parameters,
probability 5

18

I Also, with probability 1
18 , one obtains the non-extensible cube

packing with 4 cubes and 6 parameters.



IV. Computer

methods



Automorphy/isomorphy questions

I The program nauty of Brendan McKay allows to find the
automorphism group of a finite graph G and to test if two
graphs are isomorphic.

I Those two problems are not expected to be solvable in
polynomial time, but nauty is extremely efficient in doing
those computations.

I If one has a finite combinatorial object (edge colored graphs,
set-system, etc.), we associate to it a graph, which encodes all
its properties.

I We then use nauty to test if the combinatorial objects are
isomorphic, to compute their automorphism groups, etc.

I nauty can deal with directed graph but this is not
recommended, it can also deal with vertex colors.

I Another feature is to be able to get a canonical representative
of a graph, which is helpful in enumeration purposes.



The combinatorial object used here

I We want to define a characteristic graph G (CP) for any
continuous cube packing CP such that:

I if CP1 and CP2 are two cube packings, then CP1 and CP2 are
isomorphic if and only if G (CP1) and G (CP2) are isomorphic.

I If CP is a cube packing, then the group Aut(CP) is isomorphic
to the group Aut(G (CP)).

I If CP is a n-dimensional cube packing then we define a graph
with n × N(CP) + 2×m(CP) vertices:

I Every cube of center v i = (v i
1, . . . , v

i
n) correspond to n vertices

v i
j .

I Every parameter ti correspond to two vertices ti , ti + 1.

and the following edges:
I Every v i

j is adjacent to all v i ′

j and to all v i
j′

I The vertices ti and ti + 1 are adjacent.
I If v i

j is ti , then we make it adjacent to the vertex ti .



Example of the non-extensible cube packing in dimension 3

I The non-extensible cube packing of dimension 3 with 4 cubes:

c1 = ( t1, t2, t3 )
c2 = ( t1 + 1, t4, t5 )
c3 = ( t6, t2 + 1, t5 + 1 )
c4 = ( t6 + 1, t4 + 1, t3 + 1 )

I The corresponding graph is

c1 c2 c3 c4

I The symmetric group of the structure is Sym(4), the group on
the cubes is Sym(4), the group on the coordinates is Sym(3)
and the group on the parameter is Sym(4) acting on 6 points.



How to enumerate continuous cube packings

I The basic technique is to enumerate all continuous cube
packings with n cubes and then to add in all possible ways
another cube.

I We use nauty to resolve isomorphy questions between the
generated cube packings.

I In dimension 4 this technique works in 4 days.

I Suppose that we have a hole in a cube packing and that there
is only one way to put a cube and that this choice will not
overlap with other choices:

Enumeration time reduces to 5 minutes.



Enumeration results

N n 1 2 3 4 5

∞ Nr cube tilings 1 1 3 32 ?

Nr non-extensible 0 0 1 31 ?
cube packings

f>0,∞(n) 2 4 4 6 6

f∞(n) 2 4 4 6 6

E (MT
∞(n)) 1 1 35

36
15258791833
16102195200 ?

2 Nr cube tilings 1 2 9 744 ?

Nr cube packings 0 0 1 139 ?

f2(n) 2 4 4 8 10 ≤ f2(5) ≤ 12

I f∞(n) is the minimum number of cubes of non-extensible
n-dimensional continuous cube packings.

I f>0,∞(n) is the minimum number of cubes of non-extensible
n-dimensional continuous cube packings, obtained with
strictly positive probability.



Test positive probability

I Suppose that one has a continuous cube packing CP and we
want to check if it can be obtained with strictly positive
probability.

I The cubes are of the form z1 + [0, 1]n, . . . , zM + [0, 1]n.

I To be obtainable with strictly positive probability, means there
exist a permutation σ ∈ Sym(M) such that we can obtain

zσ(1) + [0, 1]n, zσ(2) + [0, 1]n, . . . , zσ(M) + [0, 1]n

in this order.

I The method of obtention is to consider all possibilities
sequentially and backtrack when

zσ(1) + [0, 1]n, . . . , zσ(M
′) + [0, 1]n with M ′ ≤ M

is obtained with zero probability.



III. Lamination

and

packing density



Product construction

If CP, CP ′ are n-, n′-dimensional continuous cube packings, we
want to construct a product CP × CP ′.

I If the cubes of CP, CP ′ are (z i + [0, 1]n)1≤i≤N ,

(z ′j + [0, 1]n
′
)1≤j≤N′ then:

I We form N independent copies of CP ′: (z ′
i,j

+ [0, 1]n
′
)1≤j≤N′

I We form the cube packing CP n CP ′ with cubes
(z i , z ′

i,j
) + [0, 1]n+n′ for 1 ≤ i ≤ N and 1 ≤ j ≤ N ′.

I This product CP n CP ′ has the following properties:
I m(CP n CP ′) = m(CP) + N(CP)m(CP ′)
I If CP and CP ′ are non-extensible then CP n CP ′ is

non-extensible.
I If CP and CP ′ are obtained with strictly positive probability

and CP is non-extensible then CP n CP ′ is obtained with
strictly positive probability.



Packing density

I Denote by αn(∞) the packing density for continuous cube
packing and αn(N) the packing density in Zn/2NZn.

I One has

α1(∞) = α2(∞) = 1, α3(∞) = 35
36 = 0.972.

and α4(∞) = 15258791833
16102195200 = 0.947...

I Theorem: For any n ≥ 3, one has α∞(n) < 1.
Proof: Take the 3-dimensional continuous non-extensible cube
packing CP1 with 4 cubes (with > 0). Take a continuous
non-extensible cube packing CP2 of dimension n − 3 (with
> 0). Then the product CP1 n CP2 is non-extensible and
obtained with strictly positive probability, which proves
αn(∞) < 1.

I Theorem: One has the limit

lim
N→∞

αN(n) = α∞(n)



Non-extensible cube packings

I Theorem: If a n-dimensional continuous cube packing has
2n − δ cubes with δ ≤ 3 then it is extensible.

I Take CP such a continuous cube packing and assign a value
αi to the parameters ti such that if i 6= j then αi 6= αj , αj + 2
(mod 2).

I Lemma: Given
I a cube packing with 2n − δ cubes of coordinates x i ,

1 ≤ i ≤ 2n − δ,
I a coordinate k and a value α ∈ R

The induced cube packing is the cube packing of Rn−1

obtained by taking all vectors x i with x ik ∈ [α, α + 1[ and
removing the k-th coordinate.
Such cube packings have at least 2n−1 − δ tiles.

I The proof is then by induction.



II. Number

of
parameters



The numbers Nk(CP)

I Let CP be a non-extensible cube packing obtained with
strictly positive probability.

I We denote by Nk(CP) the number of cubes which occurs with
k new parameters.

I We have Nn(CP) = 1 and Nn−1(CP) = 1.
I Nk(CP) ≥ 1

I The total number of cubes is N(CP) =
∑n

k=0Nk(CP);
N(CP) ≥ n + 1.

I The total number of parameters is m(CP) =
∑n

k=1 kNk(CP);

m(CP) ≥ n(n+1)
2 .

I Conjecture: If CP is a non-extensible continuous cube packing
obtained with strictly positive probability then:

I For all k ≥ 1 we have
∑k

l=0 Nn−l ≤ 2k

I We have m(CP) ≤ 2n − 1



Minimal number of cubes

I Theorem: If CP is a non-extensible cube packing with n + 1
cubes then:

I Its number of parameter is n(n+1)
2

I In every coordinate a parameter appear exactly one time as t
and exactly one time as t + 1

I Consequences:
I If n is even there is no such cube packing
I If n is odd such cube packings correspond to 1-factorization of

the graph Kn+1, i.e. a set of n perfect matching in Kn+1,
which partitions the edge set.

c1=( t1, t2, t3 )
c2=( t1 + 1, t4, t5 )
c3=( t6, t2 + 1, t5 + 1 )
c4=( t6 + 1, t4 + 1, t3 + 1 )
The 3-dim. non-extensible cube

packing

1

3

4

2

The 1-factorization of K4

bonjour



One-factorizations of Kn+1

I The graph K6 has exactly one 1-factorization with symmetry
group Sym(5), i.e. the group Sym(5) acts on 6 elements.

graph Nr authors

K6 1
K8 6 1906, Dickson, Safford
K10 396 1973, Gelling
K12 526915620 1993, Dinitz, Garnick, McKay

I Every graph K2p has at least one 1-factorization.

I So, for n odd, there is a non-extensible cube packing with
n + 1 cubes.



Minimal number of cubes in even dimension

I If n is even, then f∞(n) ≥ n + 1.

I For n = 4, this minimum is attained by the following structure:

H =



t1 t2 t3 t4
t5 t6 t7 t4 + 1

t1 + 1 t8 t7 + 1 t9
t5 + 1 t8 + 1 t3 + 1 t10
t1 + 1 t6 + 1 t7 t10 + 1
t5 t2 + 1 t7 + 1 t9 + 1


with probability 1

480 . |Aut(H)| = 4 and m(H) = 4(4+1)
2 = 10

I Conjecture: If n is even then f∞(n) = n + 2 and one of the

structures realizing it has n(n+1)
2 parameters.



Minimal 6-dimensional non-extensible cube packings

I Instead of adding rows, we add columns. We first determine
columns types and then add columns in all possible ways and
reduce by isomorphism.

I We find 9 non-extensible continuous cube packings with at
least 6(6+1)

2 = 21 parameters, all with zero probability. So,
8 = f∞(6) < f>0,∞(6).

I One of them has 21 parameters and |Aut| = 4:
t1 t5 t9 t14 + 1 t17 + 1 t19

t1 + 1 t6 t10 t13 + 1 t16 + 1 t19
t2 t5 + 1 t11 t13 t18 t20

t2 + 1 t7 t9 + 1 t15 t16 t21
t3 t6 + 1 t12 t14 t18 + 1 t21 + 1

t3 + 1 t8 t10 + 1 t15 + 1 t17 t20 + 1
t4 t7 + 1 t12 + 1 t13 + 1 t17 + 1 t19 + 1

t4 + 1 t8 + 1 t11 + 1 t14 + 1 t16 + 1 t19 + 1


Column types:

(1, 1)4 (3 times), (1, 1), (2, 1)2 (2 times), (1, 1)2, (2, 2) (1 time).



Full cube tilings with minimal number of parameters

I Question For which n, there is a non-extensible cube tiling
with n(n+1)

2 parameters?

I There is existence and unicity for n ≤ 4.

I We concentrate on the existence question.

I For n = 5, we obtain by random computer search one such
structure.

I The first 5 cubes are organized in the following way.

H5 =


t ′1 t3 + 1 t6 + 1 t8 t9
t1 t ′2 t5 + 1 t8 + 1 t10
t2 t3 t ′3 t7 + 1 t10 + 1

t2 + 1 t4 t5 t ′4 t9 + 1
t1 + 1 t4 + 1 t6 t7 t ′5


This block structure can be generalized immediately for n
odd. Its symmetry group is the dihedral group D2n.



Search of structures

I The next 5 cubes have a specific form:

H5 + I5 =


t ′1 + 1 t3 + 1 t6 + 1 t8 t9
t1 t ′2 + 1 t5 + 1 t8 + 1 t10
t2 t3 t ′3 + 1 t7 + 1 t10 + 1

t2 + 1 t4 t5 t ′4 + 1 t9 + 1
t1 + 1 t4 + 1 t6 t7 t ′5 + 1


I Then we have 2 cubes of coordinates(

t1 t3 t5 t7 t9
t1 + 1 t3 + 1 t5 + 1 t7 + 1 t9 + 1

)
I Then we have 2 orbits of 10 cubes with a more complicate

structure.



Permutation formalism

I Consider the block structure
t ′1 t3 + 1 t6 + 1 t8 t9
t1 t ′2 t5 + 1 t8 + 1 t10
t2 t3 t ′3 t7 + 1 t10 + 1

t2 + 1 t4 t5 t ′4 t9 + 1
t1 + 1 t4 + 1 t6 t7 t ′5


of 5 cubes Ci , 1 ≤ i ≤ 5.

I If C is non-overlapping cube, then for every i it should have a
coordinate σ(i), different from 1 with the cube Ci .

I A coordinate can differ from 1 with only one cube. This
means that no new parameter can show up and that new
cubes are encoded by a permutation σ of Sym(5).



Equivariant computer search

I We consider the n + n + 2 cubes obtained in case n = 5. We
impose the symmetry D2n and search for all possibilities of
extension.

I For n = 7 and n = 9 we found exactly one such continuous
cube tiling.

I For n = 11, the number of possibilities is much larger. We
needed to reprogram in C++ and doing a computer search we
found no such cube tiling.



II. Further

research



Parallelotope extension

I A parallelotope is a polytope P, which tiles the space by
translation.

Dimension Nr. types Authors

2 2 (hexagon, parallelogram) Dirichlet (1860)
3 5 Fedorov (1885)
4 52 Delaunay, Shtogrin (1973)
5 179377 Engel (2000)

The set of translation vector form a lattice

I If P is a parallelotope in Rn of lattice L, then we consider
random packing of P + 2L in Rn:
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I Programs at http://www.liga.ens.fr/~dutour/
Documents/PackingProbability.tar.gz

http://www.liga.ens.fr/~dutour/Documents/PackingProbability.tar.gz
http://www.liga.ens.fr/~dutour/Documents/PackingProbability.tar.gz

