The homology of $PSL_4(\mathbb{Z})$

Mathieu Dutour Sikirić

Institut Rudjer Bošković, Croatia

Achill Schürmann

TU Delft, Netherland

Ellis Graham

NUI Galway

Simon King NUI Galway

April 27, 2012

I. G-module and group resolutions

G-modules

- We use the GAP notation for group action, on the right.
- A *G*-module *M* is a \mathbb{Z} -module with an action

$$egin{array}{ccc} M imes G &
ightarrow & M \ (m,g) & \mapsto & m.g \end{array}$$

• The group ring $\mathbb{Z}G$ formed by all finite sums

$$\sum_{g \in G} \alpha_g g$$
 with $\alpha_g \in \mathbb{Z}$

is a G-module.

► If the orbit of a point v under a group G is {v₁,..., v_m}, then the set of sums

$$\sum_{i=1}^m \alpha_i v_i \text{ with } \alpha_i \in \mathbb{Z}$$

is a *G*-module.

 We can define the notion of generating set, free set, basis of a G-module. But not every finitely generated G-module admits a basis.

Resolutions

Take G a group.

A resolution of a group G is a sequence of G-modules (M_i)_{i≥0}:

$$\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \dots$$

together with a collection of *G*-linear operators $d_i: M_i \to M_{i-1}$ such that Ker $d_i = \text{Im } d_{i-1}$

- ▶ What is useful to homology computations are free resolutions with all M_i being free G-modules.
- ► The homology is then obtained by killing off the G-action of a free resolution, i.e replacing the G-modules (ZG)^k by Z^k, replacing accordingly the d_i by d̃_i and getting

$$H_i(G) = \operatorname{Ker} \tilde{d}_i / \operatorname{Im} \tilde{d}_{i-1}$$

Examples of resolutions

- If C_m =< x > is a cyclic group then a resolution (R_n)_{n≥0} with R_n = ℤC_m is obtained by taking the differential d_{2n+1} = 1 − x and d_{2n} = 1 + x + · · · + x^{m-1}
- ► For the dihedral groups D_{2m} of order 2m with m odd there exist periodic resolutions.
- If a group G admits an action on a m-dimensional polytope P which is fixed point free then it admits a periodic free resolution of length m.

The technique is to glue together the cell complexes, which are free:

$$\mathbb{Z} \leftarrow C_0(P) \leftarrow C_1(P) \leftarrow \cdots \leftarrow C_{m-1}(P) \leftarrow C_0(P) \leftarrow \dots$$

Products

If G and G' are two groups of resolution R and R' then the tensor product S = R ⊗ R' is a resolution for G × G'. That is

$$S_n = \oplus_{i+j=n} R_i \otimes R'_j$$

with the differential at $R_i \otimes R'_i$

$$D_{ij}=d_i+(-1)^id_j^i$$

If N is a normal subgroup of G and we have a free resolution R for N and a free resolution R' for the quotient G/N then it is possible to put together the twisted tensor product S = R ⊗ R' and get a resolution for G. That is

$$S_n = \oplus_{i+j=n} R_i \otimes R'_j$$

with the differential at $R_i \otimes R'_i$

$$D_{ij} = d_0 + d_1 + \cdots + d_i$$

with $d_k: R_i \otimes R'_j \to R_{i-k} \otimes R'_{j+k-1}$

The *p*-rank

- A p-group G is called elementary Abelian if it is isomorphic to (ℤ_p)ⁿ with n being called the rank of G.
- ▶ If G is a finite group then the *p*-rank of G is the largest rank of its elementary Abelian *p*-subgroups.
- ► For a finite group G of maximum p-rank m the dimension of its free resolutions grows at least like n^{m-1}.
- For products C_{m1} × ... C_{mp} of cyclic groups the dimensions of resolutions is at least (^{n+p}_p).

• One example:

```
gap> GRP:=AlternatingGroup(4);;
gap> R:=ResolutionFiniteGroup(GRP, 20);;
gap> List([1..20], R!.dimension);
[ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 12, 12, 11, 11,
12, 12, 12, 13 ]
```

II. The CTC Wall lemma

Using non-free resolutions

Suppose we have a G-resolution,

$$\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \dots$$

which is not free

► Then we find free resolutions for every module M_i and sum it to get a resolution of the form

► The differentials involved are d_k : R_{i,j} → R_{i-k,j+k-1} and the summands are

$$S_n = \bigoplus_{i+j=n} R_{i,j}$$

CTC Wall lemma

- We denote d_1 the operator of the $R_{i,0} \rightarrow R_{i-1,0}$.
- ► We can find free resolutions of the *R*_{*i*,0} *G*-modules by *G*-modules

$$R_{i,0} \leftarrow R_{i,1} \leftarrow R_{i,2} \leftarrow \ldots$$

with the boundary operators being named d_0 .

▶ Then we search for operators $d_k : R_{i,j} \rightarrow R_{i-k,j-1+k}$ such that

$$D = \sum_{i=0}^{\infty} d_i$$

realize a free resolutions of *G*-modules $\sum_{i+j=k} R_{i,j}$.

It suffices to solve the equations

$$\sum_{h=0}^k d_h d_{k-h} = 0$$

CTC Wall lemma

One way is to have the expression

$$d_k = -h_0(\sum_{h=1}^k d_h d_{k-h})$$

with h_0 a contracting homotopy for the d_0 operator, i.e. an operator $h_0 : R_{i,j} \to R_{i,j+1}$ such that $d_0(h_0(x)) = x$ if x belongs to the image of d_0 .

This gives a recursive method for computing first d₁ from the relations

$$d_1d_0 + d_0d_1 = 0$$

- ▶ Then *d*₂, *d*₃, ...
- CTC Wall also gives a contracting homotopy for the obtained resolution.

CTC Wall lemma for polytopes: right cosets

- Take $R_{k,0}$, which is sum of orbits O_i of faces of dimension k.
- We compute resolutions $\tilde{R}_{k,i,l}$ of Stab f_l with f_l representative of O_l .

$$R_{k,i} = \oplus_{l=1}^r \tilde{R}_{k,i,l}$$

- The matrix of the operator $d_0 : R_{k,i} \to R_{k,i-1}$ is then a block matrix of the $\tilde{d}_0 : \tilde{R}_{k,i,l} \to \tilde{R}_{k,i-1,l}$
- ▶ For the contracting homotopy of a vector $v \in R_{k,i}$:
 - Decompose v into components $v_l \in \tilde{R}_{k,i,l} \otimes \mathbb{Z}G$
 - Decompose v_l into right cosets

$$v_l = \sum_s v_{s,l} g_s$$

with $g_s \in G$ distinct right Stab f_l -cosets and $v_{s,l} \in \tilde{R}_{k,i,l}$.

• Apply the contracting homotopy h_0 of the resolution $\tilde{R}_{k,i,l}$ to $v_{s,l}$ and sum

$$h_0(v_l) = \sum_s h_0(v_{s,l})g_s$$

CTC Wall lemma for polytopes: twisting

- If F is a face of a polyhedral tesselation, H = Stab(F) and f ∈ Stab(F) then we need to consider whether or not f inverts the orientation of F.
- This define a subgroup Rot(F) of Stab(F) formed by all elements stabilizing the face F and its orientation.
- We define a twisting accordingly:

$$\sigma(f) = \begin{cases} 1 & \text{if } f \in \operatorname{Rot}(F) \\ -1 & \text{otherwise} \end{cases}$$

- The twisting σ acts on ZG and it can twist accordingly a given resolution of Stab(F).
- For the contracting homotopy, the solution to the twisting problem is accordingly:

$$\sigma(d_i)y = x \Leftrightarrow d_i\sigma(y) = \sigma(x)$$

 Twisting does not change the dimension of the resolutions, but it does change their homology.

III. The $PSL_4(\mathbb{Z})$ case

Resolutions for A_5 , A_4 and S_4

- ► The symmetry group of the Icosahedron is the group W(H₃) = Z₂ × A₅. The subgroup A₅ acts on it with stabilizers
 - C₅ for vertices (1 orbit) nontwisted
 - ► C₂ for edges (1 orbit) twisted
 - ▶ C₃ for faces (1 orbit) nontwisted

Thus by applying the CTC Wall lemma we get a resolution $(R_n)_{n\geq 0}$ with dim $R_n = n + 1$. This is about the best possible since the 2-rank is 2.

- ► Similarly the symmetry group of the Tetrahedron is S₄ and A₄ acts on the Tetrahedron with stabilizers C₃, C₂ and C₃.
- The symmetry group of the cube is W(B₃) of size 48 and it contains two conjugacy classes of subgroups isomorphic to S₄, one comes from the tetrahedron and the other has stabilizers C₄, C₂ and C₃.

Perfect forms in dimension 4

- Tessel1: Initially there are 2 orbits of perfect forms so full dimensional cells are:
 - ► O₁: full dimensional cell with 64 facets and stabilizer of size 288.
 - O_2 : full dimensional cell with 10 facets and stabilizer of size 60.
- ► Tessel2: Now split both *O*₁ by adding a central ray. We then get as orbits of full dimensional cells:
 - ▶ O_{1,1}: full dimensional cell with 10 facets and stabilizer of size 6.
 - ► O_{1,2}: full dimensional cell with 10 facets and stabilizer of size 2.
 - ▶ O_{2,1}: full dimensional cell with 10 facets and stabilizer of size 6.
- ► Tessel3: Every cell *O*_{1,1} is adjacent to a unique cell *O*_{2,1}. Join them:
 - O'_1 : full dimensional cell with 18 facets and stabilizer of size 6.
 - O'_2 : full dimensional cell with 10 facets and stabilizer of size 2.

The stabilizers in Tessel1

For the first tesselation Tessel1, we have the following orbits of faces and stabilizers:

0
$$A_5$$
, $G_{288} = (A_4 \times A_4) : C_2$.
1 S_3 , $S_3 \times S_3$.
2 $C_2 \times C_2$, $C_2 \times C_2$.
3 $C_2 \times C_2$, $C_2 \times C_2$, S_4 , S_4 .
4 S_3 , D_8 , S_4 , $C_2 \times S_3 \times S_3$.
5 D_{24} , S_4 , A_5 .
6 $G_{96} = ((C_2 \times C_2 \times C_2 \times C_2) : C_3) : C_2$.

Since we have the quotients

$$G_{288}/A_4\simeq S_4$$
 and $G_{96}/C_2 imes C_2\simeq S_4$

by combining everything we can find resolutions of asymptotically optimal dimensions for all stabilizers.

For Tessel3

- $0 S_3, S_3 \times S_3.$
- 1 $C_2 \times C_2$, C_2 , C_2 , C_2 , C_2 .
- 2 C_2 , C_2 , C_2 , $C_2 \times C_2$, S_3 , C_3 , $C_2 \times C_2$, $C_2 \times C_2$, C_2 , C_2 , C_2 , C_2 , C_3 , C_3 , C_4 .
- 3 S_3 , C_2 , C_2 , 1, $C_2 \times C_2$, 1, $C_2 \times C_2$, $C_2 \times C_2$, S_4 , A_4 , S_4 , S_4 , 1, C_2 , 1, D_{12} , S_3 , D_{12} , S_4 .
- 4 1, S_4 , D_{10} , 1, C_2 , S_3 , C_2 , D_{10} , C_2 , D_8 , C_2 , $C_2 \times S_3 \times S_3$, C_4 , S_3 , C_2 , C_2 , C_2 , C_2 , C_2 , $C_2 \times C_2$.
- 5 C_2 , $C_2 \times C_2$, C_2 , 1, S_4 , A_5 , 1, S_3 , D_{24} , A_4 , C_2 , D_8 , C_3 , D_8 , D_8 , C_2 .
- 6 C_2 , C_2 , $((C_2 \times C_2 \times C_2 \times C_2) : C_3) : C_2$, C_2 , C_3 , S_3 , C_2 , S_3 , S_4 , $(C_3 \times C_3) : C_2$.
- 7 C_2 , $C_2 \times C_2$, S_3 , $C_2 \times D_8$.
- 8 S₃, S₄.
- 9 A_5 , $(A_4 \times A_4)$: C_2 .

Low dimensional results

- By using the tesselation Tessel3 we can compute the following homology groups:
 - ▶ $H_0(\mathsf{PSL}_4(\mathbb{Z}),\mathbb{Z}) = \mathbb{Z}$
 - $H_1(\mathsf{PSL}_4(\mathbb{Z}),\mathbb{Z})=0$
 - $H_2(\mathsf{PSL}_4(\mathbb{Z}),\mathbb{Z}) = 3\mathbb{Z}_2$
 - $H_3(\mathsf{PSL}_4(\mathbb{Z}),\mathbb{Z}) = 2\mathbb{Z}_4 + \mathbb{Z} + 2\mathbb{Z}_3 + \mathbb{Z}_5$
 - $H_4(\mathsf{PSL}_4(\mathbb{Z}),\mathbb{Z}) = 4\mathbb{Z}_2 + \mathbb{Z}_5$
 - $H_5(\mathsf{PSL}_4(\mathbb{Z}),\mathbb{Z}) = 13\mathbb{Z}_2$
- Further computations are difficult and constrained by
 - Choosing tesselations influence the occurring stabilizers.
 - Dimensions is one factor, another is the length of the boundaries.
 - Memory is the main problem of such computations.

Cohomology rings

- If G is a finite group then H^{*}(G, Z) is a ring and also for any prime p H^{*}(G, Z_p).
- This ring can be computed very efficiently by first computing the cohomology of the sylow *p*-subgroup and then by computing the stable classes.
- But this is valid only for nontwisted cohomology. If u and u' are cohomology classes in Hⁿ(G, Z_σ) and H^{n'}(G, Z_{σ'}) then their cup products u ∪ u' is a cohomology class in H^{n+n'}(G, Z_{σσ'}).
- So, one possible strategy if f ∈ H^{*}(G, Z_σ) is to use the following identities:

 $f \cup H^*(G,\mathbb{Z}) \subset H^*(G,\mathbb{Z}_\sigma)$ and $f \cup H^*(G,\mathbb{Z}_\sigma) \subset H^*(G,\mathbb{Z})$

The equivariant spectral sequence

- It is also named the Leray spectral sequence, Normalizer spectral sequence, etc.
- Denote by Repr_p(X) the list of representative of orbits of p dimensional faces of the polyhedral complex X.
- ▶ In the *E*¹ page of the spectral sequence we have

$$E_{pq}^1 = \oplus_{F \in Repr_p(X)} H_q(\mathsf{Stab}(F), \mathbb{Z}_\sigma)$$

The differential d_i that allows to define the higher spectral sequences are determined by the CTC Wall lemma.

5-part of the homology I

We have

$$H_n(\mathsf{PSL}_4(\mathbb{Z}),\mathbb{Z})_{(5)} = \begin{cases} \mathbb{Z}_5 & \text{if } n = 3 + 4k \\ \mathbb{Z}_5 & \text{if } n = 4 + 4k \\ 0 & \text{otherwise} \end{cases}$$

- ▶ First of all A₅ is a subgroup of PSL₄(Z) and it appears in the top dimensional cells.
- Thus we have mapping in homology H_{*}(A₅, Z) → H_{*}(PSL₄(Z), Z) and another mapping in cohomology H^{*}(PSL₄(Z), Z) → H^{*}(A₅, Z).
- Since A₅ is directly embedded in the resolution, we can readily check that the mapping H_n(A₅, ℤ) → H_n(PSL₄(ℤ), ℤ) are injective if n ≤ 3.
- So we get that for all k, H^{4k}(PSL₄(ℤ), ℤ)₍₅₎ contains a non-zero class.

5-part of the homology II

- ► For the tesselation Tessel1 the only stabilizer groups with order divisible by 5 are A₅ and they have no twisting.
- ► Thus we get the following picture for the *E*¹ page:

0	\mathbb{Z}_5	0	0	0	0	\mathbb{Z}_5	7
0	0	0	0	0	0	0	6
0	0	0	0	0	0	0	5
0	0	0	0	0	0	0	4
0	\mathbb{Z}_5	0	0	0	0	\mathbb{Z}_5	3
0	0	0	0	0	0	0	2
0	0	0	0	0	0	0	1
\mathbb{Z}	\mathbb{Z}^3	\mathbb{Z}^4	\mathbb{Z}^4	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}^2	0
6	5	4	3	2	1	0	

- ► Either d₅ is non-zero and it kills two Z₅ or it is zero and they stay.
- ▶ But we know that two H⁸(PSL₄, Z)₍₅₎ is nontrivial thus d₅ has to be zero which proves the result.

Towards the 3-part

For the 3-part we have the relations

$$\begin{array}{ll} H_1(G_{288},\mathbb{Z})_{(3)}=0 & H_6(G_{288},\mathbb{Z})_{(3)}=3\mathbb{Z}_3 \\ H_2(G_{288},\mathbb{Z})_{(3)}=\mathbb{Z}_3 & H_7(G_{288},\mathbb{Z})_{(3)}=5\mathbb{Z}_3 \\ H_3(G_{288},\mathbb{Z})_{(3)}=3\mathbb{Z}_3 & H_8(G_{288},\mathbb{Z})_{(3)}=0 \\ H_4(G_{288},\mathbb{Z})_{(3)}=0 & H_9(G_{288},\mathbb{Z})_{(3)}=0 \\ H_5(G_{288},\mathbb{Z})_{(3)}=0 & H_{10}(G_{288},\mathbb{Z})_{(3)}=5\mathbb{Z}_3 \end{array}$$

So, by doing the same computation as for A_5 we can prove that the mapping $H_n(G_{288}, \mathbb{Z})_{(3)} \to H_n(\mathsf{PSL}_4(\mathbb{Z}), \mathbb{Z})_{(3)}$ is a surjection for $n \leq 5$.