The homology of $PSL_4(\mathbb{Z})$

Mathieu Dutour Sikirić

Institut Rudjer Bošković, Croatia

Achill Schürmann

TU Delft, Netherland

Ellis Graham

NUI Galway

Simon King NUI Galway

April 27, 2012

I. G-module and group resolutions

G-modules

- \triangleright We use the GAP notation for group action, on the right.
- \triangleright A G-module M is a $\mathbb Z$ -module with an action

$$
\begin{array}{rcl} M\times G & \to & M \\ (m,g) & \mapsto & m.g \end{array}
$$

 \triangleright The group ring $\mathbb{Z}G$ formed by all finite sums

$$
\sum_{g \in G} \alpha_g g \text{ with } \alpha_g \in \mathbb{Z}
$$

is a G-module.

If the orbit of a point v under a group G is $\{v_1, \ldots, v_m\}$, then the set of sums

$$
\sum_{i=1}^{m} \alpha_i v_i \text{ with } \alpha_i \in \mathbb{Z}
$$

is a G-module.

 \triangleright We can define the notion of generating set, free set, basis of a G-module. But not every finitely generated G-module admits a basis.

Resolutions

Take G a group.

 \triangleright A resolution of a group G is a sequence of G-modules $(M_i)_{i>0}$:

$$
\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots
$$

together with a collection of G-linear operators $d_i: M_i \to M_{i-1}$ such that Ker $d_i = \text{Im } d_{i-1}$

- \triangleright What is useful to homology computations are free resolutions with all M_i being free G-modules.
- \triangleright The homology is then obtained by killing off the G-action of a free resolution, i.e replacing the G-modules $(\mathbb{Z} G)^k$ by \mathbb{Z}^k , replacing accordingly the d_i by \tilde{d}_i and getting

$$
H_i(G) = \text{Ker }\tilde{d}_i/\text{Im }\tilde{d}_{i-1}
$$

Examples of resolutions

- If $C_m = \langle x \rangle$ is a cyclic group then a resolution $(R_n)_{n\geq 0}$ with $R_n = \mathbb{Z}C_m$ is obtained by taking the differential $d_{2n+1} = 1 - x$ and $d_{2n} = 1 + x + \cdots + x^{m-1}$
- \blacktriangleright For the dihedral groups D_{2m} of order 2m with m odd there exist periodic resolutions.
- If a group G admits an action on a m-dimensional polytope P which is fixed point free then it admits a periodic free resolution of length m.

The technique is to glue together the cell complexes, which are free:

$$
\mathbb{Z} \leftarrow C_0(P) \leftarrow C_1(P) \leftarrow \cdots \leftarrow C_{m-1}(P) \leftarrow C_0(P) \leftarrow \ldots
$$

Products

If G and G' are two groups of resolution R and R' then the tensor product $S = R \otimes R'$ is a resolution for $G \times G'.$ That is

$$
S_n=\oplus_{i+j=n}R_i\otimes R_j'
$$

with the differential at $R_i\otimes R'_j$

$$
D_{ij}=d_i+(-1)^i d_j'
$$

If N is a normal subgroup of G and we have a free resolution R for N and a free resolution R' for the quotient G/N then it is possible to put together the twisted tensor product $S = R \tilde{\otimes} R'$ and get a resolution for G. That is

$$
S_n=\oplus_{i+j=n}R_i\otimes R_j'
$$

with the differential at $R_i\otimes R'_j$

$$
D_{ij}=d_0+d_1+\cdots+d_i
$$

with $d_k: R_i\otimes R_j'\rightarrow R_{i-k}\otimes R_{j+k-1}'$

The p-rank

- \triangleright A p-group G is called elementary Abelian if it is isomorphic to $(\mathbb{Z}_p)^n$ with *n* being called the rank of G.
- If G is a finite group then the p-rank of G is the largest rank of its elementary Abelian p -subgroups.
- \triangleright For a finite group G of maximum p-rank m the dimension of its free resolutions grows at least like n^{m-1} .
- For products $C_{m_1} \times \ldots C_{m_n}$ of cyclic groups the dimensions of resolutions is at least $\binom{n+p}{p}$ p^{+p} .

 \triangleright One example:

```
gap> GRP:=AlternatingGroup(4);;
gap> R:=ResolutionFiniteGroup(GRP, 20);;
gap> List([1..20], R!.dimension);
[ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 12, 12, 11, 11,
12, 12, 12, 13 ]
```
II. The CTC Wall lemma

Using non-free resolutions

 \triangleright Suppose we have a G-resolution,

$$
\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots
$$

which is not free

 \triangleright Then we find free resolutions for every module M_i and sum it to get a resolution of the form

$$
R_{0,2} \leftarrow R_{1,2} \leftarrow R_{2,2} \n\downarrow \qquad \downarrow \qquad \downarrow R_{0,1} \leftarrow R_{1,1} \leftarrow R_{2,1} \n\downarrow \qquad \downarrow R_{0,0} \leftarrow R_{1,0} \leftarrow R_{2,0}
$$

► The differentials involved are $d_k: R_{i,j} \rightarrow R_{i-k,j+k-1}$ and the summands are

$$
S_n=\oplus_{i+j=n}R_{i,j}
$$

CTC Wall lemma

- ► We denote d_1 the operator of the $R_{i,0} \rightarrow R_{i-1,0}$.
- \blacktriangleright We can find free resolutions of the $R_{i,0}$ G-modules by G-modules

$$
R_{i,0} \leftarrow R_{i,1} \leftarrow R_{i,2} \leftarrow \ldots
$$

with the boundary operators being named d_0 .

Figure Then we search for operators $d_k: R_{i,j} \to R_{i-k,j-1+k}$ such that

$$
D=\sum_{i=0}^{\infty}d_i
$$

realize a free resolutions of G-modules $\sum_{i+j=k} R_{i,j}.$

 \blacktriangleright It suffices to solve the equations

$$
\sum_{h=0}^k d_hd_{k-h}=0
$$

CTC Wall lemma

 \triangleright One way is to have the expression

$$
d_k=-h_0(\sum_{h=1}^k d_hd_{k-h})
$$

with h_0 a contracting homotopy for the d_0 operator, i.e. an operator $h_0 : R_{i,i} \to R_{i,i+1}$ such that $d_0(h_0(x)) = x$ if x belongs to the image of d_0 .

In This gives a recursive method for computing first d_1 from the relations

$$
d_1d_0+d_0d_1=0\\
$$

- \blacktriangleright Then d_2, d_3, \ldots
- \triangleright CTC Wall also gives a contracting homotopy for the obtained resolution.

CTC Wall lemma for polytopes: right cosets

- \blacktriangleright Take $R_{k,0}$, which is sum of orbits O_i of faces of dimension k.
- \blacktriangleright We compute resolutions $\tilde{R}_{k,i,l}$ of Stab f_l with f_l representative of O_l .

$$
R_{k,i}=\oplus_{l=1}^r\tilde{R}_{k,i,l}
$$

- **►** The matrix of the operator d_0 : $R_{k,i} \rightarrow R_{k,i-1}$ is then a block matrix of the $\widetilde{d}_0: \tilde{R}_{k,i,l} \rightarrow \tilde{R}_{k,i-1,l}$
- ► For the contracting homotopy of a vector $v \in R_{k,i}$:
	- ► Decompose v into components $v_l \in \tilde{R}_{k,i,l}\otimes {\mathbb Z} G$
	- \blacktriangleright Decompose v_l into right cosets

$$
v_I = \sum_s v_{s,I} g_s
$$

with $g_s \in \mathit{G}$ distinct right Stab f_l -cosets and $v_{s,l} \in \tilde{R}_{k,i,l}.$

Apply the contracting homotopy h_0 of the resolution $\tilde{R}_{k,i,l}$ to $v_{s,j}$ and sum

$$
h_0(v_1)=\sum_s h_0(v_{s,1})g_s
$$

CTC Wall lemma for polytopes: twisting

- If F is a face of a polyhedral tesselation, $H = \text{Stab}(F)$ and $f \in$ Stab(F) then we need to consider whether or not f inverts the orientation of F.
- \blacktriangleright This define a subgroup Rot(F) of Stab(F) formed by all elements stabilizing the face F and its orientation.
- \triangleright We define a twisting accordingly:

$$
\sigma(f) = \left\{ \begin{array}{cl} 1 & \text{if } f \in \text{Rot}(F) \\ -1 & \text{otherwise} \end{array} \right.
$$

- \blacktriangleright The twisting σ acts on $\mathbb{Z}G$ and it can twist accordingly a given resolution of $Stab(F)$.
- \triangleright For the contracting homotopy, the solution to the twisting problem is accordingly:

$$
\sigma(d_i)y=x\Leftrightarrow d_i\sigma(y)=\sigma(x)
$$

 \triangleright Twisting does not change the dimension of the resolutions, but it does change their homology.

III. The $PSL_4(\mathbb{Z})$ case

Resolutions for A_5 , A_4 and S_4

- \triangleright The symmetry group of the Icosahedron is the group $W(H_3) = \mathbb{Z}_2 \times A_5$. The subgroup A_5 acts on it with stabilizers
	- \triangleright C₅ for vertices (1 orbit) nontwisted
	- \triangleright C₂ for edges (1 orbit) twisted
	- \triangleright C_3 for faces (1 orbit) nontwisted

Thus by applying the CTC Wall lemma we get a resolution $(R_n)_{n>0}$ with dim $R_n = n+1$. This is about the best possible since the 2-rank is 2.

- \triangleright Similarly the symmetry group of the Tetrahedron is S_4 and A_4 acts on the Tetrahedron with stabilizers C_3 , C_2 and C_3 .
- \triangleright The symmetry group of the cube is $W(B_3)$ of size 48 and it contains two conjugacy classes of subgroups isomorphic to $S₄$, one comes from the tetrahedron and the other has stabilizers C_4 , C_2 and C_3 .

Perfect forms in dimension 4

- \triangleright Tessel1: Initially there are 2 orbits of perfect forms so full dimensional cells are:
	- \triangleright O₁: full dimensional cell with 64 facets and stabilizer of size 288.
	- \triangleright O₂: full dimensional cell with 10 facets and stabilizer of size 60.
- \triangleright Tessel2: Now split both O_1 by adding a central ray. We then get as orbits of full dimensional cells:
	- \triangleright O_{1,1}: full dimensional cell with 10 facets and stabilizer of size 6.
	- \triangleright O_{1,2}: full dimensional cell with 10 facets and stabilizer of size \mathcal{P}
	- \triangleright O_{2,1}: full dimensional cell with 10 facets and stabilizer of size 6.
- **F** Tessel3: Every cell $O_{1,1}$ is adjacent to a unique cell $O_{2,1}$. Join them:
	- \triangleright O'_1 : full dimensional cell with 18 facets and stabilizer of size 6.
	- \triangleright O'_2 : full dimensional cell with 10 facets and stabilizer of size 2.

The stabilizers in Tessel1

For the first tesselation Tessel1, we have the following orbits of faces and stabilizers:

$$
0 A_5, G_{288} = (A_4 \times A_4) : C_2.
$$

\n
$$
1 S_3, S_3 \times S_3.
$$

\n
$$
2 C_2 \times C_2, C_2 \times C_2.
$$

\n
$$
3 C_2 \times C_2, C_2 \times C_2, S_4, S_4.
$$

\n
$$
4 S_3, D_8, S_4, C_2 \times S_3 \times S_3.
$$

\n
$$
5 D_{24}, S_4, A_5.
$$

\n
$$
6 G_{96} = ((C_2 \times C_2 \times C_2 \times C_2) : C_3) : C_2.
$$

Since we have the quotients

$$
G_{288}/A_4\simeq S_4\quad\text{and}\quad G_{96}/C_2\times C_2\simeq S_4
$$

by combining everything we can find resolutions of asymptotically optimal dimensions for all stabilizers.

For Tessel3

- 0 S_3 , $S_3 \times S_3$.
- 1 $C_2 \times C_2$, C_2 , C_2 , C_2 .
- 2 C_2 , C_2 , C_2 , $C_2 \times C_2$, S_3 , C_3 , $C_2 \times C_2$, $C_2 \times C_2$, C_2 , C_2 , C_2 , $S_3, C_4.$
- 3 S_3 , C_2 , C_2 , 1, $C_2 \times C_2$, 1, $C_2 \times C_2$, $C_2 \times C_2$, S_4 , A_4 , S_4 , S_4 , 1, C_2 , 1, D_{12} , S_3 , D_{12} , S_4 .
- 4 1, S_4 , D_{10} , 1, C_2 , S_3 , C_2 , D_{10} , C_2 , D_8 , C_2 , $C_2 \times S_3 \times S_3$, C_4 , S_3 , C_2 , C_2 , C_2 , C_2 , $C_3 \times C_2$.
- 5 C_2 , $C_2 \times C_2$, C_2 , 1, S_4 , A_5 , 1, S_3 , D_{24} , A_4 , C_2 , D_8 , C_3 , D_8 , $D_8, C_2.$
- 6 C_2 , C_2 , $((C_2 \times C_2 \times C_2 \times C_2) : C_3) : C_2$, C_2 , C_3 , S_3 , C_2 , S_3 , S_4 , $(C_3 \times C_3)$: C_2 .
- 7 C_2 , $C_2 \times C_2$, S_3 , $C_2 \times D_8$.
- $8\,S_3,\,S_4.$
- 9 A_5 , $(A_4 \times A_4)$: C_2 .

Low dimensional results

- \triangleright By using the tesselation Tessel3 we can compute the following homology groups:
	- $H_0(PSL_4(\mathbb{Z}), \mathbb{Z}) = \mathbb{Z}$
	- $H_1(PSL_4(\mathbb{Z}), \mathbb{Z}) = 0$
	- $H_2(PSL_4(\mathbb{Z}), \mathbb{Z}) = 3\mathbb{Z}_2$
	- $H_3(PSL_4(\mathbb{Z}), \mathbb{Z}) = 2\mathbb{Z}_4 + \mathbb{Z} + 2\mathbb{Z}_3 + \mathbb{Z}_5$
	- $H_4(PSL_4(\mathbb{Z}), \mathbb{Z}) = 4\mathbb{Z}_2 + \mathbb{Z}_5$
	- $H_5(PSL_4(\mathbb{Z}), \mathbb{Z}) = 13\mathbb{Z}_2$
- \blacktriangleright Further computations are difficult and constrained by
	- \triangleright Choosing tesselations influence the occurring stabilizers.
	- \triangleright Dimensions is one factor, another is the length of the boundaries.
	- \triangleright Memory is the main problem of such computations.

Cohomology rings

- ► If G is a finite group then $H^*(G, \mathbb{Z})$ is a ring and also for any prime $p H^*(G, \mathbb{Z}_p)$.
- \triangleright This ring can be computed very efficiently by first computing the cohomology of the sylow p -subgroup and then by computing the stable classes.
- But this is valid only for nontwisted cohomology. If u and u' are cohomology classes in $H^n(G,{\mathbb Z}_\sigma)$ and $H^{n'}(G,{\mathbb Z}_{\sigma'})$ then their cup products $u \cup u'$ is a cohomology class in $H^{n+n'}(G,\mathbb{Z}_{\sigma\sigma'})$.
- ► So, one possible strategy if $f \in H^*(G, \mathbb{Z}_{\sigma})$ is to use the following identities:

 $f\cup H^*(G,{\mathbb Z})\subset H^*(G,{\mathbb Z}_\sigma)$ and $f\cup H^*(G,{\mathbb Z}_\sigma)\subset H^*(G,{\mathbb Z})$

The equivariant spectral sequence

- \blacktriangleright It is also named the Leray spectral sequence, Normalizer spectral sequence, etc.
- Denote by $Repr_p(X)$ the list of representative of orbits of p dimensional faces of the polyhedral complex X .
- In the E^1 page of the spectral sequence we have

$$
E_{pq}^1 = \oplus_{F \in \mathit{Repr}_p(X)} H_q(\mathsf{Stab}(F), \mathbb{Z}_{\sigma})
$$

 \triangleright The differential d_i that allows to define the higher spectral sequences are determined by the CTC Wall lemma.

5-part of the homology I

 \blacktriangleright We have

$$
H_n(PSL_4(\mathbb{Z}), \mathbb{Z})_{(5)} = \left\{ \begin{array}{ll} \mathbb{Z}_5 & \text{if } n = 3 + 4k \\ \mathbb{Z}_5 & \text{if } n = 4 + 4k \\ 0 & \text{otherwise} \end{array} \right.
$$

- First of all A_5 is a subgroup of $PSL_4(\mathbb{Z})$ and it appears in the top dimensional cells.
- \blacktriangleright Thus we have mapping in homology $H_*(A_5, \mathbb{Z}) \to H_*(PSL_4(\mathbb{Z}), \mathbb{Z})$ and another mapping in cohomology $H^*(PSL_4(\mathbb{Z}), \mathbb{Z}) \to H^*(A_5, \mathbb{Z})$.
- \triangleright Since A_5 is directly embedded in the resolution, we can readily check that the mapping $H_n(A_5, \mathbb{Z}) \to H_n(PSL_4(\mathbb{Z}), \mathbb{Z})$ are injective if $n \leq 3$.
- So we get that for all k, $H^{4k}(\mathrm{PSL}_4(\mathbb{Z}), \mathbb{Z})_{(5)}$ contains a non-zero class.

5-part of the homology II

- \triangleright For the tesselation Tessel1 the only stabilizer groups with order divisible by 5 are A_5 and they have no twisting.
- \blacktriangleright Thus we get the following picture for the E^1 page:

- Either d_5 is non-zero and it kills two \mathbb{Z}_5 or it is zero and they stay.
- ▶ But we know that two $H^8(PSL_4, \mathbb{Z})_{(5)}$ is nontrivial thus d_5 has to be zero which proves the result.

Towards the 3-part

 \blacktriangleright For the 3-part we have the relations

$$
H_1(G_{288}, \mathbb{Z})_{(3)} = 0 \t H_6(G_{288}, \mathbb{Z})_{(3)} = 3\mathbb{Z}_3 \nH_2(G_{288}, \mathbb{Z})_{(3)} = \mathbb{Z}_3 \t H_7(G_{288}, \mathbb{Z})_{(3)} = 5\mathbb{Z}_3 \nH_3(G_{288}, \mathbb{Z})_{(3)} = 3\mathbb{Z}_3 \t H_8(G_{288}, \mathbb{Z})_{(3)} = 0 \nH_4(G_{288}, \mathbb{Z})_{(3)} = 0 \t H_9(G_{288}, \mathbb{Z})_{(3)} = 0 \nH_5(G_{288}, \mathbb{Z})_{(3)} = 0 \t H_{10}(G_{288}, \mathbb{Z})_{(3)} = 5\mathbb{Z}_3
$$

So, by doing the same computation as for A_5 we can prove that the mapping $H_n(G_{288}, \mathbb{Z})_{(3)} \to H_n(\mathrm{PSL}_4(\mathbb{Z}), \mathbb{Z})_{(3)}$ is a surjection for $n \leq 5$.