
Lego like spheres and tori, enumeration and
drawings

Mathieu Dutour Sikirić

Rudjer Bosković Institute,
Croatia

Michel Deza

Ecole Normale Supérieure,
France

September 30, 2016



I. Legos



({a, b}, k)-maps

I By a ({a, b}, k)-map, we mean a k-valent map of genus g
with faces of size a or b with a < b.

I If g = 0 we speak of ({a, b}, k)-plane graph and if g = 1 we
speak of ({a, b}, k)-torus.

I Euler-Poincaré formula V − E + F = 2− 2g can be
reformulated as

2k(2− 2g) = {2k − a(k − 2)} pa + {2k − b(k − 2)} pb

I We have essentially three cases for the plane graphs:
I 2k − b(k − 2) > 0 (Elliptic case): finite number of possibilities.
I 2k − b(k − 2) = 0 (Parabolic case): pa is constant

(independent of pb). Number of graphs growing polynomially
in pb.

I 2k − b(k − 2) < 0 (Hyperbolic case): pa growing with pb.
Number of graphs growing at least exponentially in pb
(conjecture)



List of parabolic cases

k (a, b) smallest one existence conn. pa v NrGr

3 (2, 6) Bundle3=3× K2 p6 = T − 1 2 3 2 + 2p6 2
3 (3, 6) Tetrahedron p6 is even 2 or 3 4 4 + 2p6 5
3 (4, 6) Cube p6 6= 1 3 6 8 + 2p6 16
3 (5, 6) Dodecahedron p6 6= 1 3 12 20 + 2p6 28

4 (3, 4) Octahedron p4 6= 1 3 8 6 + p4 18
4 (2, 4) Bundle4=4× K2 p4 is even 2 4 2 + p4 5

6 (2, 3) Bundle6=6× K2 p3 is even 2 6 2 + p3
2 22

6 (1, 3) Trifolium p3 = 2T − 1 1 3 1+p3
2 3

Notes:

I T is a number of the form k2 + kl + l2

I NrGr is the number of possible groups

I A graph is k-connected is after removing k − 1 vertices it
remains connected.



Definition of lego

I A ({a, b}, k)-map M admits a lego decomposition if there
exist a number m of cluster of faces such that the m clusters
put together yield the map M.

I We impose in this work m = min(pa, pb). That is each cluster
has either just one a-gon or just one b-gon. This implies

pa
pb
∈ N or

pb
pa
∈ N

Examples:

68, T 8, C3 12, D5 44 D3h(D3)



When do lego exists?
Plane graph case:

I In the elliptic cases we have a finite number of graphs to
consider. Easy.

I In the parabolic cases:
I If pa

pb
is integer then again a finite list of graphs to consider.

I If pb
pa

is integer then we have an infinite set of possibilities and
existence can be proved in all of them.

I In the hyperbolic cases:
I If pb

pa
is integer then we can prove that there are only a finite

number of possibilities.
I If pa

pb
is integer then a priori infinite number of possibilities but

existence is not proved.

Torus case:

I If pb
pa

is integer then we can prove that there are only a finite
number of possibilities.

I If pa
pb

is integer then a priori infinite number of possibilities but
existence is not proved.



Classification results I
For a hyperbolic ({a, b}, k)-sphere the number pb

pa
is an integer if

and only if its p-vector is either (p1, p3) = (k2 ,
k
2 ), k ≥ 8, k ≡ 0

(mod 4) or one of 42 cases:

k a,b v (pa, pb)

3 3,7 20 (6,6)
3 3,7 68 (12,24)
3 3,8 44 (12,12)
3 4,7 44 (12,12)
3 2,7 12 (4,4)
3 2,7 32 (6,12)
3 2,7 92 (12,36)
3 2,8 20 (6,6)
3 2,9 44 (12,12)
4 2,5 14 (8,8)
5 2,4 12 (10,10)
7 2,3 16 (14,28)

k a,b v (pa, pb)

7 2,3 44 (28,84)
8 2,3 10 (16,16)
9 2,3 20 (36,36)
3 1,7 8 (3,3)
3 1,7 20 (4,8)
3 1,7 44 (6,18)
3 1,7 116 (12,48)
3 1,8 12 (4,4)
3 1,8 68 (12,24)
3 1,9 20 (6,6)
3 1,10 44 (12,12)
4 1,5 6 (4,4)



Classification results II

k a,b v (pa, pb)

4 1,5 22 (8,16)
4 1,6 14 (8,8)
5 1,4 4 (4,4)
5 1,4 52 (20,60)
5 1,5 12 (10,10)
6 1,4 5 (6,6)
7 1,3 4 (4,8)
7 1,3 16 (7,35)
7 1,3 44 (14,98)

k a,b v (pa, pb)

7 1,3 100 (28,224)
8 1,3 10 (8,24)
8 1,3 26 (16,64)
8 1,4 10 (16,16)
9 1,3 20 (18,54)
9 1,4 20 (36,36)

10 1,3 7 (10,20)
12 1,3 14 (24,48)
13 1,3 28 (52,104)

Notes:

I Of those cases, only the ({1, 3}, 7)-spheres with 16 vertices
cannot be realized as a lego.



Classification results III

The parameters of putative ({a, b}; k)-tori with integer pb
pa

k a,b v pb
pa

k a,b v pb
pa

k a,b v pb
pa

3 3,7 8p3 3 4 2,5 3p2 2 4 1,5 4p1 3
3 3,9 4p3 1 4 2,6 2p2 1 4 1,7 2p1 1
3 4,7 6p4 2 5 2,4 2p2 2 6 1,4 3

2p1 2
3 4,8 4p4 1 6 2,4 p2 1 6 1,5 p1 1
3 5,7 4p5 1 7 2,3 2p2 4 7 1,3 4p1 9
4 3,5 2p3 1 8 2,3 p2 2 8 1,3 2p1 5
3 2,7 10p2 4 10 2,3 1

2p2 1 10 1,3 p1 3
3 2,8 6p2 2 3 1,7 12p1 5 10 1,4 1

2p1 1
3 2,10 4p2 1 3 1,11 4p1 1 14 1,3 1

2p1 2



I. Enumeration
methods



List of problems to be solved

I Problem I is:
I We have a list of p′a a-gonal faces and p′b b-gonal faces
I We want to find all possible lego pieces

This is done, when possible, by exhaustive enumeration by
adding pieces one after the other in all configurations.

I Problem II is:
I We have a list of maps on the sphere or on torus
I We want to find all legos that occur here.

This kind of enumeration is limited to the ({a, b}, k)-map
classes for which enumeration is feasible and there is a
program for it.

I Problem III is:
I We have a set of lego pieces
I We want to find all the ways in which they can fit together.

This kind of method is a priori more clever since we build first
the list of pieces and then put them together.



List of feasible cases

I The program CPF (by Thomas Harmuth, Master Thesis) can
enumerate the ({a, b}, 3)-spheres with a fixed number of
vertices and a ≥ 3, which are the most important cases.

I The program CGF (by Thomas Harmuth, PhD Thesis) can
enumerate all the ({a, b}, 3)-maps of fixed genus and number
of vertices with a ≥ 3.

I The program ENU can enumerate the ({a, b}, 4)-spheres with
fixed number of vertices and a ≥ 3.

I The program plantri can do specific plane graph
enumeration but it is much slower and hard to use.

In all other cases, we are on our own to get the maps. Possible
methods is to reduce to one of the above classes. For some cases,
e.g. ({3, 7}, 3)-spheres with 68 vertices, the program cannot
terminate. Reductions are then needed.



Exact covering problem

Problem is:

I Given n points and m subsets S1, . . . , Sm of {1, . . . , n}
I to find all partitions of {1, . . . , n} by subsets Si .

Features:

I The existence problem can be formulated as Integer
Programming Problem and it is NP.

I It is an exhaustive enumeration problem and so harder a priori.

I Fortunately, there exist the program LibExact by Kaski and
Pottonen which implements a very fast enumeration
procedure using “dancing links”.

I It does not uses symmetry so we have to do isomorphism
checks afterwards.



Satisfiability problems SAT

A satisfiability problem (SAT) is a problem of the type:

I A number n of variables v1, . . . , vn that can be true or false.

I A number of clauses of the form

w1 ∨ w2 ∨ · · · ∨ wp with wj = vij or vij .

I A set of clauses to be satisfied, i.e.

c1 ∧ c2 ∧ · · · ∧ cM .

The goal is to find whether there exist a set of variables that
satisfies all the clauses.
The program minisat can check satisfiability very fast despite
SAT being a NP problem. This allows to solve some combinatorial
problems. We can also enumerate all the solutions of a SAT
problem.



SAT for legos

SAT problems can be used to solve Sudoku, N-queens problems
and generally all kinds of combinatorial problems. What about
legos:

I We take a set of N lego pieces, each identical and each having
p sides.

I We need to put the condition of adjacency between the sides.
So, this makes about (Np)2 variables.

I We have conditions around the edges since we want the
degree to be a specified value of say k .

I But we cannot handle questions of connectivity.

In general the approach failed and this seems to be generally the
experience when using SAT to solve combinatorial problems such
as t-designs, distance regular graphs, etc.



Direct enumeration method

So, instead of SAT, we used a more classical enumeration method:

I The idea is to take one lego and add pieces one at a time
until the obtained graph is complete.

I In the case of place graph, one can prove that we can add the
pieces so that at all time the space that is not covered is
connected.

I The method is typical backtrack enumeration and is all done
in C++.

Results:

I The method generally works for up to say 8-12 lego pieces.

I This allows to solve many cases.



I. Graph
drawing



Problematic

I The problem that we have is how to represent a graph on the
plane or torus in a practical way.

I The difficulty is how to represent 1-gons and 2-gons, which
most method do not.

I Another issue is that many methods require the graph to be
3-connected, which is a strong requirement.

Additional wishes

I We want the program to be as fast as possible. Drawing
should be a non-issue

I We want details to be clearly visible.

I We want the symmetries to be visible.



Representation of oriented maps

I General maps are best represented via flag system (buildings,
chamber system, etc.)

I For oriented maps, we can use a simpler yet equivalent
system: directed edge.

I Directed edge are basically a pair (v , e) with v a vertex and e
an edge.

I Given a directed edge −→e we can build the next directed edge
n(−→e ) around the vertex (in trigonometric order) and the
inverse directed edge i(−→e )

I Vertices, edges and faces the correspond to the orbits of the
permutations n, i and n ◦ i on the set of directed edges.

Example:

16

8 11 4 9 2 15 14 13 0 3 12 1 10 7 6 5

1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12



Existing approaches

I Tutte: He proposed to use eigenvectors of the adjacency
matrix in order to provide embeddings. The method works
well for plane graphs but suffer from one key problem: the
inner faces tend to be very small and not visible. Only for
plane graphs.

I Dress,Harmuth,Delgado Friedrichs,Brinkmann: The CaGe

program uses an iterative process in order to get the
embedding. A priori only for plane graphs.

I Mohar: Primal-Dual circle packings provide a good theoretical
based approach for finding the embeddings. It works for plane
graph, torus and hyperbolic maps.

I Force directed graphs. A physical functional such as

F =
∑

e=(i ,j)∈E(G)

f (‖xi − xj‖)

and we minimize over the embedding.



Issues and features
Features:

I All above techniques will respect symmetries since they are
based on minimization procedure. But sometimes the number
of iterations needs to be adjusted.

I All coordinates are obtained by iteration procedures. We
cannot do exact arithmetic computations.

Issues:

I Some technique requires 3-connectivity of the graph
I All fail to work for 2-gons and 1-gons.
I Convergence might take a long time to achieve.
I Some details of the graph might be very hard to see in the

final drawing. According to the cases
I For the plane graph, one factor is the proximity to the exterior

face, another is the level of refinement.
I For the torus, it is flat so the only problem is the level of

refinement.
I For the hyperbolic plane, the problem will necessarily occur in

all reasonable representations such as Poincaré plane or similar.



Primal-Dual circle packings

The idea is to put circles in the vertex center and faces such that

I If any two vertices v and v ′ are adjacent then the
corresponding circles are tangent.

I For any face the circle is tangent to the edges.

v w

f

g

The local picture of a
primal-dual circle

representation

The edges, circle and face
circles of a primal-dual

representation



Primal-Dual circle packings: Equations and Numerics
I In the case of torus, the equations that are satisfied are

π = φv =
∑

uv∈E(Med∗(G))

arctan

(
ru
rv

)
for each vertex v of the dual medial graph of G .

I Bojan Mohar has given an algorithm for computing primal
dual circle packings. It consists of computing the defect at
every node and increasing/decreasing the radius value
according to φv > π or φv < π. It is a geometric method but
in some cases it is very slow.

I Instead our approach is to use a variant of Newton method:
We choose the direction of change from the Newton iteration
solver and we adjust the amount of change so that we remain
in the allowed region of circles of positive radius.

x (n+1) = x (n) − c
f (x (n))

f ′(x (n))
with 0 < c ≤ 1



Refinement techniques
I The primal-dual technique requires 3-connectivity and will not

work with 2-gons and 1-gons.
I The technique is to refine it. First for a map M we replace it

with the order complex map Ord(M) = Trunc(Med(M)).
I Then we insert a vertex and each edge.
I Finally, we put a vertex on each face and connect it with all

incident vertices.
I The resulting triangulation is 3-connected.



Symmetric representation

I For plane graph, we want to represent the maps with the
maximum amount of symmetry.

I In practical matter if we have an axis of symmetry of order N
then we want it visible.

I If the axis pass by a vertex or an edge then we put it to
infinity.

Examples:

On vertex On edge On face



CaGe process
I Suppose that we have a point x and m adjacent points x1,

. . . , xm then for the CaGe process we have the equation

x =
1∑m

i=1 A
2
T (x , x i , x i+1)

m∑
i=1

A2
T (x , x i , x i+1)

x + x i + x i+1

3

with AT (x , y , z) the area of the triangle of vertices x , y and z .
I The equation is solved by fixed point iterations.
I Plane graph: put the vertices of the exterior face in a circle.
I Torus map: first guess obtained by primal dual circle packing

and then apply the CaGe process.

Primal dual CaGe process



Problem of 1-gons

I Our approach of auxiliary graphs works fairly well with 2-gons.

I But with 1-gons, we tend to get far smaller faces than
expected.

I The empirical solution is to rescale the 1-gons by large factors
(say 200) so that they become visible.

normal expanded



Software availability

I Source code is available at

https://github.com/MathieuDutSik/Plot orientedmap

I Code written in C++11 language.

I Uses the Eigen library for matrix computations.

I Input file in Namelist, fortran style input.

I Output file in svg (Scalable Vector Graphics) to be used on
web page or in Inkscape.


