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|. Lattices coverings



Lattice coverings

» A lattice L C R" is a set of the form L = Zvi + - - - + Zv,.

» A covering is a family of balls B,(x;, r), i € | of the same
radius r and center x; such that any x € R” belongs to at
least one ball.

> If L is a lattice, the lattice covering is the covering defined by
taking the minimal value of o > 0 such that L + B,(0,«) is a
covering.



Empty sphere and Delaunay polytopes

» Def: A sphere S(c, r) of center ¢ and radius r in an
n-dimensional lattice L is said to be an empty sphere if:

() lv=c||=rforallvel,
(i) the set S(c,r) N L contains n+ 1 affinely independent points.
» Def: A Delaunay polytope P in a lattice L is a polytope,
whose vertex-set is LN S(c, r).

» Delaunay polytopes define a tessellation of the Euclidean
space R”



Lattice covering

» For a lattice L we define the covering radius (L) to be the
smallest r such that the family of balls v + B,(0,r) for v € L
cover R".

» The covering density has the expression

p(L)" vol(B,(0,1))

o(L) = >1
(L) det(L) -
with
» 1(L) being the largest radius of Delaunay polytopes
> or

L) = in [|x —
p(L) = maxmin [x -y



Covering minimization and maximization

» For a given lattice L the only general method for computing
©(L) is to compute all Delaunay polytopes.

» The minimization problem is the problem of minimizing ©(L)
over all lattices L.
The following is known:
» For n <5 the dual root lattice A}, is the best lattice covering.
» For n = 6 there is a conjecturally best lattice covering
discovered in F. Vallentin PhD thesis.
» The Leech lattice Ay4 is conjectured to be optimal.

» The function © is unbounded from above but we will develop
a theory for describing the local covering maxima.
The following is known:
» There is no local covering maxima for n <5
» For n = 6 there is exactly one covering maxima: Eg
» For n =7 there are exactly two covering maxima: E7 and ER;

(Erdahl & Rybnikov lattice)
There is an infinite series DS,, generalizing E¢ and E7.
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I[l. Gram matrix
formalism



Gram matrix and lattices

» Denote by S” the vector space of real symmetric n X n
matrices and 5S” the convex cone of real symmetric positive
definite n x n matrices.

» Take a basis (v1,...,Vv,) of a lattice L and associate to it the
Gram matrix Gy = ((vj, vj))1<ij<n € SZ.

» Example: take the hexagonal lattice generated by v; = (1,0)
and Vo = (l ﬁ)



[sometric lattices

» Take a basis (vi,...,v,) of a lattice L with
vi = (Vi1,...,Vin) € R" and write the matrix
V171 e V,,71
V =
V17n N Vn,n
and G, = VT V.

The matrix G, is defined by w variables as opposed to n

for the basis V.

» If M € S7,, then there exists V such that M = VT V (Gram
Schmidt orthonormalization)

» If M=V Vi =V, Vp, then Vj = OV, with OT O = |,
(i.e. O corresponds to an isometry of R").
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» Also if L is a lattice of R” with basis v and u an isometry of
R", then G, = Gu(v)-



Working with Gram matrices

» In practice all computations on lattices of R” are best done
with Gram matrices. For example computing

d(x) =mi —
(x) = min |lx =y
is equivalent to minimizing

. T
— Alx —
min(v—=y) Alx—y)

for some v € R" expressed from x.
» We have the determinant relation

det L = v/det G,

» In general, Gram matrices are the only information taken into
input by programs in lattice theory.

» They give a parameter space for lattices with a natural
topology.



Changing basis

» If v and v/ are two basis of a lattice L then V/ = VP with
P € GL,(Z). This implies

Gy =VTV =(vP)TvP=PT{VTV}P=PTG,P

» If A, B € S, they are called arithmetically equivalent if there
is at least one P € GL,(Z) such that

A=PTBP

» Lattices up to isometric equivalence correspond to SZ, up to
arithmetic equivalence.
> In practice, Plesken & Souvignier wrote a program isom for

testing arithmetic equivalence and a program autom for
computing automorphism group of lattices.



[Il. The lattice covering
problem



Equalities and inequalities

» Take M = G, with v = (v1,...,v,) a basis of lattice L.
> If V= (w,...,wy) with w; € Z" are the vertices of a
Delaunay polytope of empty sphere S(c, r) then:

|w; —c|| =r ie w”Mw; — 2w, Mc+ c"Mc = r?
» Substracting one obtains
{W,-TI\/IW,- — WjTI\/IWj} -2 {W,-T — WjT} Mc =0

» Inverting matrices, one obtains Mc = ¢(M) with 1 linear and
so one gets linear equalities on M.

» Similarly ||w — c|| > r translates into a linear inequality on M:
Take V = (w, ..., vn) a simplex (v; € Z"), w € Z". If one
writes w = > 7 o A\jv; with 1 =Y"7 ;)\, then one has

n
lw—c|>rew Mw— Z)\,‘VITMV,' >0
i=0



Iso-Delaunay domains

> Take a lattice L and select a basis vy, ..., vj.

» We want to assign the Delaunay polytopes of a lattice.
Geometrically, this means that

***********************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

are part of the same iso-Delaunay domain.

» An iso-Delaunay domain is the assignment of Delaunay
polytopes of the lattice.

Primitive iso-Delaunay

> If one takes a generic matrix M in SZ,, then all its Delaunay

are simplices and so no linear equality are implied on M.
» Hence the corresponding iso-Delaunay domain is of dimension

n(n2+1). they are called primitive




Equivalence and enumeration

» The group GL,(Z) acts on SZ by arithmetic equivalence and
preserve the primitive iso-Delaunay domains.

» Voronoi proved that after this action, there is a finite number
of primitive iso-Delaunay domains.

» Bistellar flipping creates one iso-Delaunay from a given
iso-Delaunay domain and a facet of the domain. In dim. 2:

% \/ | \/ \
/\ = A= /\
» Enumerating primitive iso-Delaunay domains is done

classically:

» Find one primitive iso-Delaunay domain.

» Find the adjacent ones and reduce by arithmetic equivalence.
The algorithm is graph traversal and iteratively finds all the
iso-Delaunay up to equivalence.



The partition of $2, C R? |

If g(x,y) = ux® + 2vxy + wy? then g € 52 if and only if
v2 < uw and u > 0.




The partition of 52, C R3 I

We cut by the plane u 4+ w =1 and get a circle representation.
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The partition of 52, C R3 Il

Primitive iso-Delaunay domains in Sio:




V. SDP

optimization



Radius of Delaunay polytope

» Fix a primitive iso-Delaunay domain, i.e. a collection of
simplexes as Delaunay polytopes Dy, ..., Dp.

» Thm: For every D; = Conv(0, v1,...,Vv,), the radius of the
Delaunay polytope is at most 1 if and only if

4 (vi,vi) (vo,va) ... (Vp,Vp)
(vi,vi) (vi,v1) (vi,wva) ... {(vi,vn)
(va,v2) (va,v1) (v2,v2) ... (vo,vp) | ¢ Cls
<v,7,- Vn) <v,,,-v1> (v,,,- v2) <v,,,- Vn)

by Delaunay, Dolbilin, Ryshkov & Shtogrin.
» The condition is a semidefinite condition.
» See for more details
» A. Schirmann and F. Vallentin, Computational approaches to
lattice packing and covering problems, Discrete &
Computational Geometry 35 (2006) 73-116.
» A. Schiirmann, Computational geometry of positive definite
quadratic forms, University Lecture Notes, AMS.



SDP optimization problem

» Fix a primitive iso-Delaunay domain, i.e. a collection of
simplexes as Delaunay polytopes Ds, ..., Dp.

» Thm (Minkowski): The function — logdet(M) is strictly
convex on SZ.

» Solve the problem

» M in the iso-Delaunay domain (linear inequalities),

» the Delaunay D; have radius at most 1 (semidefinite
condition),

» minimize — log det(M) (strictly convex).

» Thm: Given an iso-Delaunay domain LT, there exist a unique
lattice, which minimize the covering density over LT.

» The above problem is solved by the interior point methods
implemented in MAXDET by Vandenberghe, Boyd & Wu.
Unicity comes from the strict convexity of the objective
function.



Solving the minimum covering problem

>

The lattice covering problem is to find a lattice covering of
minimal density.

The solution of the SDP problem by interior point methods
does not give exact solutions but approximate solutions
available at any precision.

The exact solution is expressible with algebraic integers once
one knows which inequations are satisfied with equality.
The method for solving the lattice covering problem in
dimension n is thus:

» Enumerate all iso-Delaunay domains LT up to equivalence

» solve the SDP on all the domains

» Take the one(s) of minimum covering density
Pb: 222 primitive iso-Delaunay domains in dimension 5
(Baranovski, Ryshkov, Engel & Grishukhin) and at least 200
millions in dimension 6 (Engel).
This is not practical at all



V. iso-Delaunay
domains of

>O spaces



n
2 ,-spaces

v

A SZ,-space is a vector space SP of S", which intersect SZ.

We want to describe the Delaunay decomposition of matrices
Me SZ,NSP.
Motivations:
» The enumeration of iso-Delaunay is done up to dimension 5
but certainly not for higher dimension.
» We hope to find some good covering by selecting judicious SP.
This is a search for best but unproven to be optimal coverings.
A iso-Delaunay in SP is an open convex polyhedral set
included in SQO N SP, for which every element has the same
Delaunay decomposition.

Typical choice of a space SP are the space of forms invariant
under a finite integral matrix group G. In that case finiteness
of the set of iso-Delaunay up to equivalence is proved.

Dimension of the space SP is typically no larger than 4.



Lifted Delaunay decomposition

» The Delaunay polytopes of a lattice L correspond to the
facets of the convex cone C(L) with vertex-set:

{(x, [|x|]?) with x € L} ¢ R™1 .

7/

\\ >/ /A
N

» H. Edelsbrunner, N.R. Shah, Incremental Topological Flipping
Works for Regular Triangulations, Algorithmica 15 (1996)
223-241.



Generalized bistellar flips

» The “glued” Delaunay form a Delaunay decomposition for a
matrix M in the (SP, L)-iso-Delaunay satisfying to f(M) = 0.
» The flipping break those Delaunays in a different way.

» Two triangulations of Z? correspond in the lifting to:

i

> The polytope represented is called the repartitioning polytope.
It has two partitions into Delaunay polytopes.

» The lower facets correspond to one tesselation, the upper
facets to the other tesselation.



Enumeration technique

» Find a primitive (SP, L)-iso-Delaunay domain, insert it to the
list as undone.
> lterate
» For every undone primitive (SP, L)-iso-Delaunay domain,
compute the facets.
» Eliminate redundant inequalities.
» For every non-redundant inequality realize the flipping, i.e.
compute the adjacent primitive (SP, L)-iso-Delaunay domain.
If it is new, then add to the list as undone.

» See for full details

» M. Dutour Sikiri¢, F. Vallentin and A. Schiirmann, A
generalization of Voronoi's reduction theory and applications,
Duke Math. J. 142 (2008), 127-164.



Best known lattice coverings

lattice / covering density ©

o
SEBowo~oorwN R

Zr1
A3 (Kershner) 1.209199
A% (Bambah) 1.463505
A} (Delaunay & Ryshkov) 1.765529
A? (Ryshkov & Baranovski) 2.124286
L¢ (Vallentin) 2.464801
LS (Schiirmann & Vallentin) 2.900024
Lg (Schiirmann & Vallentin) 3.142202
LS (DSV) 4.268575
LS, (DSV) 5.154463
LS, (DSV) 5.505591
LS, (DSV) 7.465518

13
14
15
16
17
18
19
20
21
22
23
24

LS, (DSV) 7.762108
L¢, (DSV) 8.825210
L¢s (DSV) 11.004951
A} (DSV) 15.310927
Al; (DSV) 12.357468
Alg 21.840949
A3 (DSV) 21.229200
Al, (DSV) 20.366828
Al (DSV) 27.773140
A3, (Smith) < 27.8839
A3; (Smith, MDS) 15.3218
Leech 7.903536

For n <5 the results are definitive.
The lattices A], for r dividing n+ 1 are the Coxeter lattices.
They are often good coverings and they are used for

perturbations.

For dimensions 10 and 12 we use laminations over Coxeter

lattices of dimension 9 and 11.

Leech lattice is conjecturally optimal (it is local optimal

Schiirmann & Vallentin)




VI. Quadratic functions
and the Erdahl cone



The Erdahl cone

» Denote by E;(n) the vector space of degree 2 polynomial
functions on R”. We write f € Ep(n) in the form

f(X) =ar+ br-x+ Qf[X]

with ar € R, br € R" and Qf a n X n symmetric matrix
» The Erdahl cone is defined as

Erdahl(n) = {f € Ex(n) such that f(x) > 0 for x € Z"}

> It is a convex cone, which is non-polyhedral since defined by
an infinity of inequalities.

» The group acting on Erdahl(n) is AGL,(Z), i.e. the group of
affine integral transformations

x> b+ Px for be Z" and P € GL,(Z)



Scalar product

» Def: If f,g € Ex(n), then:

(f,g) = arag + (br, bg) + (Qr, Qg)

» Def: For v € Z", define ev,(x) = (1 + v - x)2.
> We have
(f,ewy) =f(v)

» Thus finding the rays of Erdahl/(n) is a dual description
problem with an infinity of inequalities and infinite group
acting on it.

» If f € Erdahl(n) then Qr is positive semidefinite.

> Def: We also define

Erdahlso(n) = {f € Erdahl(n) : Qf positive definite}



Relation with Delaunay polytope
> If D is a Delaunay polytope of a lattice L = Zvy + -+ - + Zv,

of empty sphere S(c, r) then we define the function
fov:Z" — R
X=X, xn) = [0 xivi —c|® = r?
Clearly fp € Erdahlo(n).
» The perfection rank of a Delaunay polytope is the dimension
of the face it defines in Erdahl(n).
» Def: If f € Erdahl(n) then
Z(f)={veZ": f(v)=0}
» Thm: If f € Erdahl(n) then there exist a lattice Lf and a
lattice L’ containing a Delaunay polytope Dr such that
Z(f)=Ds + Lf

» We have dim L' +dim L¢ < n. In case of equality Z(f) is
called a Delaunay polyhedra.



Perfect Delaunay polytopes/polyhedra

» Def: If D is a n-dimensional Delaunay polyhedra then we
define

Dom, D= > Ryev,
vweD
» We have (fp,,Dom, D) =0.
» Def: D is perfect if Dom D is of dimension ("erz) — 1 thatis
if the perfection rank is 1.

» This implies that fp generates an extreme ray of Erdahl(n)
and fp is rational.

> A perfect n-dimensional Delaunay polytope has at least
("32) — 1 vertices. There is only one way to embed it as a

Delaunay polytope of a lattice.

> Perfect Delaunay polytopes are remarkable and rare objects.



VIl. Covering maxima, pessima
and their characterization



Eutacticity
» If f € Erdahlso(n) then define uf and ¢ such that
f(x) = Qrlx —cr] — pr
Then define
ur(x) = (1+ -3 + 10 Q7 [

» Def: f € Erdahlso(n) is eutactic if ur is in the relative interior
of Dom f.

» Def: Take a Delaunay polytope P for a quadratic form @ of
center cp and square radius pp. P is called eutactic if there
are o, > 0 so that

1 = > ay,
vevert P
0 = > av—ocp),
vevert P
LEQ™l = Y a(v—cp)(v—cp)'.

vEvert P



Covering maxima

» A given lattice L is called a covering maxima if for any lattice
L’ near L we have O(L') < O(L).
» Thm: For a lattice L the following are equivalent:

» L is a covering maxima
» Every Delaunay polytope of maximal circumradius of L is
perfect and eutactic.

» The following are covering maxima:

name | # vertices | # orbits Delaunay polytopes
Eg 27 1
E; 56 2

ER7 35 4

O10 160 6

BW1g 512 4

O23 94208 5

No3 47104 709

» Thm: For any n > 6 there exist one lattice L(DS,) which is a
covering maxima.
There is only one perfect Delaunay polytope P(DS,) of
maximal radius in L(DS,).



The infinite series

» For n even P(DS,) is defined as the lamination over D,_1 of
> one vertex
> the half cube JH,_;
» the cross polytope CP,_1
For n=06, it is Eg.
» For n odd as the lamination over D,_1 of
» the cross polytope CP,_1
> the half cube JH,_;
» the cross polytope CP,_1
For n=17, it is E7.
» Conj: The lattice DS, has the following properties:
» L(DS,) has the maximum covering density among all n-dim.
covering maxima
» Among all perfect Delaunay polytopes, P(DS,) has
> maximum number of vertices
» maximum volume
If true this would imply Minkowski conjecture by results of
» U. Shapira and B. Weiss, Stable Lattices and the Diagonal
Group, preprint



Pessimum and Morse function property

» For a lattice L let us denote Dt(L) the space of direction d
of deformation of L such that © increases in the direction d.

» Def: A lattice L is said to be a covering pessimum if the space

D.i+ is of measures 0.

» Thm: If the Delaunay polytopes of maximum circumradius of
a lattice L are eutactic and are not simplices then L is a

pessimum.

name # vertices | # orbits Delaunay polytopes

VA 2n 1

Da 8 1

D, (n>5) on—1 2

EZ 9 1

E3 16 1

Es 16 2

Kiz 81 4

» Thm: The covering density function Q — ©(Q) is a
topological Morse function if and only if n < 3.



VIIl. Enumeration of
perfect Delaunay polytopes



Perfect Delaunay polytope

» There is a finite number of them in each dimension n. Known

results:
dim. | perfect Delaunay authors
1 [0,1] in Z
2 0
3 0
4 0
5 0 1 (Deza, Laurent & Grishukhin)
6 251 in Eg (Deza & Dutour)
7 321 in E7
and ER; in L(ERy) (Dutour Sikiri¢)
8 > 27 (Dutour Sikiri¢ & Rybnikov)
9 > 100000 (Dutour Sikiri¢)

» Thm: There exist perfect Delaunay polytopes D such that
ZD # Z" (dimension n > 13, Rybnikov & Dutour Sikiri¢).

» Thm: There exist lattices with several perfect Delaunay
polytopes (dimension 15 and 23, Rybnikov & Dutour Sikiri¢).

» Thm: For n > 6 there exist a perfect Delaunay polytope with
exactly (";rz) — 1 vertices (Erdahl & Rybnikov) ER,.



Extreme rays of Erdahl(n)
» Def: If f € Erdahlso(n) then we define

Dom f = Z Riev,
veZ(f)

» We have (f,Dom f) =0.
» Thm (Erdahl): The extreme rays of Erdahl(n) are:
(a) The constant function 1.
(b) The functions
(arxa+ -+ apxy + f)?

with (a1, ..., a,) not collinear to an integral vector.
(c) The functions f such that Z(f) is a perfect Delaunay
polyhedra.

» Note that if f € Erdahl(n) with Z(f) a Delaunay polyhedra,
then there exist a lattice L’ of dimension k < n, a Delaunay
polytope D of L', a basis v/ of L" and a function ¢ € AGL,(Z)
such that

foo(x,...,xn) = fD,V’(Xl""vxk)



Delaunay polyhedra retract

» For a function f € Erdahl(n) a proper decomposition is a pair
(g, h) with f = g+ h, g € Erdahl(n) and h(x) > 0 for
x € R".

» Lem: For a proper decomposition we have

Vect Z(f) + Ker Qf C Ker Qp

and there exist a proper decomposition with equality.

» Fix an integral complement L’ of Vect Z(f) + Ker Qr. A
proper decomposition is called extremal if det Q| is
maximal among all proper decompositions.

» Thm: For f € Erdahl(n), there exist a unique extremal
decomposition. For it we have that Z(g) is a Delaunay
polyhedra.

» Conj: The decomposition depends continuously on
f € Erdahl(n).

» On the other hand in a neighborhood of f € Erdahl(n) we can
have an infinity of Delaunay polyhedra.



Enumeration of perfect Delaunay polyhedra

» From a given n-dimensional Delaunay polyhedron P of form f
we can define the local cone

Loc(f) = {g € Ex(n) s.t. g(x) >0 for x € Z(f)}.

We set the define the degeneracy d(P) = dimLy.

» Thm: For a Delaunay polyhedron P let (P;);c/ the set of
Delaunay polyhedra of degeneracy d(P) — 1 and perfection
rank r(P) — 1. P; and P; are adjacent if P; N P; is of
perfection rank r(P) — 2. The obtained graph is connected.

» Thm: In a fixed dimension n there exist an algorithm for
enumerating the perfect Delaunay polytopes of dimension n.
The algorithm is iterative. It relies on dual description. If the
degeneracy rank is d > 0 then we find a sub Delaunay
polyhedron of degeneracy d — 1, finds its facets and do the
liftings. This requires knowing the facets of CUT 1.

» Thm: In dimension 7 there is only 357 and ERy.



