Lattice coverings and Delaunay polytopes

Mathieu Dutour Sikirić Rudjer Bošković Institute, Croatia

October 2, 2019

I. Lattices coverings

Lattice coverings

- A lattice $L \subset \mathbb{R}^n$ is a set of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$.
- ► A covering is a family of balls $B_n(x_i, r)$, $i \in I$ of the same radius r and center x_i such that any $x\in\mathbb{R}^n$ belongs to at least one ball.

If L is a lattice, the lattice covering is the covering defined by taking the minimal value of $\alpha > 0$ such that $L + B_n(0, \alpha)$ is a covering.

Empty sphere and Delaunay polytopes

- \triangleright Def: A sphere $S(c, r)$ of center c and radius r in an *n*-dimensional lattice L is said to be an empty sphere if:
	- (i) $\|v c\| > r$ for all $v \in L$,
	- (ii) the set $S(c, r) \cap L$ contains $n + 1$ affinely independent points.
- \triangleright Def: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c,r)$.

 \triangleright Delaunay polytopes define a tessellation of the Euclidean space \mathbb{R}^n

Lattice covering

For a lattice L we define the covering radius $\mu(L)$ to be the smallest r such that the family of balls $v + B_n(0, r)$ for $v \in L$ cover \mathbb{R}^n .

 \blacktriangleright The covering density has the expression

$$
\Theta(L) = \frac{\mu(L)^n \operatorname{vol}(B_n(0,1))}{\det(L)} \geq 1
$$

with

 \triangleright $\mu(L)$ being the largest radius of Delaunay polytopes \triangleright or

$$
\mu(L) = \max_{x \in \mathbb{R}^n} \min_{y \in L} ||x - y||
$$

Covering minimization and maximization

- \triangleright For a given lattice L the only general method for computing Θ(L) is to compute all Delaunay polytopes.
- \triangleright The minimization problem is the problem of minimizing $\Theta(L)$ over all lattices L.

The following is known:

- ► For $n \leq 5$ the dual root lattice A_n^* is the best lattice covering.
- For $n = 6$ there is a conjecturally best lattice covering discovered in F. Vallentin PhD thesis.
- \triangleright The Leech lattice Λ_{24} is conjectured to be optimal.
- \triangleright The function Θ is unbounded from above but we will develop a theory for describing the local covering maxima. The following is known:
	- In There is no local covering maxima for $n \leq 5$
	- For $n = 6$ there is exactly one covering maxima: E_6
	- For $n = 7$ there are exactly two covering maxima: E_7 and ER_7 (Erdahl & Rybnikov lattice)
	- \triangleright There is an infinite series DS_n generalizing E_6 and E_7 .

II. Gram matrix formalism

Gram matrix and lattices

- Denote by S^n the vector space of real symmetric $n \times n$ matrices and $S_{>0}^n$ the convex cone of real symmetric positive definite $n \times n$ matrices.
- Take a basis (v_1, \ldots, v_n) of a lattice L and associate to it the Gram matrix $G_{\mathbf{v}} = (\langle v_i, v_j \rangle)_{1 \leq i,j \leq n} \in S_{>0}^n$.
- Example: take the hexagonal lattice generated by $v_1 = (1, 0)$ and $v_2 = \left(\frac{1}{2}\right)$ $\frac{1}{2}$, √ 3 $\frac{\sqrt{3}}{2}$

Isometric lattices

 \blacktriangleright Take a basis (v_1, \ldots, v_n) of a lattice L with $v_i = (v_{i,1}, \ldots, v_{i,n}) \in \mathbb{R}^n$ and write the matrix

$$
V = \left(\begin{array}{ccc} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{array}\right)
$$

and $G_{\mathbf{v}} = V^{\mathcal{T}} V$. The matrix G_v is defined by $\frac{n(n+1)}{2}$ variables as opposed to n^2 for the basis V.

- ► If $M \in S^n_{>0}$, then there exists V such that $M = V^T$ V (Gram Schmidt orthonormalization)
- If $M = V_1^T V_1 = V_2^T V_2$, then $V_1 = OV_2$ with $O^T O = I_n$ (i.e. O corresponds to an isometry of \mathbb{R}^n).
- Also if L is a lattice of \mathbb{R}^n with basis **v** and u an isometry of \mathbb{R}^n , then $G_{\mathbf{v}} = G_{u(\mathbf{v})}$.

Working with Gram matrices

In practice all computations on lattices of \mathbb{R}^n are best done with Gram matrices. For example computing

$$
d(x) = \min_{y \in L} \|x - y\|
$$

is equivalent to minimizing

$$
\min_{y\in\mathbb{Z}^n}(v-y)^{T}A(x-y)
$$

for some $v \in \mathbb{R}^n$ expressed from x.

 \triangleright We have the determinant relation

$$
\det\,\mathit{L}=\sqrt{\det\,\mathit{G}_{\mathbf{v}}}
$$

- \triangleright In general, Gram matrices are the only information taken into input by programs in lattice theory.
- \triangleright They give a parameter space for lattices with a natural topology.

Changing basis

If **v** and **v**' are two basis of a lattice L then $V' = VP$ with $P \in GL_n(\mathbb{Z})$. This implies

$$
G_{\mathbf{v}'} = V^{\prime T} V^{\prime} = (VP)^{T} VP = P^{T} \{ V^{T} V \} P = P^{T} G_{\mathbf{v}} P
$$

If $A, B \in S^n_{>0}$, they are called arithmetically equivalent if there is at least one $P \in GL_n(\mathbb{Z})$ such that

$$
A = P^T B P
$$

- \blacktriangleright Lattices up to isometric equivalence correspond to $S_{>0}^n$ up to arithmetic equivalence.
- ► In practice, Plesken & Souvignier wrote a program isom for testing arithmetic equivalence and a program autom for computing automorphism group of lattices.

III. The lattice covering problem

Equalities and inequalities

- \blacktriangleright Take $M = G_v$ with $v = (v_1, \ldots, v_n)$ a basis of lattice L.
- ► If $V = (w_1, \ldots, w_N)$ with $w_i \in \mathbb{Z}^n$ are the vertices of a Delaunay polytope of empty sphere $S(c, r)$ then:

$$
\|w_i - c\| = r \quad \text{i.e.} \quad w_i^T M w_i - 2 w_i^T M c + c^T M c = r^2
$$

 \blacktriangleright Substracting one obtains

$$
\left\{ w_i^T M w_i - w_j^T M w_j \right\} - 2 \left\{ w_i^T - w_j^T \right\} M c = 0
$$

- Inverting matrices, one obtains $Mc = \psi(M)$ with ψ linear and so one gets linear equalities on M.
- \triangleright Similarly $||w c|| > r$ translates into a linear inequality on M: Take $V = (v_0, \ldots, v_n)$ a simplex $(v_i \in \mathbb{Z}^n)$, $w \in \mathbb{Z}^n$. If one writes $w=\sum_{i=0}^n\lambda_i v_i$ with $1=\sum_{i=0}^n\lambda_i,$ then one has

$$
||w - c|| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0
$$

Iso-Delaunay domains

- \blacktriangleright Take a lattice L and select a basis v_1, \ldots, v_n .
- \triangleright We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.

 \triangleright An iso-Delaunay domain is the assignment of Delaunay polytopes of the lattice.

Primitive iso-Delaunay

- If one takes a generic matrix M in $S_{>0}^n$, then all its Delaunay are simplices and so no linear equality are implied on M.
- \blacktriangleright Hence the corresponding iso-Delaunay domain is of dimension $n(n+1)$ 2 , they are called primitive

Equivalence and enumeration

- \blacktriangleright The group $GL_n(\mathbb{Z})$ acts on $S^n_{>0}$ by arithmetic equivalence and preserve the primitive iso-Delaunay domains.
- \triangleright Voronoi proved that after this action, there is a finite number of primitive iso-Delaunay domains.
- \triangleright Bistellar flipping creates one iso-Delaunay from a given iso-Delaunay domain and a facet of the domain. In dim. 2:

- \blacktriangleright Enumerating primitive iso-Delaunay domains is done classically:
	- \blacktriangleright Find one primitive iso-Delaunay domain.
	- \blacktriangleright Find the adjacent ones and reduce by arithmetic equivalence.

The algorithm is graph traversal and iteratively finds all the iso-Delaunay up to equivalence.

The partition of $S_{>0}^2 \subset \mathbb{R}^3$ I

If $q(x, y) = u^2 + 2vxy + wy^2$ then $q \in S^2_{>0}$ if and only if v^2 $<$ uw and $u > 0$.

The partition of $S_{>0}^2 \subset \mathbb{R}^3$ II

We cut by the plane $u + w = 1$ and get a circle representation.

The partition of $S_{>0}^2 \subset \mathbb{R}^3$ III

Primitive iso-Delaunay domains in $S^2_{>0}$:

IV. SDP optimization

Radius of Delaunay polytope

- \blacktriangleright Fix a primitive iso-Delaunay domain, i.e. a collection of simplexes as Delaunay polytopes D_1, \ldots, D_m .
- Thm: For every $D_i = Conv(0, v_1, \ldots, v_n)$, the radius of the Delaunay polytope is at most 1 if and only if

$$
\begin{pmatrix}\n4 & \langle v_1, v_1 \rangle & \langle v_2, v_2 \rangle & \dots & \langle v_n, v_n \rangle \\
\langle v_1, v_1 \rangle & \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle & \dots & \langle v_1, v_n \rangle \\
\langle v_2, v_2 \rangle & \langle v_2, v_1 \rangle & \langle v_2, v_2 \rangle & \dots & \langle v_2, v_n \rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\langle v_n, v_n \rangle & \langle v_n, v_1 \rangle & \langle v_n, v_2 \rangle & \dots & \langle v_n, v_n \rangle\n\end{pmatrix} \in S^{n+1}_{\geq 0}
$$

by Delaunay, Dolbilin, Ryshkov & Shtogrin.

- \triangleright The condition is a semidefinite condition.
- \blacktriangleright See for more details
	- \triangleright A. Schürmann and F. Vallentin, Computational approaches to lattice packing and covering problems, Discrete & Computational Geometry 35 (2006) 73–116.
	- \triangleright A. Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.

SDP optimization problem

- \triangleright Fix a primitive iso-Delaunay domain, i.e. a collection of simplexes as Delaunay polytopes D_1, \ldots, D_m .
- \triangleright Thm (Minkowski): The function $-\log \det(M)$ is strictly convex on $S_{>0}^n$.
- \blacktriangleright Solve the problem
	- \triangleright *M* in the iso-Delaunay domain (linear inequalities),
	- \triangleright the Delaunay D_i have radius at most 1 (semidefinite condition),
	- \triangleright minimize log det(M) (strictly convex).
- \triangleright Thm: Given an iso-Delaunay domain LT, there exist a unique lattice, which minimize the covering density over LT .
- \triangleright The above problem is solved by the interior point methods implemented in MAXDET by Vandenberghe, Boyd & Wu. Unicity comes from the strict convexity of the objective function.

Solving the minimum covering problem

- \triangleright The lattice covering problem is to find a lattice covering of minimal density.
- \triangleright The solution of the SDP problem by interior point methods does not give exact solutions but approximate solutions available at any precision.
- \triangleright The exact solution is expressible with algebraic integers once one knows which inequations are satisfied with equality.
- \triangleright The method for solving the lattice covering problem in $dimension$ *n* is thus:
	- Enumerate all iso-Delaunay domains LT up to equivalence
	- \triangleright solve the SDP on all the domains
	- \triangleright Take the one(s) of minimum covering density
- \triangleright Pb: 222 primitive iso-Delaunay domains in dimension 5 (Baranovski, Ryshkov, Engel & Grishukhin) and at least 200 millions in dimension 6 (Engel). This is not practical at all

V. iso-Delaunay domains of S^n_{\geq} $\mathcal{L}_{>0}^{\prime}$ -spaces

$S^n_{>}$ \int_{0}^{∞} -spaces

- A $S_{>0}^n$ -space is a vector space \mathcal{SP} of \mathcal{S}^n , which intersect $S_{>0}^n$.
- \triangleright We want to describe the Delaunay decomposition of matrices $M \in S^n_{>0} \cap \mathcal{SP}.$
- \blacktriangleright Motivations:
	- \triangleright The enumeration of iso-Delaunay is done up to dimension 5 but certainly not for higher dimension.
	- \triangleright We hope to find some good covering by selecting judicious SP . This is a search for best but unproven to be optimal coverings.
- A iso-Delaunay in SP is an open convex polyhedral set included in $S_{>0}^n \cap \mathcal{SP}$, for which every element has the same Delaunay decomposition.
- \triangleright Typical choice of a space $\mathcal{S}P$ are the space of forms invariant under a finite integral matrix group G. In that case finiteness of the set of iso-Delaunay up to equivalence is proved.
- \triangleright Dimension of the space $\mathcal{S}P$ is typically no larger than 4.

Lifted Delaunay decomposition

 \triangleright The Delaunay polytopes of a lattice L correspond to the facets of the convex cone $C(L)$ with vertex-set:

 $\{(x,||x||^2) \text{ with } x \in L\} \subset \mathbb{R}^{n+1}.$

 \blacktriangleright H. Edelsbrunner, N.R. Shah, Incremental Topological Flipping Works for Regular Triangulations, Algorithmica 15 (1996) 223–241.

Generalized bistellar flips

- \triangleright The "glued" Delaunay form a Delaunay decomposition for a matrix M in the (SP, L) -iso-Delaunay satisfying to $f(M) = 0$.
- \blacktriangleright The flipping break those Delaunays in a different way.
- \blacktriangleright Two triangulations of \mathbb{Z}^2 correspond in the lifting to:

- \triangleright The polytope represented is called the repartitioning polytope. It has two partitions into Delaunay polytopes.
- \blacktriangleright The lower facets correspond to one tesselation, the upper facets to the other tesselation.

Enumeration technique

- Find a primitive $(S\mathcal{P}, L)$ -iso-Delaunay domain, insert it to the list as undone.
- \blacktriangleright Iterate
	- For every undone primitive (SP, L) -iso-Delaunay domain, compute the facets.
	- \blacktriangleright Eliminate redundant inequalities.
	- For every non-redundant inequality realize the flipping, i.e. compute the adjacent primitive (SP, L) -iso-Delaunay domain. If it is new, then add to the list as undone.
- \blacktriangleright See for full details
	- \triangleright M. Dutour Sikirić, F. Vallentin and A. Schürmann, A generalization of Voronoi's reduction theory and applications, Duke Math. J. 142 (2008), 127–164.

Best known lattice coverings

- For $n \leq 5$ the results are definitive.
- The lattices A_n^r for r dividing $n+1$ are the Coxeter lattices. They are often good coverings and they are used for perturbations.
- \triangleright For dimensions 10 and 12 we use laminations over Coxeter lattices of dimension 9 and 11.
- \triangleright Leech lattice is conjecturally optimal (it is local optimal Schürmann & Vallentin)

VI. Quadratic functions and the Erdahl cone

The Erdahl cone

 \triangleright Denote by $E_2(n)$ the vector space of degree 2 polynomial functions on \mathbb{R}^n . We write $f \in E_2(n)$ in the form

$$
f(x) = a_f + b_f \cdot x + Q_f[x]
$$

with $a_f \in \mathbb{R}$, $b_f \in \mathbb{R}^n$ and Q_f a $n \times n$ symmetric matrix

 \blacktriangleright The Erdahl cone is defined as

 $Erdahl(n) = \{f \in E_2(n) \text{ such that } f(x) \ge 0 \text{ for } x \in \mathbb{Z}^n\}$

- It is a convex cone, which is non-polyhedral since defined by an infinity of inequalities.
- \blacktriangleright The group acting on Erdahl(n) is AGL_n(\mathbb{Z}), i.e. the group of affine integral transformations

$$
x \mapsto b + Px \text{ for } b \in \mathbb{Z}^n \text{ and } P \in GL_n(\mathbb{Z})
$$

Scalar product

► Def: If $f, g \in E_2(n)$, then:

$$
\langle f,g\rangle=a_f a_g+\langle b_f,b_g\rangle+\langle Q_f,Q_g\rangle
$$

► Def: For $v \in \mathbb{Z}^n$, define $ev_v(x) = (1 + v \cdot x)^2$.

 \blacktriangleright We have

$$
\langle f,\text{ev}_v\rangle=f(v)
$$

- In Thus finding the rays of $Erdahl(n)$ is a dual description problem with an infinity of inequalities and infinite group acting on it.
- If $f \in Erdahl(n)$ then Q_f is positive semidefinite.
- \triangleright Def: We also define

 $Erdahl_{>0}(n) = \{f \in Erdahl(n) : Q_f$ positive definite

Relation with Delaunay polytope

If D is a Delaunay polytope of a lattice $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ of empty sphere $S(c, r)$ then we define the function

$$
f_{D,\mathbf{v}} : \mathbb{Z}^n \rightarrow \mathbb{R}
$$

$$
x = (x_1, \ldots, x_n) \mapsto \|\sum_{i=1}^n x_i v_i - c\|^2 - r^2
$$

Clearly $f_{D,v} \in Erdahl_{>0}(n)$.

- \triangleright The perfection rank of a Delaunay polytope is the dimension of the face it defines in $Erdahl(n)$.
- \triangleright Def: If $f \in Erdahl(n)$ then

$$
Z(f)=\{v\in\mathbb{Z}^n:f(v)=0\}
$$

 \triangleright Thm: If $f \in ErdahI(n)$ then there exist a lattice L_f and a lattice L' containing a Delaunay polytope D_f such that

$$
Z(f)=D_f+L_f
$$

► We have dim L' + dim $L_f \le n$. In case of equality $Z(f)$ is called a Delaunay polyhedra.

Perfect Delaunay polytopes/polyhedra

 \triangleright Def: If D is a *n*-dimensional Delaunay polyhedra then we define

$$
\mathsf{Dom}_{\mathbf{v}}\ \ D = \sum_{\mathsf{vv} \in D} \mathbb{R}_+ e_{\mathsf{v}}\mathsf{v}
$$

- \blacktriangleright We have $\langle f_{D,v}, \text{Dom}_{v} \rangle = 0$.
- ► Def: D is perfect if Dom D is of dimension $\binom{n+2}{2}$ $\binom{+2}{2}$ $-$ 1 that is if the perfection rank is 1.
- In This implies that f_D generates an extreme ray of Erdahl(n) and f_D is rational.
- \triangleright A perfect *n*-dimensional Delaunay polytope has at least $\binom{n+2}{2}$ $\binom{+2}{2}$ $-$ 1 vertices. There is only one way to embed it as a Delaunay polytope of a lattice.
- \triangleright Perfect Delaunay polytopes are remarkable and rare objects.

VII. Covering maxima, pessima and their characterization

Eutacticity

If $f \in Erdahl_{>0}(n)$ then define μ_f and c_f such that

$$
f(x) = Q_f[x - c_f] - \mu_f
$$

Then define

$$
u_f(x) = (1 + c_f \cdot x)^2 + \frac{\mu_f}{n} Q_f^{-1}[x]
$$

- ► Def: $f \in Erdahl_{>0}(n)$ is eutactic if u_f is in the relative interior of Dom f .
- \triangleright Def: Take a Delaunay polytope P for a quadratic form Q of center c_P and square radius μ_P . P is called eutactic if there are $\alpha_{\nu} > 0$ so that

$$
\begin{cases}\n1 = \sum_{v \in \text{vert } P} \alpha_v, \\
0 = \sum_{v \in \text{vert } P} \alpha_v (v - c_P), \\
\frac{\mu_P}{n} Q^{-1} = \sum_{v \in \text{vert } P} \alpha_v (v - c_P) (v - c_P)^T.\n\end{cases}
$$

Covering maxima

- \triangleright A given lattice L is called a covering maxima if for any lattice L' near L we have $\Theta(L') < \Theta(L)$.
- \triangleright Thm: For a lattice L the following are equivalent:
	- \blacktriangleright L is a covering maxima
	- Every Delaunay polytope of maximal circumradius of L is perfect and eutactic.
- \blacktriangleright The following are covering maxima:

► Thm: For any $n > 6$ there exist one lattice $L(DS_n)$ which is a covering maxima.

There is only one perfect Delaunay polytope $P(DS_n)$ of maximal radius in $L(DS_n)$.

The infinite series

- For n even $P(DS_n)$ is defined as the lamination over D_{n-1} of
	- \triangleright one vertex
	- ► the half cube $\frac{1}{2}H_{n-1}$
	- \triangleright the cross polytope CP_{n-1}

For $n = 6$, it is E_6 .

- ► For *n* odd as the lamination over D_{n-1} of
	- \triangleright the cross polytope CP_{n-1}
	- ► the half cube $\frac{1}{2}H_{n-1}$
	- \triangleright the cross polytope CP_{n-1}

For $n = 7$, it is E₇.

- \triangleright Conj: The lattice DS_n has the following properties:
	- If $L(DS_n)$ has the maximum covering density among all *n*-dim. covering maxima
	- Among all perfect Delaunay polytopes, $P(DS_n)$ has
		- \blacktriangleright maximum number of vertices
		- \blacktriangleright maximum volume

If true this would imply Minkowski conjecture by results of

 \triangleright U. Shapira and B. Weiss, Stable Lattices and the Diagonal Group, preprint

Pessimum and Morse function property

- For a lattice L let us denote $D_{crit}(L)$ the space of direction d of deformation of L such that Θ increases in the direction d.
- \triangleright Def: A lattice L is said to be a covering pessimum if the space D_{crit} is of measures 0.
- \triangleright Thm: If the Delaunay polytopes of maximum circumradius of a lattice L are eutactic and are not simplices then L is a pessimum.

 \triangleright Thm: The covering density function $Q \mapsto \Theta(Q)$ is a topological Morse function if and only if $n \leq 3$.

VIII. Enumeration of perfect Delaunay polytopes

Perfect Delaunay polytope

 \triangleright There is a finite number of them in each dimension n. Known results:

dim.	perfect Delaunay	authors
1	$[0,1]$ in $\mathbb Z$	
2		
3		
4		
5		↑ (Deza, Laurent & Grishukhin)
6	2_{21} in E ₆	(Deza & Dutour)
7	3_{21} in E ₇	
	and ER_7 in $L(ER_7)$	(Dutour Sikirić)
8	>27	(Dutour Sikirić & Rybnikov)
q	>100000	(Dutour Sikirić)

- \triangleright Thm: There exist perfect Delaunay polytopes D such that $\mathbb{Z}D \neq \mathbb{Z}^n$ (dimension $n \geq 13$, Rybnikov & Dutour Sikirić).
- \triangleright Thm: There exist lattices with several perfect Delaunay polytopes (dimension 15 and 23, Rybnikov & Dutour Sikirić).
- \triangleright Thm: For $n > 6$ there exist a perfect Delaunay polytope with exactly $\binom{n+2}{2}$ $\binom{+2}{2} - 1$ vertices (Erdahl & Rybnikov) ER_n .

Extreme rays of $Erdahl(n)$

► Def: If $f \in Erdahl_{>0}(n)$ then we define

$$
\text{Dom } f = \sum_{v \in Z(f)} \mathbb{R}_+ e v_v
$$

- \blacktriangleright We have $\langle f, \text{Dom } f \rangle = 0$.
- \triangleright Thm (Erdahl): The extreme rays of Erdahl(n) are:
	- (a) The constant function 1.
	- (b) The functions

$$
(a_1x_1+\cdots+a_nx_n+\beta)^2
$$

with (a_1, \ldots, a_n) not collinear to an integral vector.

- (c) The functions f such that $Z(f)$ is a perfect Delaunay polyhedra.
- \triangleright Note that if $f \in Erdahl(n)$ with $Z(f)$ a Delaunay polyhedra, then there exist a lattice L' of dimension $k \leq n$, a Delaunay polytope D of L', a basis \mathbf{v}' of L' and a function $\phi \in {\sf{AGL}}_n(\mathbb{Z})$ such that

$$
f\circ\phi(x_1,\ldots,x_n)=f_{D,\mathbf{v}'}(x_1,\ldots,x_k)
$$

Delaunay polyhedra retract

- ► For a function $f \in Erdahl(n)$ a proper decomposition is a pair (g, h) with $f = g + h$, $g \in Erdahl(n)$ and $h(x) > 0$ for $x \in \mathbb{R}^n$.
- \blacktriangleright Lem: For a proper decomposition we have

$$
Vect Z(f) + Ker Q_f \subset Ker Q_h
$$

and there exist a proper decomposition with equality.

- Fix an integral complement L' of Vect $Z(f) +$ Ker Q_f . A proper decomposition is called extremal if det $Q_h|_{U}$ is maximal among all proper decompositions.
- ► Thm: For $f \in Erdahl(n)$, there exist a unique extremal decomposition. For it we have that $Z(g)$ is a Delaunay polyhedra.
- \triangleright Conj: The decomposition depends continuously on $f \in Erdahl(n)$.
- \triangleright On the other hand in a neighborhood of $f \in Erdahl(n)$ we can have an infinity of Delaunay polyhedra.

Enumeration of perfect Delaunay polyhedra

 \triangleright From a given *n*-dimensional Delaunay polyhedron P of form f we can define the local cone

$$
Loc(f) = \{ g \in E_2(n) \text{ s.t. } g(x) \ge 0 \text{ for } x \in Z(f) \}.
$$

We set the define the degeneracy $d(P)=dim L_f$.

- ► Thm: For a Delaunay polyhedron P let $(P_i)_{i \in I}$ the set of Delaunay polyhedra of degeneracy $d(P) - 1$ and perfection rank $r(P)-1$. P_i and P_j are adjacent if $P_i\cap P_j$ is of perfection rank $r(P) - 2$. The obtained graph is connected.
- \triangleright Thm: In a fixed dimension *n* there exist an algorithm for enumerating the perfect Delaunay polytopes of dimension n. The algorithm is iterative. It relies on dual description. If the degeneracy rank is $d > 0$ then we find a sub Delaunay polyhedron of degeneracy $d-1$, finds its facets and do the liftings. This requires knowing the facets of CUT_{n+1} .
- \triangleright Thm: In dimension 7 there is only 3₂₁ and *ER*₇.