Lattice coverings and Delaunay polytopes

Mathieu Dutour Sikirić

Rudjer Bošković Institute, Croatia

October 2, 2019

I. Lattices coverings

Lattice coverings

- ▶ A lattice $L \subset \mathbb{R}^n$ is a set of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$.
- ▶ A covering is a family of balls $B_n(x_i, r)$, $i \in I$ of the same radius r and center x_i such that any $x \in \mathbb{R}^n$ belongs to at least one ball.

▶ If L is a lattice, the lattice covering is the covering defined by taking the minimal value of $\alpha > 0$ such that $L + B_n(0, \alpha)$ is a covering.

Empty sphere and Delaunay polytopes

- ▶ Def: A sphere S(c, r) of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
 - (i) $||v-c|| \ge r$ for all $v \in L$,
 - (ii) the set $S(c,r) \cap L$ contains n+1 affinely independent points.
- ▶ Def: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

▶ Delaunay polytopes define a tessellation of the Euclidean space \mathbb{R}^n

Lattice covering

▶ For a lattice L we define the covering radius $\mu(L)$ to be the smallest r such that the family of balls $v + B_n(0, r)$ for $v \in L$ cover \mathbb{R}^n .

The covering density has the expression

$$\Theta(L) = \frac{\mu(L)^n \operatorname{vol}(B_n(0,1))}{\det(L)} \ge 1$$

with

- \blacktriangleright $\mu(L)$ being the largest radius of Delaunay polytopes
- ▶ or

$$\mu(L) = \max_{x \in \mathbb{R}^n} \min_{y \in L} ||x - y||$$

Covering minimization and maximization

- ▶ For a given lattice L the only general method for computing $\Theta(L)$ is to compute all Delaunay polytopes.
- ▶ The minimization problem is the problem of minimizing $\Theta(L)$ over all lattices L.

The following is known:

- ▶ For $n \le 5$ the dual root lattice A_n^* is the best lattice covering.
- ► For *n* = 6 there is a conjecturally best lattice covering discovered in F. Vallentin PhD thesis.
- ▶ The Leech lattice Λ_{24} is conjectured to be optimal.
- The function Θ is unbounded from above but we will develop a theory for describing the local covering maxima.
 - The following is known:
 - ▶ There is no local covering maxima for $n \le 5$
 - ▶ For n = 6 there is exactly one covering maxima: E_6
 - For n = 7 there are exactly two covering maxima: E_7 and ER_7 (Erdahl & Rybnikov lattice)
 - ▶ There is an infinite series DS_n generalizing E_6 and E_7 .

II. Gram matrix formalism

Gram matrix and lattices

- ▶ Denote by S^n the vector space of real symmetric $n \times n$ matrices and $S^n_{>0}$ the convex cone of real symmetric positive definite $n \times n$ matrices.
- ▶ Take a basis $(v_1, ..., v_n)$ of a lattice L and associate to it the Gram matrix $G_{\mathbf{v}} = (\langle v_i, v_j \rangle)_{1 \leq i,j \leq n} \in S^n_{>0}$.
- lacktriangle Example: take the hexagonal lattice generated by $v_1=(1,0)$ and $v_2=\left(rac{1}{2},rac{\sqrt{3}}{2}
 ight)$

$$G_{\mathbf{v}} = \frac{1}{2} \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right)$$

Isometric lattices

▶ Take a basis $(v_1, ..., v_n)$ of a lattice L with $v_i = (v_{i,1}, ..., v_{i,n}) \in \mathbb{R}^n$ and write the matrix

$$V = \left(\begin{array}{ccc} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{array}\right)$$

and $G_{\mathbf{v}} = V^T V$.

The matrix $G_{\mathbf{v}}$ is defined by $\frac{n(n+1)}{2}$ variables as opposed to n^2 for the basis V.

- ▶ If $M \in S_{>0}^n$, then there exists V such that $M = V^T V$ (Gram Schmidt orthonormalization)
- ▶ If $M = V_1^T V_1 = V_2^T V_2$, then $V_1 = OV_2$ with $O^T O = I_n$ (i.e. O corresponds to an isometry of \mathbb{R}^n).
- Also if L is a lattice of \mathbb{R}^n with basis \mathbf{v} and u an isometry of \mathbb{R}^n , then $G_{\mathbf{v}} = G_{u(\mathbf{v})}$.

Working with Gram matrices

In practice all computations on lattices of \mathbb{R}^n are best done with Gram matrices. For example computing

$$d(x) = \min_{y \in L} \|x - y\|$$

is equivalent to minimizing

$$\min_{y \in \mathbb{Z}^n} (v - y)^T A(x - y)$$

for some $v \in \mathbb{R}^n$ expressed from x.

▶ We have the determinant relation

$$\det L = \sqrt{\det G_{\mathbf{v}}}$$

- ▶ In general, Gram matrices are the only information taken into input by programs in lattice theory.
- ► They give a parameter space for lattices with a natural topology.

Changing basis

▶ If **v** and **v**' are two basis of a lattice *L* then V' = VP with $P \in GL_n(\mathbb{Z})$. This implies

$$G_{v'} = V'^T V' = (VP)^T VP = P^T \{V^T V\}P = P^T G_{v}P$$

▶ If $A, B \in S_{>0}^n$, they are called arithmetically equivalent if there is at least one $P \in GL_n(\mathbb{Z})$ such that

$$A = P^T B P$$

- Lattices up to isometric equivalence correspond to $S_{>0}^n$ up to arithmetic equivalence.
- ▶ In practice, Plesken & Souvignier wrote a program isom for testing arithmetic equivalence and a program autom for computing automorphism group of lattices.

III. The lattice covering problem

Equalities and inequalities

- ▶ Take $M = G_v$ with $v = (v_1, ..., v_n)$ a basis of lattice L.
- ▶ If $V = (w_1, ..., w_N)$ with $w_i \in \mathbb{Z}^n$ are the vertices of a Delaunay polytope of empty sphere S(c, r) then:

$$||w_i - c|| = r$$
 i.e. $w_i^T M w_i - 2 w_i^T M c + c^T M c = r^2$

Substracting one obtains

$$\left\{w_i^T M w_i - w_j^T M w_j\right\} - 2\left\{w_i^T - w_j^T\right\} M c = 0$$

- ▶ Inverting matrices, one obtains $Mc = \psi(M)$ with ψ linear and so one gets linear equalities on M.
- ▶ Similarly $||w c|| \ge r$ translates into a linear inequality on M: Take $V = (v_0, \ldots, v_n)$ a simplex $(v_i \in \mathbb{Z}^n)$, $w \in \mathbb{Z}^n$. If one writes $w = \sum_{i=0}^n \lambda_i v_i$ with $1 = \sum_{i=0}^n \lambda_i$, then one has

$$\|w - c\| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0$$

Iso-Delaunay domains

- ▶ Take a lattice L and select a basis v_1, \ldots, v_n .
- ► We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.

► An iso-Delaunay domain is the assignment of Delaunay polytopes of the lattice.

Primitive iso-Delaunay

- ▶ If one takes a generic matrix M in $S_{>0}^n$, then all its Delaunay are simplices and so no linear equality are implied on M.
- ► Hence the corresponding iso-Delaunay domain is of dimension $\frac{n(n+1)}{2}$, they are called primitive

Equivalence and enumeration

- ▶ The group $GL_n(\mathbb{Z})$ acts on $S_{>0}^n$ by arithmetic equivalence and preserve the primitive iso-Delaunay domains.
- Voronoi proved that after this action, there is a finite number of primitive iso-Delaunay domains.
- ▶ Bistellar flipping creates one iso-Delaunay from a given iso-Delaunay domain and a facet of the domain. In dim. 2:

- Enumerating primitive iso-Delaunay domains is done classically:
 - Find one primitive iso-Delaunay domain.
 - ► Find the adjacent ones and reduce by arithmetic equivalence.

The algorithm is graph traversal and iteratively finds all the iso-Delaunay up to equivalence.

The partition of $S^2_{>0} \subset \mathbb{R}^3$ I

If $q(x,y) = ux^2 + 2vxy + wy^2$ then $q \in S_{>0}^2$ if and only if $v^2 < uw$ and u > 0.

The partition of $S^2_{>0} \subset \mathbb{R}^3$ II

We cut by the plane $\mathrm{u}+\mathrm{w}=1$ and get a circle representation.

The partition of $S^2_{>0}\subset \mathbb{R}^3$ III

Primitive iso-Delaunay domains in $S_{>0}^2$:

IV. SDP optimization

Radius of Delaunay polytope

- Fix a primitive iso-Delaunay domain, i.e. a collection of simplexes as Delaunay polytopes D_1, \ldots, D_m .
- ▶ Thm: For every $D_i = Conv(0, v_1, ..., v_n)$, the radius of the Delaunay polytope is at most 1 if and only if

$$\begin{pmatrix} 4 & \langle v_1, v_1 \rangle & \langle v_2, v_2 \rangle & \dots & \langle v_n, v_n \rangle \\ \langle v_1, v_1 \rangle & \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle & \dots & \langle v_1, v_n \rangle \\ \langle v_2, v_2 \rangle & \langle v_2, v_1 \rangle & \langle v_2, v_2 \rangle & \dots & \langle v_2, v_n \rangle \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \langle v_n, v_n \rangle & \langle v_n, v_1 \rangle & \langle v_n, v_2 \rangle & \dots & \langle v_n, v_n \rangle \end{pmatrix} \in S^{n+1}_{\geq 0}$$

by Delaunay, Dolbilin, Ryshkov & Shtogrin.

- ▶ The condition is a semidefinite condition.
- See for more details
 - A. Schürmann and F. Vallentin, Computational approaches to lattice packing and covering problems, Discrete & Computational Geometry 35 (2006) 73–116.
 - ► A. Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.

SDP optimization problem

- Fix a primitive iso-Delaunay domain, i.e. a collection of simplexes as Delaunay polytopes D_1, \ldots, D_m .
- ► Thm (Minkowski): The function $-\log \det(M)$ is strictly convex on $S_{>0}^n$.
- Solve the problem
 - ▶ *M* in the iso-Delaunay domain (linear inequalities),
 - ▶ the Delaunay *D_i* have radius at most 1 (semidefinite condition),
 - ▶ minimize log det(M) (strictly convex).
- ► Thm: Given an iso-Delaunay domain *LT*, there exist a unique lattice, which minimize the covering density over *LT*.
- ► The above problem is solved by the interior point methods implemented in MAXDET by Vandenberghe, Boyd & Wu. Unicity comes from the strict convexity of the objective function.

Solving the minimum covering problem

- The lattice covering problem is to find a lattice covering of minimal density.
- ► The solution of the SDP problem by interior point methods does not give exact solutions but approximate solutions available at any precision.
- ► The exact solution is expressible with algebraic integers once one knows which inequations are satisfied with equality.
- ► The method for solving the lattice covering problem in dimension *n* is thus:
 - ▶ Enumerate all iso-Delaunay domains *LT* up to equivalence
 - ▶ solve the SDP on all the domains
 - Take the one(s) of minimum covering density
- ▶ Pb: 222 primitive iso-Delaunay domains in dimension 5 (Baranovski, Ryshkov, Engel & Grishukhin) and at least 200 millions in dimension 6 (Engel). This is not practical at all

V. iso-Delaunay domains of $S_{>0}^n$ -spaces

$S_{>0}^n$ -spaces

- ▶ A $S_{>0}^n$ -space is a vector space SP of S^n , which intersect $S_{>0}^n$.
- ▶ We want to describe the Delaunay decomposition of matrices $M \in S_{>0}^n \cap \mathcal{SP}$.
- ► Motivations:
 - ► The enumeration of iso-Delaunay is done up to dimension 5 but certainly not for higher dimension.
 - We hope to find some good covering by selecting judicious SP. This is a search for best but unproven to be optimal coverings.
- ▶ A iso-Delaunay in \mathcal{SP} is an open convex polyhedral set included in $S_{>0}^n \cap \mathcal{SP}$, for which every element has the same Delaunay decomposition.
- ▶ Typical choice of a space SP are the space of forms invariant under a finite integral matrix group G. In that case finiteness of the set of iso-Delaunay up to equivalence is proved.
- ▶ Dimension of the space SP is typically no larger than 4.

Lifted Delaunay decomposition

▶ The Delaunay polytopes of a lattice L correspond to the facets of the convex cone C(L) with vertex-set:

$$\{(x,||x||^2) \text{ with } x \in L\} \subset \mathbb{R}^{n+1}$$
.

► H. Edelsbrunner, N.R. Shah, *Incremental Topological Flipping Works for Regular Triangulations*, Algorithmica **15** (1996) 223–241.

Generalized bistellar flips

- ▶ The "glued" Delaunay form a Delaunay decomposition for a matrix M in the (\mathcal{SP}, L) -iso-Delaunay satisfying to f(M) = 0.
- ▶ The flipping break those Delaunays in a different way.
- ▶ Two triangulations of \mathbb{Z}^2 correspond in the lifting to:

- ► The polytope represented is called the repartitioning polytope. It has two partitions into Delaunay polytopes.
- ► The lower facets correspond to one tesselation, the upper facets to the other tesselation.

Enumeration technique

- ▶ Find a primitive (SP, L)-iso-Delaunay domain, insert it to the list as undone.
- Iterate
 - For every undone primitive (\mathcal{SP}, L) -iso-Delaunay domain, compute the facets.
 - Eliminate redundant inequalities.
 - For every non-redundant inequality realize the flipping, i.e. compute the adjacent primitive (\mathcal{SP}, L) -iso-Delaunay domain. If it is new, then add to the list as undone.
- See for full details
 - M. Dutour Sikirić, F. Vallentin and A. Schürmann, A generalization of Voronoi's reduction theory and applications, Duke Math. J. 142 (2008), 127–164.

Best known lattice coverings

d	lattice / covering density Θ		
1	\mathbb{Z}^1 1	13	L ^c ₁₃ (DSV) 7.762108
2	A ₂ (Kershner) 1.209199	14	L ₁₄ (DSV) 8.825210
3	A_3^* (Bambah) 1.463505	15	L_{15}^{c} (DSV) 11.004951
4	A ₄ (Delaunay & Ryshkov) 1.765529	16	A ₁₆ (DSV) 15.310927
5	A ₅ * (Ryshkov & Baranovski) 2.124286	17	A ₁₇ (DSV) 12.357468
6	L ^c ₆ (Vallentin) 2.464801	18	A ₁₈ 21.840949
7	L ^c ₇ (Schürmann & Vallentin) 2.900024	19	A ₁₉ (DSV) 21.229200
8	L ^c ₈ (Schürmann & Vallentin) 3.142202	20	A ⁷ ₂₀ (DSV) 20.366828
9	L _o ^c (DSV) 4.268575	21	$A_{21}^{\tilde{1}\tilde{1}}$ (DSV) 27.773140
10	L ₁₀ (DSV) 5.154463	22	$\Lambda_{22}^{*1}(Smith) \leq 27.8839$
11	L ₁₁ (DSV) 5.505591	23	Λ_{23}^{*} (Smith, MDS) 15.3218
12	L ₁₂ (DSV) 7.465518	24	Leech 7.903536

- ▶ For n < 5 the results are definitive.
- ▶ The lattices A_n^r for r dividing n+1 are the Coxeter lattices. They are often good coverings and they are used for perturbations.
- ► For dimensions 10 and 12 we use laminations over Coxeter lattices of dimension 9 and 11.
- ► Leech lattice is conjecturally optimal (it is local optimal Schürmann & Vallentin)

VI. Quadratic functions and the Erdahl cone

The Erdahl cone

▶ Denote by $E_2(n)$ the vector space of degree 2 polynomial functions on \mathbb{R}^n . We write $f \in E_2(n)$ in the form

$$f(x) = a_f + b_f \cdot x + Q_f[x]$$

with $a_f \in \mathbb{R}$, $b_f \in \mathbb{R}^n$ and Q_f a $n \times n$ symmetric matrix

The Erdahl cone is defined as

$$Erdahl(n) = \{ f \in E_2(n) \text{ such that } f(x) \geq 0 \text{ for } x \in \mathbb{Z}^n \}$$

- It is a convex cone, which is non-polyhedral since defined by an infinity of inequalities.
- ▶ The group acting on Erdahl(n) is $AGL_n(\mathbb{Z})$, i.e. the group of affine integral transformations

$$x \mapsto b + Px$$
 for $b \in \mathbb{Z}^n$ and $P \in GL_n(\mathbb{Z})$

Scalar product

▶ Def: If $f, g \in E_2(n)$, then:

$$\langle f,g \rangle = a_f a_g + \langle b_f,b_g \rangle + \langle Q_f,Q_g \rangle$$

- ▶ Def: For $v \in \mathbb{Z}^n$, define $ev_v(x) = (1 + v \cdot x)^2$.
- We have

$$\langle f, ev_v \rangle = f(v)$$

- Thus finding the rays of Erdahl(n) is a dual description problem with an infinity of inequalities and infinite group acting on it.
- ▶ If $f \in Erdahl(n)$ then Q_f is positive semidefinite.
- ▶ Def: We also define

$$Erdahl_{>0}(n) = \{ f \in Erdahl(n) : Q_f \text{ positive definite} \}$$

Relation with Delaunay polytope

▶ If *D* is a Delaunay polytope of a lattice $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ of empty sphere S(c, r) then we define the function

$$f_{D,\mathbf{v}}: \mathbb{Z}^n \rightarrow \mathbb{R}$$

 $x = (x_1, \dots, x_n) \mapsto \|\sum_{i=1}^n x_i v_i - c\|^2 - r^2$

Clearly $f_{D,\mathbf{v}} \in Erdahl_{>0}(n)$.

- ► The perfection rank of a Delaunay polytope is the dimension of the face it defines in *Erdahl(n)*.
- ▶ Def: If $f \in Erdahl(n)$ then

$$Z(f) = \{ v \in \mathbb{Z}^n : f(v) = 0 \}$$

▶ Thm: If $f \in Erdahl(n)$ then there exist a lattice L_f and a lattice L' containing a Delaunay polytope D_f such that

$$Z(f) = D_f + L_f$$

▶ We have dim L' + dim $L_f \le n$. In case of equality Z(f) is called a Delaunay polyhedra.

Perfect Delaunay polytopes/polyhedra

Def: If D is a n-dimensional Delaunay polyhedra then we define

$$\mathsf{Dom}_{\mathbf{v}} \ D = \sum_{v\mathbf{v} \in D} \mathbb{R}_+ ev_v$$

- We have $\langle f_{D,\mathbf{v}}, \mathsf{Dom}_{\mathbf{v}} \ D \rangle = 0$.
- ▶ Def: *D* is perfect if Dom *D* is of dimension $\binom{n+2}{2} 1$ that is if the perfection rank is 1.
- ▶ This implies that f_D generates an extreme ray of Erdahl(n) and f_D is rational.
- A perfect n-dimensional Delaunay polytope has at least $\binom{n+2}{2}-1$ vertices. There is only one way to embed it as a Delaunay polytope of a lattice.
- Perfect Delaunay polytopes are remarkable and rare objects.

VII. Covering maxima, pessima and their characterization

Eutacticity

▶ If $f \in Erdahl_{>0}(n)$ then define μ_f and c_f such that

$$f(x) = Q_f[x - c_f] - \mu_f$$

Then define

$$u_f(x) = (1 + c_f \cdot x)^2 + \frac{\mu_f}{n} Q_f^{-1}[x]$$

- ▶ Def: $f \in Erdahl_{>0}(n)$ is eutactic if u_f is in the relative interior of Dom f.
- ▶ Def: Take a Delaunay polytope P for a quadratic form Q of center c_P and square radius μ_P . P is called eutactic if there are $\alpha_V > 0$ so that

$$\begin{cases}
1 &= \sum_{v \in \text{vert } P} \alpha_v, \\
0 &= \sum_{v \in \text{vert } P} \alpha_v(v - c_P), \\
\frac{\mu_P}{n} Q^{-1} &= \sum_{v \in \text{vert } P} \alpha_v(v - c_P)(v - c_P)^T.
\end{cases}$$

Covering maxima

- ▶ A given lattice L is called a covering maxima if for any lattice L' near L we have $\Theta(L') < \Theta(L)$.
- ▶ Thm: For a lattice *L* the following are equivalent:
 - ▶ L is a covering maxima
 - ► Every Delaunay polytope of maximal circumradius of *L* is perfect and eutactic.
- ▶ The following are covering maxima:

name	# vertices	# orbits Delaunay polytopes
E ₆	27	1
E_7	56	2
ER ₇	35	4
O_{10}	160	6
BW_{16}	512	4
O_{23}	94208	5
Λ_{23}	47104	709

▶ Thm: For any $n \ge 6$ there exist one lattice $L(DS_n)$ which is a covering maxima.

There is only one perfect Delaunay polytope $P(DS_n)$ of maximal radius in $L(DS_n)$.

The infinite series

- ▶ For *n* even $P(DS_n)$ is defined as the lamination over D_{n-1} of
 - one vertex
 - the half cube $\frac{1}{2}H_{n-1}$
 - ▶ the cross polytope CP_{n-1}

For n = 6, it is E_6 .

- ▶ For *n* odd as the lamination over D_{n-1} of
 - ▶ the cross polytope CP_{n-1}
 - the half cube $\frac{1}{2}H_{n-1}$
 - ▶ the cross polytope CP_{n-1}

For n = 7, it is E_7 .

- ightharpoonup Conj: The lattice DS_n has the following properties:
 - ▶ $L(DS_n)$ has the maximum covering density among all n-dim. covering maxima
 - Among all perfect Delaunay polytopes, $P(DS_n)$ has
 - maximum number of vertices
 - maximum volume

If true this would imply Minkowski conjecture by results of

▶ U. Shapira and B. Weiss, *Stable Lattices and the Diagonal Group*, preprint

Pessimum and Morse function property

- ▶ For a lattice L let us denote $D_{crit}(L)$ the space of direction d of deformation of L such that Θ increases in the direction d.
- ▶ Def: A lattice L is said to be a covering pessimum if the space D_{crit} is of measures 0.
- ► Thm: If the Delaunay polytopes of maximum circumradius of a lattice L are eutactic and are not simplices then L is a pessimum.

name	# vertices	# orbits Delaunay polytopes
\mathbb{Z}^n	2 ⁿ	1
D_4	8	1
$D_n \ (n \geq 5)$	2^{n-1}	2
E ₆ *	9	1
E ₇ *	16	1
E ₈	16	2
K_{12}	81	4

▶ Thm: The covering density function $Q \mapsto \Theta(Q)$ is a topological Morse function if and only if $n \leq 3$.

VIII. Enumeration of perfect Delaunay polytopes

Perfect Delaunay polytope

► There is a finite number of them in each dimension *n*. Known results:

suits.		
dim.	perfect Delaunay	authors
1	$[0,1]$ in $\mathbb Z$	
2	Ø	
3	Ø	
4	Ø	
5	Ø	↑ (Deza, Laurent & Grishukhin)
6	2_{21} in E_6	(Deza & Dutour)
7	3_{21} in E_7	
	and ER_7 in $L(ER_7)$	(Dutour Sikirić)
8	≥ 27	(Dutour Sikirić & Rybnikov)
9	≥ 100000	(Dutour Sikirić)

- ▶ Thm: There exist perfect Delaunay polytopes D such that $\mathbb{Z}D \neq \mathbb{Z}^n$ (dimension n > 13, Rybnikov & Dutour Sikirić).
- ► Thm: There exist lattices with several perfect Delaunay polytopes (dimension 15 and 23, Rybnikov & Dutour Sikirić).
- ▶ Thm: For $n \ge 6$ there exist a perfect Delaunay polytope with exactly $\binom{n+2}{2} 1$ vertices (Erdahl & Rybnikov) ER_n .

Extreme rays of Erdahl(n)

▶ Def: If $f \in Erdahl_{>0}(n)$ then we define

$$Dom f = \sum_{v \in Z(f)} \mathbb{R}_+ ev_v$$

- We have $\langle f, \text{Dom } f \rangle = 0$.
- ► Thm (Erdahl): The extreme rays of Erdahl(n) are:
 - (a) The constant function 1.
 - (b) The functions

$$(a_1x_1+\cdots+a_nx_n+\beta)^2$$

with (a_1, \ldots, a_n) not collinear to an integral vector.

- (c) The functions f such that Z(f) is a perfect Delaunay polyhedra.
- Note that if $f \in Erdahl(n)$ with Z(f) a Delaunay polyhedra, then there exist a lattice L' of dimension $k \leq n$, a Delaunay polytope D of L', a basis \mathbf{v}' of L' and a function $\phi \in AGL_n(\mathbb{Z})$ such that

$$f \circ \phi(x_1,\ldots,x_n) = f_{D,\mathbf{v}'}(x_1,\ldots,x_k)$$

Delaunay polyhedra retract

- For a function $f \in Erdahl(n)$ a proper decomposition is a pair (g,h) with f = g + h, $g \in Erdahl(n)$ and $h(x) \ge 0$ for $x \in \mathbb{R}^n$.
- ▶ Lem: For a proper decomposition we have

$$Vect Z(f) + Ker Q_f \subset Ker Q_h$$

and there exist a proper decomposition with equality.

- ▶ Fix an integral complement L' of $Vect\ Z(f) + Ker\ Q_f$. A proper decomposition is called extremal if det $Q_h|_{L'}$ is maximal among all proper decompositions.
- ▶ Thm: For $f \in Erdahl(n)$, there exist a unique extremal decomposition. For it we have that Z(g) is a Delaunay polyhedra.
- Conj: The decomposition depends continuously on f ∈ Erdahl(n).
- ▶ On the other hand in a neighborhood of $f \in Erdahl(n)$ we can have an infinity of Delaunay polyhedra.

Enumeration of perfect Delaunay polyhedra

► From a given *n*-dimensional Delaunay polyhedron *P* of form *f* we can define the local cone

$$Loc(f) = \{ g \in E_2(n) \text{ s.t. } g(x) \ge 0 \text{ for } x \in Z(f) \}.$$

We set the define the degeneracy $d(P) = dim L_f$.

- ▶ Thm: For a Delaunay polyhedron P let $(P_i)_{i \in I}$ the set of Delaunay polyhedra of degeneracy d(P) 1 and perfection rank r(P) 1. P_i and P_j are adjacent if $P_i \cap P_j$ is of perfection rank r(P) 2. The obtained graph is connected.
- ▶ Thm: In a fixed dimension n there exist an algorithm for enumerating the perfect Delaunay polytopes of dimension n. The algorithm is iterative. It relies on dual description. If the degeneracy rank is d>0 then we find a sub Delaunay polyhedron of degeneracy d-1, finds its facets and do the liftings. This requires knowing the facets of CUT_{n+1} .
- ▶ Thm: In dimension 7 there is only 3_{21} and ER_7 .