Kalman filtering in oceanography

Mathieu Dutour Sikirić (based on Hoteit Ibrahim thesis)

Problem

- An evolution equation with some uncertainties:
 - incomplete modelization of the system
 - incorrectness of the numerical model.
- Some measurement with some uncertainty.
- combine this to get good estimate on the "true" state of the system.

History

- (1949) Kolmogorov Wiener, spectral decomposition (under assumption of linear autonomous system)
- (1960) Kalman Bucy, sequential filtering for linear system.
- (1994) Evensen, Ensemble Kalman filtering

I. OriginalKalmanfiltering

Gaussian variables

A random variable X is Gaussian if its probability density is proportional to

$$exp(-\frac{1}{2\sigma}(x-m)^2)$$

Gaussian random variable are characterized by

$$E(X) = m$$
 and $E(X^2) = \sigma + m^2$

The Gaussian Random variable appearing in Oceanography are of course multi-dimensional. They are characterized by a vector and a covariance matrix.

Stochastic Differential equations

Stochastic differential equation:

$$dX_t = F(t)X_t dt + C(t)dU_t$$

with dU_t a "white noise", i.e. is a Brownian motion, Gaussian process. It is the model equation.

Stochastic differential equation:

$$dZ_t = G(t)X_t dt + D(t)dV_t$$

with dV_t another independent "white noise". It is the measurement equation.

At every given t, X_t , Z_t will be Gaussian variables.

Kalman solution

- The stochastic equations are considered to be Ito equations (the alternatice is Stratonovich equations).
- Kalman-Bucy theory allows to compute
 - the expectancy,
 - covariance matrix
- But they are solution of a nonlinear Riccati ordinary differential equation.

Discrete version

Evolution equation:

$$X^{t}(t_{k}) = A_{k}X^{t}(t_{k-1}) + \eta(t_{k})$$

with $\eta(t_k)$ being Gaussian of covariance matrix $Q(t_k)$

Measurement equation

$$Y_k^0 = H_k X^t(t_k) + \epsilon_k$$

with ϵ_k being Gaussian of covariance matrix $R(t_k)$

All X^t terms appearing are Gaussian.

The Equations

Initialisation step

$$X^a(t_0) = m_0$$
$$P^a(t_0) = P_0$$

Prevision step

$$X^{f}(t_{k}) = A_{k}X^{a}(t_{k-1})$$

 $P^{f}(t_{k}) = A_{k}P^{a}(t_{k-1})A_{k}^{T} + Q(t_{k})$

Correcting step

$$X^{a}(t_{k}) = X^{f}(t_{k}) + K_{k}\{Y_{k}^{0} - H_{k}X^{f}(t_{k})\}$$

 $P^{a}(t_{k}) = (I - K_{k}H_{k})P^{f}(t_{k})$

with
$$K_k = P^f(t_k)H_k^T\{H_kP^f(t_k)H_k^T + R_k\}^{-1}$$
.

Derivation of the equations

Denote X^t and Y^t the true state and observation of the system at instant t_k

We want to minimize the expectancy

$$= E[(X^{a} - X^{t})(X^{a} - X^{t})^{T}]$$

$$= E[(X^{f} - X^{t} + K(Y^{0} - HX^{f}))(\dots)^{T}]$$

$$= E[((I - KH)(X^{f} - X^{t}) + K(Y^{0} - Y^{t}))(\dots)^{T}]$$

$$= (I - KH)E[(X^{f} - X^{t})(X^{f} - X^{t})^{T}](I - KH)^{T}$$

$$+ KE[(Y^{0} - Y^{t})(Y^{0} - Y^{t})^{T}]K^{T}$$

$$= (I - KH)P^{f}(I - KH)^{T} + KRK^{T}$$

Minimization is obtained by

$$K = P^f(t_k)H_k^T\{H_kP^f(t_k)H_k^T + R_k\}^{-1}$$
.

I. Extensionsandrestrictions

Extended Kalman filtering

Equations for nonlinear systems:

$$X^{t}(t_{k}) = F_{k}(X^{t}(t_{k_{1}})) + \eta(t_{k})$$
$$Y_{k}^{0} = H_{k}X^{t}(t_{k}) + \epsilon_{k}$$

- Kalman filtering applies only to linear systems.
- nonlinear ⇒ Gaussianity no longer preserved.
- Extended Kalman filtering is a linearization of the equations.
- Consequences and results:
 - We lose optimality of Kalman filtering
 - It works relatively well for weakly nonlinear systems.
 - It does not work well for strongly nonlinear systems.

Issues for oceanography

- In order to apply Extended Kalman filtering, one needs:
 - the variance matrices of measurement.
 - have an estimation of "what we miss"
 - have an estimation of the computer errors.
- It is not possible to invert matrices of size $1.10^6 \times 1.10^6$.
- Kalman filtering or Extended Kalman filtering cannot be applied in Oceanography.

The SEEK filter

SEEK: Singular Evolutiv Extended Kalman Filter

- Idea is that the phase state has a variety called attractor.
 - normal directions to the attractor are dissipative: errors are corrected themselves.
 - tangent directions to the attractor are hyperbolic: errors are amplified.
- SEEK: we consider the error only in a chosen tangent space of dimension r.
- The computational cost is (r+1) times the cost of the model.

The SEIK filter

SEIK: Singular Extended Interpolated Kalman Filter

- Take a cloud of r + 1-points around the initial state and make them evolve.
- Compute the initial state and its covariance matrix by

$$P^{a}(t_{k}) = \frac{1}{r+1} \sum_{i=1}^{r+1} [X_{i}^{a}(t_{k}) - X^{a}(t_{k})][\dots]^{T}$$

cost is identical to the one of SEEK, performance are superior; one possible reason: linearization implies a bigger error than doing averaging.

The subspace in SEIK and SEEK

- In order to make those filters run, one needs to select a basis.
- Hoteit uses
 - Empirical Orthogonal Functions.
 - Localized EOF around areas of interest.
- Empirical orthogonal functions consist of having N states and selecting an orthogonal basis of r states (r < N) that encapsulates the main trends.
- localized EOF consist of selecting some areas, and localizing the functions on those areas, then doing classical EOF.
- "mixed" basis consist of localized EOF + some global EOF. In SESEEK he makes evolve only the global EOF.

Computationnal issues

- SEEK and SEIK are possible to use in Oceanography
- their cost remain high.
- Further ideas are needed...

SFEK and SAEK filters

- If we fix the basis of the space in which computations are done at the beginning, we obtain the SFEK filter.
- In linear autonomous case, the matrix P^a converges to a fixed matrix.
 - The idea is to fix the subspace considered, SAEK.
- Hoteit indicates some poor behaviour, due to the fact that Ocean is nonlinear.

SIEIK

Singular Intermittemt Extended Interpolated Kalman Filter

- SFEK and SAEK are problematic, since the base is evolving.
- The idea is to make the base evolves by intermittence:
 - if the model stays calm, we keep the same basis,
 - if some significant modification happen, we update the basis.
- It makes a faster filter and it works almost as good as SEEK.

III. Ensemble Kalman filtering

The idea

- The idea is to replace the formalism of average and covariance matrix by a population of states (O(100) states in Evensen experiments)
- the system can handle nonlinear situations better.
- Its cost is similar to the one of SEEK, SEIK.
- The overall idea is to do Markov Chain Monte Carlo simulation to make evolve the net of points.

The error terms

- The uncertainty on measurement is handled by the ensemble.
- What about the uncertainty of the model? It is still assumed to be a linear white noise of the form

$$\psi_k = f(\psi_{k-1}) + q_k$$

Despite this the EnKF performs very well and manages to work even on Lorenz model.

Thank You