
Kalman filtering
in

oceanography
Mathieu Dutour Sikirić
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Problem

An evolution equation with some uncertainties:
incomplete modelization of the system
incorrectness of the numerical model.

Some measurement with some uncertainty.

➠ combine this to get good estimate on the “true” state of
the system.
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History

➠ (1949) Kolmogorov - Wiener, spectral decomposition (under
assumption of linear autonomous system)

➠ (1960) Kalman - Bucy, sequential filtering for linear system.

➠ (1994) Evensen, Ensemble Kalman filtering
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I. Original

Kalman

filtering
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Gaussian variables

A random variable X is Gaussian if its probability
density is proportional to

exp(−
1

2σ
(x−m)2)

Gaussian random variable are characterized by

E(X) = m and E(X2) = σ +m2

The Gaussian Random variable appearing in
Oceanography are of course multi-dimensional. They
are characterized by a vector and a covariance matrix.

– p. 5



Stochastic Differential equations

Stochastic differential equation:

dXt = F (t)Xtdt+ C(t)dUt

with dUt a “white noise”, i.e. is a Brownian motion,
Gaussian process. It is the model equation.

Stochastic differential equation:

dZt = G(t)Xtdt+D(t)dVt

with dVt another independent “white noise”. It is the
measurement equation.

At every given t, Xt, Zt will be Gaussian variables.
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Kalman solution

The stochastic equations are considered to be Ito
equations (the alternatice is Stratonovich equations).

Kalman-Bucy theory allows to compute
the expectancy,
covariance matrix

But they are solution of a nonlinear Riccati ordinary
differential equation.
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Discrete version

Evolution equation:

Xt(tk) = AkX
t(tk−1) + η(tk)

with η(tk) being Gaussian of covariance matrix Q(tk)

Measurement equation

Y 0
k = HkX

t(tk) + ǫk

with ǫk being Gaussian of covariance matrix R(tk)

All Xt terms appearing are Gaussian.
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The Equations

Initialisation step

Xa(t0) = m0

P a(t0) = P0

Prevision step

Xf (tk) = AkX
a(tk−1)

P f (tk) = AkP
a(tk−1)A

T
k +Q(tk)

Correcting step

Xa(tk) = Xf (tk) +Kk{Y
0
k −HkX

f (tk)}

P a(tk) = (I −KkHk)P
f (tk)

with Kk = P f (tk)H
T
k {HkP

f (tk)H
T
k +Rk}

−1.
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Derivation of the equations

Denote Xt and Y t the true state and observation of the
system at instant tk

We want to minimize the expectancy

= E[(Xa −Xt)(Xa −Xt)T ]

= E[(Xf −Xt +K(Y 0 −HXf ))(. . . )T ]

= E[((I −KH)(Xf −Xt) +K(Y 0 − Y t))(. . . )T ]

= (I −KH)E[(Xf −Xt)(Xf −Xt)T ](I −KH)T

+KE[(Y 0 − Y t)(Y 0 − Y t)T ]KT

= (I −KH)P f (I −KH)T +KRKT

Minimization is obtained by
K = P f (tk)H

T
k {HkP

f (tk)H
T
k +Rk}

−1.
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II. Extensions

and

restrictions
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Extended Kalman filtering

Equations for nonlinear systems:

Xt(tk) = Fk(X
t(tk1)) + η(tk)

Y 0
k = HkX

t(tk) + ǫk

Kalman filtering applies only to linear systems.

nonlinear⇒ Gaussianity no longer preserved.

Extended Kalman filtering is a linearization of the
equations.

Consequences and results:
We lose optimality of Kalman filtering
It works relatively well for weakly nonlinear systems.
It does not work well for strongly nonlinear systems.
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Issues for oceanography

In order to apply Extended Kalman filtering, one needs:
the variance matrices of measurement.
have an estimation of “what we miss”
have an estimation of the computer errors.

It is not possible to invert matrices of size 1.106 × 1.106.

➠ Kalman filtering or Extended Kalman filtering cannot
be applied in Oceanography.
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The SEEK filter

SEEK: Singular Evolutiv Extended Kalman Filter

Idea is that the phase state has a variety called
attractor.

normal directions to the attractor are dissipative:
errors are corrected themselves.
tangent directions to the attractor are hyperbolic:
errors are amplified.

SEEK: we consider the error only in a chosen tangent
space of dimension r.

The computational cost is (r + 1) times the cost of the
model.
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The SEIK filter

SEIK: Singular Extended Interpolated Kalman Filter

Take a cloud of r + 1-points around the initial state and
make them evolve.

Compute the initial state and its covariance matrix by

P a(tk) =
1

r + 1

r+1∑

i=1

[Xa
i (tk)−Xa(tk)][. . . ]

T

cost is identical to the one of SEEK, performance are
superior; one possible reason: linearization implies a
bigger error than doing averaging.
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The subspace in SEIK and SEEK

In order to make those filters run, one needs to select a
basis.

Hoteit uses
Empirical Orthogonal Functions.
Localized EOF around areas of interest.

Empirical orthogonal functions consist of having N
states and selecting an orthogonal basis of r states
(r < N ) that encapsulates the main trends.

localized EOF consist of selecting some areas, and
localizing the functions on those areas, then doing
classical EOF.

“mixed” basis consist of localized EOF + some global
EOF. In SESEEK he makes evolve only the global EOF.

– p. 16



Computationnal issues

SEEK and SEIK are possible to use in Oceanography

their cost remain high.

Further ideas are needed...
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SFEK and SAEK filters

If we fix the basis of the space in which computations
are done at the beginning, we obtain the SFEK filter.

In linear autonomous case, the matrix P a converges to
a fixed matrix.
➠ The idea is to fix the subspace considered, SAEK.

Hoteit indicates some poor behaviour, due to the fact
that Ocean is nonlinear.
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SIEIK

Singular Intermittemt Extended Interpolated Kalman Filter

SFEK and SAEK are problematic, since the base is
evolving.

➠ The idea is to make the base evolves by intermittence:
if the model stays calm, we keep the same basis,
if some significant modification happen, we update
the basis.

It makes a faster filter and it works almost as good as
SEEK.
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III. Ensemble

Kalman

filtering
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The idea

The idea is to replace the formalism of average and
covariance matrix by a population of states (O(100)
states in Evensen experiments)

➠ the system can handle nonlinear situations better.

Its cost is similar to the one of SEEK, SEIK.

The overall idea is to do Markov Chain Monte Carlo
simulation to make evolve the net of points.
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The error terms

The uncertainty on measurement is handled by the
ensemble.

What about the uncertainty of the model? It is still
assumed to be a linear white noise of the form

ψk = f(ψk−1) + qk

Despite this the EnKF performs very well and manages
to work even on Lorenz model.
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Thank

You
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