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|. Wave models



Stochastic wave modelling

» Oceanic models are using grids (structured or unstructured) of
size 1km < d < 10km to simulate the ocean

» But oceanic waves have a typical wavelength 2m < L <
100m. So, we cannot resolve waves in the ocean.

» But if one uses phase averaged models and uses stochastic
assumptions then it is possible to model waves by a spectral
wave action density N(x, k)

» This density satisfies a Wave Action Equation (WAE) which
represents advection, refraction, frequency shifting and source
terms:

oN , .
E + VX((Cg + UA)N) + Vk(kN) + V@(GN) - Stot

with

Stot = Sin + 5nl3 + Snl4 + Sbot + Sds + Sbreak + Sbf



The WWM model

» The Wind Wave Model (WWM) is a unstructured grid
spectral wave model.

» It is comparable to WaveWatch IlI, SWAN, WAM or SWAVE.

» It incorporates most existing source term formulation for wind
input and dissipation (Cycle Ill, Cycle 1V, Ardhuin, Makin, ...)

» It has been coupled to SELFE, SHYFEM, TIMOR and ROMS.

» It uses Residual Distribution schemes for the horizontal
advection.

> |t integrates the WAE by using the Operator Splitting Method
in explicit or implicit mode.



Operator Splitting Method

» A standard technique for integrating partial differential
equations is the operator splitting method.

» Over the interval [tp, t1] we successively solve the equations

9 4+ Ve(ONy) =0 with  Ny(to) = N(to)

8N2 + Vk(kNQ) =0 with /Vg(to) = /Vl(tl)

8N3 + Vi ((Cg + UA)/V3) =0 with /V3(t0) = /V2(t1)
oM — S(t) with (to) = N3(t1)

and we set N(t1) = Na(t1).

» No matter what the order of the successive integration
schemes is the final order will be 1.

» It it is possible to have higher order by more complex
integration procedures (Strang splitting, iterative splitting,
etc.)



The CFL criterion

> If the discretization has characteristic length / and the
physical speed is ¢ then we have the condition
cAt
— <1
S
» For the integration of the frequency and directional equations
we can subdivide the integration time step if necessary
because everything is decoupled.
» This is not possible for the geographical advection:
» The dependency in direction/frequency is small or negligible
» The problem is that the group speed is v/gh and so the CFL
number varies with the depth and the resolution.
> So, we will present an implicit scheme for integrating Ny, i.e.
in order to avoid the CFL limitation for advection.

» Remark: the advection scheme used in implicit mode in
WWM is the residual distribution scheme PSI.



1. MPI

parallelization



MPI parallelization |

» The parallelization of geophysical models is usually done by
using the Mesage Passing Interface MPI formalism.

» The set of computational nodes of the model is thus split into
a number of different subdomains.

» in MPI the exchanges are explicit. The explicit way of doing it
is via:
CALL MPI_SEND(ArrSend,len,dest,tag,comm,ierr)
CALL MPI_RECV(ArrRecv,len,orig,tag,comm,istat,ierr)
Those operations are blocking, i.e. the program waits until all
sends and recvs have been processed.

» This means that all exchanges are processed by the order in
which they are stated.

> It is generally better to decrease the total number of
exchanges in order to get better performance.



MPI parallelization Il

>

In order to avoid strictly ordained exchanges, the strategy is
to do asynchrone exchanges.
The procedure is done in the following way
DO iorig=1,nproc
CALL MPI_IRECV(U,1,type(iorig), iorig-1, tag,
comm, rgst(iorig), ierr)
END DO
CALL MPI_WAITALL (nproc,rgst, stat, ierr)

and similarly for send operations.

The idea is the following: the array type(iorig) contains
the list of positions at which the received data needs to be
put. Commands for creating such types are for example
mpi_create_indexed_block.

By using the above the order of the exchanges is no longer
determined by the MPI program which makes it faster but
harder to debug.



[l. Iterative solution
methods



[terative solution methods

> In order to resolve linear system Ax = b for typical geophysical
situation we have matrices of size N x N with N about 100000

» We cannot use direct methods like Gauss elimination or LU
and so we need to use iterative methods.

» For a matrix A and a vector b the Krylov space K,(A, b) is
Kn(A, b) = Vect {b,Ab, ..., A" 1b}

» The Generalized Minimal Residual Method (GMRES) takes
the best solution in K,(A, b) of Ax = b.

> It is stable but it requires the storing of n vectors, which is
memory intensive.

» So, in order to have a good solution strategy we need a
method with minimal storage requirement.



The conjugate gradient method

» If the matrix A is positive definite, then the conjugate
gradient method can be used:

- JW. Shewchuk, An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain Edition 1%

> If the system is NV dimensional then N iteration suffices.
» After / iterations, the residual error g; satisfies

-1\’ Amax
e <2 (YET7) lell with s = 572
\/E'i‘ Amin

» Operations depends on computing Ax for some vectors x.

» For non-symmetric problems, the technique is to use the
biconjugate gradient stabilized (BCGS) which works similarly.



Preconditioners

» The convergence of the conjugate gradient depends on « that
is on how far A is from the identity matrix.

> If K is large, i.e. A is ill conditioned then the number of
iterations will be very large.

» We may accept that but then the whole solution strategy
becomes very similar to an explicit scheme.

» The idea is to find a matrix K for which we can compute the
inverse easily.

» K must similar to A, i.e. share the same property as A.

> In order to apply the BCGS we need to compute Ax and
K~1x for some vectors x.

> Example: Jacobi preconditioning is to take the diagonal
entries of A.



Preconditioners for advection

>

The essential aspect of advection is that it moves things so
Jacobi preconditioner will not work.
Instead partial factorization techniques have to be used

» We write A= D + E + F with D diagonal E lower triangular

and F upper triangular.
The Successive Over Relaxation (SOR) preconditioner is to say

A=(l+ED")(D+F)+ R with R=—ED"'F
The incomplete LU factorization (ILUOQ) is to say
AU = (LU)U for A,'j 75 0

with L and U having the same sparsity as A.
Both methods are efficient because they both are of the form
K=LU.
So, when solving Kx = b we do
x'=L71hand x = U~tX,

i.e. the solution propagates.



ll. Parallelizing
solvers



Parallelizing solvers

» Suppose we have to solve Lx = b and let us assume the
diagonal is 1.

X1 = b
hix1 + x2 = b
Inixt+ -+ Iyn—1xny—1 +xy = by

So, we first determine x; then x» and finally xy.

» Parallelization is impossible if all L;; are non-zeros because
data from one processor

» What save us is sparsity because the matrices are of the

following type:
f(X)v = Z Cv,v’Xv’

vicv

with v ~ v/ mean that v and v/ are adjacent nodes.



Ordering nodes

» All incomplete factorizations depend on the ordering of the
nodes.

> We are free to choose the ordering that suits us best and by
doing so we change the preconditioner LU.

» Since the iterative solution algorithms return approximate
solutions this means that the approximate solutions depend on
the partitioning and also on the number of processors.

» The situation is the following:

Colored domains The L matrix



Coloring theory

v

A graph G is formed by a set V of vertices and a set E of
pairs of vertices named edges.

» A coloring with N colors is a function f : V — {1,..., N}
such that for any edge e = (a, b) we have f(a) # f(b).

» The chromatic number x(G) is the minimum number of
colors needed to color.

» It is known that x(G) < 4 for G a planar graph (Appel,
Haken, 1976).

> Unfortunately, the subdomains given by parmetis are not
necessarily connected and so the graph is not necessarily
planar.

» But in practice we can expect that the chromatic number is
rarely above 5.



Using colorings to solve Kx = b

Suppose that we managed to color with ¢ colors
1. The indexing is done

1.1 First index the nodes in domains of color 1 by 1, 2, ..., n
1.2 Then the nodes of color 2 by ny +1, ny +2, ..., ny + ny.
1.3 .... until color c.

2. The solution of Lx = b is then done by
2.1 Solving Lx = b on the nodes of color 1.
2.2 Nodes of color 1 send data to nodes of higher color.
2.3 Solve Lx = b on the nodes of color 2.
2.4 Continue ...

3. The solution of Uy = x is then done in reverse.



Efficiency of preconditioners

There is no general theory on the efficiency of preconditioners.

» The bad news is that the ordering of the nodes has an effect
on the performance of the preconditioner.

» The worst ordering for x is the red-back ordering in finite
difference schemes. The best is the linear ordering.

6 9 12

Red Black Linear Ordering
» So, the best ordering for the quality of the preconditioner is
the one that is hardest to parallelize.

» The ordering that we used is somewhat intermediate. It is like
red-black globally, but over individual subdomains it is linear.



|l. Solution
for wave models



Organizing the computation

1. The penalty of parallelizing come in two ways:
1.1 The preconditioner quality that decreases.
1.2 The cost of waiting for data is c.
2. If we have Ng.q frequencies and Ng;, directions then this
makes Niot = Npeq X Ngir independent linear systems to solve.
3. The strategy is then to split Nyt into b blocks By, ..., Bp

3.1 After domains of color 1 have finished block B; data is sent
and block Bs is solved.

3.2 So domains of color 2 can start working before the ones of
color 1 are finished.

4. So, by using say b =5 we can essentially remove the second
cost.



Further work

1. The work done so far is for the SOR preconditioner.

2. We need to test the ILUO preconditioner, it is harder to
compute but the same strategy can be applied.

3. Another possibility is to integrate implicitly the advection in
geographical, frequency and direction.
This requires an ordering of the N,ode X Npeg X Ngir matrix
entries but by doing so we can diminish the splitting error.

4. And overall improve the speed.

THANK YOU



