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I. Homology



Polytopal complex

I A polytopal complex PC is a family of cells:
I It contains ∅ and P such that for every face F one has
∅ ⊂ F ⊂ P.

I If F is a face and

∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fp = F

is a chain, which cannot be further refined, then dim F = p.
I We set dim PC = dim P − 1
I If Fp−1 and Fp+1 are two cells of dimension p − 1 and p + 1

then there exist exactly two cells G , G ′ such that

Fp−1 ⊂ G ,G ′ ⊂ Fp+1

I The faces F are equivalent to polytopes.

I Example:
I Any plane graph, any map on a surface.
I Any polyhedral subdivision



Boundary operator

I Let PC be a polytopal complex and for any 0 ≤ p ≤ dim PC
denote by Cp(PC) the Z-module, whose basis is the
p-dimensional faces of PC.

I We denote by dp the boundary operator:

dp : Cp(PC)→ Cp−1(PC)

Note that d0 : C0 → {0}.
I Note that dp(F ) is not defined uniquely, we can replace dp(F )

by its opposite with no damage.

I But if one imposes the relation dp(dp−1) = 0 then this is the
only freedom, which is available.

I If e = {v , v ′} is an edge then we will have d(e) = v − v ′ or
v ′ − v .



Polytopal homology

I Take PC a polytopal complex of dimension n and define

Bp(PC) = Im dp+1 and Zp(PC) = Ker dp

I From the relation dpdp−1 = 0 we have Bp ⊂ Zp and we define

Hp(PC) = Zp/Bp

I If the tessellation of the space is by simplices, then we speak
of “simplicial homology”.

I H0(PC) = Zp with p the number of connected components.

I Hi is a sum of Z and Z/aZ groups.



Topological invariance

I If M is a manifold and PC1 and PC2 are two polytopal
subdivision modelled on it, then

Hp(PC1) = Hp(PC2)

I A space X is called contractible if it can be continuously
deformed to a point x . For a contractible space, one has

H0(X ) = Z and Hp(X ) = {0} for p > 0



II. Group
homology



Covering space

I If X , Y are two topological spaces, then a mapping
φ : X → Y is called a covering map if

I For any y ∈ Y , there exist a neighborhood Ny of y
I such that for any x ∈ φ−1(y) there exist a neighborhood Nx

with
I Ny ⊂ φ(Nx),
I Nx ∩ Nx′ = ∅ if x 6= x ′,
I φ : Nx → φ(Nx) is bijective.

I As a consequence |φ−1(y)| is independent of y and φ is
surjective.

I There exist a group G of homeomorphisms of X such that for
any x , x ′ ∈ X , there is a g ∈ G such that g(x) = x .

I We then write X/G = Y .



Group homology

I Take G a group, suppose that:
I X is a contractible space.
I G act fixed point free on X .

Then we define Hp(G ) = Hp(X/G ).

I The space X is then a classifying space.

I Every group has a classifying space but finding them can be
difficult.

I For example if G = Z2, then X = R2, Y = X/G is a
2-dimensional torus and one has

I H0(G ) = Z,
I H1(G ) = Z2,
I H2(G ) = Z,
I Hi (G ) = 0 for i > 2.



III. Orbit
polytope



Orbit polytope

I Suppose a group G has a linear representation in Rn and v is
a vertex. The orbit polytope is then

conv(v .G )

I The interest of the orbit polytope is that it is an
approximation of a classifying space:

I If v is chosen randomly, the vertices have trivial stabilizers.
I Then edges have stabilizer of size 1 or 2.
I 2-faces have cyclic or dihedral stabilizers.
I 3-faces stabilizers are also classified.

I See for more details:

à G. Ellis; J. Harris, E. Sköldberg, Polytopal resolutions for finite
groups. J. Reine Angew. Math. 598 (2006), 131–137



Polyhedral algorithm

I If G is an “interesting group” then it is big and the orbit
polytope conv(v .G ) has too many vertices to be stored in
memory. The facets are also too big.

I The technique is store the set S of vertices adjacent to v , say,
S = {v1, . . . , vm} = v .{g1, . . . , gm}.

I Use an iteration
I Determine an initial set S with (gi ) generating G .
I By the group action, we know the vertices adjacent to S .
I We check if those vertices are adjacent to S .

I If yes, we update the set S .
I If no, we return the set S as the reply.

I Several problem:
I The algorithm can iterate forever to get the correct S ,

choosing a good initial set S is a good idea.
I To find the adjacencies, one can compute the facets of the

cone at v determined by S or linear programming.



Coxeter group case

Take G a finite Coxeter group acting on Rn by its natural
representation.

I Denote by S a fundamental simplex of the group G .

I The stabilizer of v ∈ S is the group generated by the
reflections on the facets of S containing v .

I If v is inside of S then we obtain the permutahedron; and we
have S = v .{s1, . . . , sn}.

I If v is contained in some facets of S then we can describe the
set of faces of conv(v .G ). One possible reference:

à M. Deza, M. Dutour and S. Shpectorov, Isometric embeddings
of Archimedean Wythoff polytopes into hypercubes and
half-cubes, MHF Lecture Notes Series, Kyushu University,
proceedings of COE workshop on sphere packings (2004)
55–70.

I For non-Coxeter groups, there is few hopes of a simple way to
describe the face lattice.



IV. Resolutions



G -modules
I We use the GAP notation for group action, on the right.
I A G -module M is a Z-module with an action

M × G → M
(m, g) 7→ m.g

I The group ring ZG formed by all finite sums∑
g∈G

αgg with αg ∈ Z

is a G -module.
I If the orbit of a point v under a group G is {v1, . . . , vm}, then

the set of sums
m∑
i=1

αivi with αi ∈ Z

is a G -module.
I We can define the notion of generating set, free set, basis of a

G -module. But not every finitely generated G -module admits
a basis.



Free G -modules

I A G -module is free if it admits a basis e1, . . . , ek .

I For free G -modules, we can work in much the same way as for
vector space, i.e., with matrices.

I Let φ : M → M ′ be a G -linear homomorphism between two
free G -modules and (ei ), (e ′i ) two basis of M, M ′.

I We can write φ(ei ) =
∑

j fjaij with aij ∈ ZG

I but then we have with gi ∈ ZG

φ(
∑

i eigi ) =
∑

i φ(eigi )
=

∑
i φ(ei )gi

=
∑

j fj(
∑

i aijgi )

I More generally the “right” matrix product is AB = C with
cij =

∑
k bkjaik .



Resolutions

Take G a group.

I A resolution of a group G is a sequence of G -modules
(Mi )i≥0:

Z← M0 ← M1 ← M2 ← . . .

together with a collection of G -linear operators
di : Mi → Mi−1 such that Ker di = Im di−1

I What is useful to homology computations are free resolutions
with all Mi being free G -modules.

I The homology is then obtained by killing off the G -action of a
free resolution, i.e replacing the G -modules (ZG )k by Zk ,
replacing accordingly the di by d̃i and getting

Hi (G ) = Ker d̃i/Im d̃i−1



How to get resolutions
I HAP can produce resolutions (with left actions) for finite

groups, such that M0 = ZG and

Im d1 = {x =
∑
g∈G

αgg ∈ ZG such that
∑

αg = 0}

I To get resolutions on the right we use the antiisomorphism

inv : ZG → ZG∑
αgg 7→

∑
αgg−1

I The CTC wall lemma can be used to sum things and get
resolutions:

I Suppose we have a resolution,

Z← M0 ← M1 ← M2 ← . . .

which is not free, then we can lift the Mi to free modules Ri,0

Z← R0,0 ← R1,0 ← R2,0 ← . . .

but we no longer have the relation didi−1 = 0
I CTC wall gives a method to get a free resolution.



CTC Wall lemma

I We denote d1 the operator of the Ri ,0 → Ri−1,0.

I We can find free resolutions of the Ri ,0 G -modules by
G -modules

Ri ,0 ← Ri ,1 ← Ri ,2 ← . . .

with the boundary operators being named d0.

I Then we search for operators dk : Ri ,j → Ri−k,j−1+k such that

D =
∞∑
i=0

di

realize a free resolutions of G -modules
∑

i+j=k Ri ,j .

I It suffices to solve the equations

k∑
h=0

dhdk−h = 0



CTC Wall lemma

I One way is to have the expression

dk = −h0(
k∑

h=1

dhdk−h)

with h0 a contracting homotopy for the d0 operator, i.e. an
operator h0 : Ri ,j → Ri ,j+1 such that d0(h0(x)) = x if x
belongs to the image of d0.

I This gives a recursive method for computing first d1 from the
relations

d1d0 + d0d1 = 0

I Then d2, d3, . . .

I CTC Wall also gives a contracting homotopy for the obtained
resolution.



V. Homology
of Mathieu
groups



Mathieu groups

I A permutation group G acting on {1, . . . , n} is called
k-transitive if it is transitive on k-uples (x1, . . . , xk).

I The residual stabilizer Resk(G ) of a k-transitive group is the
stabilizer of (x1, . . . , xk).

I The Mathieu groups were discovered by Émil Mathieu:

Group simple sporadic |G | k |Resk(G )|
M9 no - 72 2 1
M10 no - 720 3 1
M11 yes yes 7920 4 1
M12 yes yes 95040 5 1

M21 yes = PSL(3, 4) 20160 2 48
M22 yes yes 443520 3 48
M23 yes yes 10200960 4 48
M24 yes yes 244823040 5 48

I Note that the 2-transitive groups are classified.



Orbit polytope for Mathieu groups

I If G is a k-transitive group acting on n points, then we take
the vector

v = (1, 2, 3, . . . , k , 0n−k) and G .v = Sym(n).v

I The fact that Sym(n) is a Coxeter group means that we can
describe the face-lattice of Sym(n).v simply.

I In fact for the vectors v chosen, the orbit polytope Sym(n).v
is simple, i.e. every vertex is adjacent to n − 1 vertices.

I The vertex stabilizer has size 48, but this is manageable.



CTC wall in practice: right cosets

I Take Rk,0, which is sum of orbits Oi of faces of dimension k .

I We compute resolutions R̃k,i ,l of Stab fl with fl representative
of Ol .

Rk,i = ⊕r
l=1R̃k,i ,l

I The matrix of the operator d0 : Rk,i → Rk,i−1 is then a block
matrix of the d̃0 : R̃k,i ,l → R̃k,i−1,l

I For the contracting homotopy of a vector v ∈ Rk,i :
I Decompose v into components vl ∈ R̃k,i,l ⊗ ZG
I Decompose vl into right cosets

vl =
∑
s

vs,lgs

with gs ∈ G distinct right Stab fl -cosets and vs,l ∈ R̃k,i,l .
I Apply the contracting homotopy h0 of the resolution R̃k,i,l to

vs,l and sum

h0(vl) =
∑
s

h0(vs,l)gs



CTC wall in practice: signature
I Take e an edge and s an element of the stabilizer inverting e.
I The element e − e.s belong to the image of d0, say

d0(w) = e − e.s
I If d1(e) = v − v .g then we have

d1(d0(w)) = d1(e − e.s)
= (v − v .g)− (v − v .g).s
= v .(Id + g .s)− v .(Id + s.g−1).g ,

which do not belong to Imd0!
I What is needed is for every element s ∈ Stab f a signature

detf (s) = ±1, i.e., the determinant of s acting on the linear
space of f .

I ε defines to a ZStab f isomorphism:

ε(
∑

αgg) =
∑

αgdetf (g)g

I The matrix d0 coming from the resolution are replaced by
ε(d0).



Some examples

I M24 (51 minutes, 250M) dimensions 1, 9, 50, 203, 635:

H0(M24) = Z, H1(M24) = 0,
H2(M24) = 0, and H3(M24) = Z/12Z.

I M23 (20 minutes, 140M) dimensions 1, 8, 41, 155, 457:

H0(M23) = Z, H1(M23) = 0,
H2(M23) = 0, and H3(M23) = 0.



What’s next?

I Recursive use of CTC Wall?
I This requires computing contracting homotopy at the

polyhedral level
I CTC Wall lemma also provides a recursive method of

computation.

I Banking system?
I Since most of computing time is taken by contracting

homotopy, the gain is not obvious.

I Other groups?
I The key ingredient of success of the method is that Mathieu

groups are k-transitive for high k , and so we can use a
polytope coming from Coxeter groups.

I For other groups, there is no reason to expect things to be
simple.
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