Homology of Mathieu groups

Mathieu Dutour Sikirić

Institut Rudjer Bošković

Ellis Graham NUI Galway

April 27, 2012

I. Homology

Polytopal complex

- A polytopal complex PC is a family of cells:
	- It contains \emptyset and P such that for every face F one has $\emptyset \subset F \subset P$.
	- If F is a face and

$$
\emptyset = F_0 \subset F_1 \subset \cdots \subset F_p = F
$$

is a chain, which cannot be further refined, then dim $F = p$. \triangleright We set dim $PC =$ dim $P - 1$

If F_{p-1} and F_{p+1} are two cells of dimension $p-1$ and $p+1$ then there exist exactly two cells G , G' such that

$$
\mathit{F}_{p-1}\subset\mathit{G},\mathit{G}'\subset\mathit{F}_{p+1}
$$

 \triangleright The faces F are equivalent to polytopes.

\blacktriangleright Example:

- Any plane graph, any map on a surface.
- \blacktriangleright Any polyhedral subdivision

Boundary operator

- Exect PC be a polytopal complex and for any $0 \le p \le dim PC$ denote by $C_p(\mathcal{PC})$ the Z-module, whose basis is the p-dimensional faces of PC .
- \blacktriangleright We denote by d_p the boundary operator:

$$
d_p: C_p(\mathcal{PC}) \to C_{p-1}(\mathcal{PC})
$$

Note that $d_0 : C_0 \rightarrow \{0\}$.

- Note that $d_p(F)$ is not defined uniquely, we can replace $d_p(F)$ by its opposite with no damage.
- ► But if one imposes the relation $d_p(d_{p-1}) = 0$ then this is the only freedom, which is available.
- If $e = \{v, v'\}$ is an edge then we will have $d(e) = v v'$ or $v' - v$.

Polytopal homology

 \blacktriangleright Take \mathcal{PC} a polytopal complex of dimension *n* and define

$$
B_p(\mathcal{PC}) = \text{Im } d_{p+1} \text{ and } Z_p(\mathcal{PC}) = \text{Ker } d_p
$$

► From the relation $d_p d_{p-1} = 0$ we have $B_p \subset Z_p$ and we define

$$
H_p(\mathcal{PC})=Z_p/B_p
$$

- If the tessellation of the space is by simplices, then we speak of "simplicial homology".
- $H_0(PC) = \mathbb{Z}^p$ with p the number of connected components.
- If H_i is a sum of \mathbb{Z} and $\mathbb{Z}/a\mathbb{Z}$ groups.

Topological invariance

If M is a manifold and PC_1 and PC_2 are two polytopal subdivision modelled on it, then

$$
H_p(\mathcal{PC}_1)=H_p(\mathcal{PC}_2)
$$

A space X is called contractible if it can be continuously deformed to a point x . For a contractible space, one has

$$
H_0(X) = \mathbb{Z} \text{ and } H_p(X) = \{0\} \text{ for } p > 0
$$

II. Group homology

Covering space

- If X, Y are two topological spaces, then a mapping $\phi: X \to Y$ is called a covering map if
	- ► For any $y \in Y$, there exist a neighborhood N_y of y
	- ► such that for any $x\in\phi^{-1}(y)$ there exist a neighborhood \mathcal{N}_x with
		- $\blacktriangleright N_{\rm v} \subset \phi(N_{\rm x}),$
		- $\blacktriangleright N_x \cap N_{x'} = \emptyset$ if $x \neq x'$,
		- \blacktriangleright $\phi : N_x \rightarrow \phi(N_x)$ is bijective.
- ► As a consequence $|\phi^{-1}(y)|$ is independent of y and ϕ is surjective.
- \triangleright There exist a group G of homeomorphisms of X such that for any $x, x' \in X$, there is a $g \in G$ such that $g(x) = x$.
- \triangleright We then write $X/G = Y$.

Group homology

- \blacktriangleright Take G a group, suppose that:
	- \triangleright X is a contractible space.
	- \triangleright G act fixed point free on X.

Then we define $H_p(G) = H_p(X/G)$.

- \blacktriangleright The space X is then a classifying space.
- \triangleright Every group has a classifying space but finding them can be difficult.
- \blacktriangleright For example if $G=\mathbb{Z}^2$, then $X=\mathbb{R}^2$, $Y=X/G$ is a 2-dimensional torus and one has
	- $H_0(G) = \mathbb{Z}$, $H_1(G) = \mathbb{Z}^2$, $H_2(G) = \mathbb{Z}$, $H_i(G) = 0$ for $i > 2$.

III. Orbit polytope

Orbit polytope

Suppose a group G has a linear representation in \mathbb{R}^n and v is a vertex. The orbit polytope is then

$conv(v.G)$

- \triangleright The interest of the orbit polytope is that it is an approximation of a classifying space:
	- If v is chosen randomly, the vertices have trivial stabilizers.
	- \triangleright Then edges have stabilizer of size 1 or 2.
	- \triangleright 2-faces have cyclic or dihedral stabilizers.
	- \triangleright 3-faces stabilizers are also classified.
- \blacktriangleright See for more details:
	- G. Ellis; J. Harris, E. Sköldberg, *Polytopal resolutions for finite* groups. J. Reine Angew. Math. 598 (2006), 131–137

Polyhedral algorithm

- If G is an "interesting group" then it is big and the orbit polytope $conv(y, G)$ has too many vertices to be stored in memory. The facets are also too big.
- \triangleright The technique is store the set S of vertices adjacent to v, say, $S = \{v_1, \ldots, v_m\} = v.\{g_1, \ldots, g_m\}.$
- \blacktriangleright Use an iteration
	- \triangleright Determine an initial set S with (g_i) generating G.
	- \triangleright By the group action, we know the vertices adjacent to S.
	- \triangleright We check if those vertices are adjacent to S.
		- If yes, we update the set S.
		- If no, we return the set S as the reply.
- \blacktriangleright Several problem:
	- \triangleright The algorithm can iterate forever to get the correct S, choosing a good initial set S is a good idea.
	- \triangleright To find the adjacencies, one can compute the facets of the cone at v determined by S or linear programming.

Coxeter group case

Take G a finite Coxeter group acting on \mathbb{R}^n by its natural representation.

- \triangleright Denote by S a fundamental simplex of the group G.
- ► The stabilizer of $v \in S$ is the group generated by the reflections on the facets of S containing v .
- If v is inside of S then we obtain the permutahedron; and we have $S = v.\{s_1, \ldots, s_n\}.$
- If v is contained in some facets of S then we can describe the set of faces of $conv(v.G)$. One possible reference:
	- **W** M. Deza, M. Dutour and S. Shpectorov, *Isometric embeddings* of Archimedean Wythoff polytopes into hypercubes and half-cubes, MHF Lecture Notes Series, Kyushu University, proceedings of COE workshop on sphere packings (2004) 55–70.
- \triangleright For non-Coxeter groups, there is few hopes of a simple way to describe the face lattice.

IV. Resolutions

G-modules

- \triangleright We use the GAP notation for group action, on the right.
- \triangleright A G-module M is a $\mathbb Z$ -module with an action

$$
\begin{array}{rcl} M\times G & \to & M \\ (m,g) & \mapsto & m.g \end{array}
$$

 \triangleright The group ring $\mathbb{Z}G$ formed by all finite sums

$$
\sum_{g \in G} \alpha_g g \text{ with } \alpha_g \in \mathbb{Z}
$$

is a G-module.

If the orbit of a point v under a group G is $\{v_1, \ldots, v_m\}$, then the set of sums

$$
\sum_{i=1}^{m} \alpha_i v_i \text{ with } \alpha_i \in \mathbb{Z}
$$

is a G-module.

 \triangleright We can define the notion of generating set, free set, basis of a G-module. But not every finitely generated G-module admits a basis.

Free G-modules

- A G-module is free if it admits a basis e_1, \ldots, e_k .
- \triangleright For free G-modules, we can work in much the same way as for vector space, i.e., with matrices.
- In Let $\phi : M \to M'$ be a G-linear homomorphism between two free G-modules and (e_i) , (e'_i) two basis of M, M'.
- \blacktriangleright We can write $\phi(e_i)=\sum_jf_j$ a $_{ij}$ with $a_{ij}\in\mathbb{Z} G$
- \triangleright but then we have with $g_i \in \mathbb{Z}$ G

$$
\begin{array}{rcl}\n\phi(\sum_i e_i g_i) & = & \sum_i \phi(e_i g_i) \\
& = & \sum_i \phi(e_i) g_i \\
& = & \sum_j f_j(\sum_i a_{ij} g_i)\n\end{array}
$$

 \triangleright More generally the "right" matrix product is $AB = C$ with $c_{ij} = \sum_{k} b_{kj} a_{ik}.$

Resolutions

Take G a group.

 \triangleright A resolution of a group G is a sequence of G-modules $(M_i)_{i>0}$:

$$
\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots
$$

together with a collection of G-linear operators $d_i: M_i \to M_{i-1}$ such that Ker $d_i = \text{Im } d_{i-1}$

- \triangleright What is useful to homology computations are free resolutions with all M_i being free G-modules.
- \triangleright The homology is then obtained by killing off the G-action of a free resolution, i.e replacing the G-modules $(\mathbb{Z} G)^k$ by \mathbb{Z}^k , replacing accordingly the d_i by \tilde{d}_i and getting

$$
H_i(G) = \text{Ker }\tilde{d}_i/\text{Im }\tilde{d}_{i-1}
$$

How to get resolutions

 \triangleright HAP can produce resolutions (with left actions) for finite groups, such that $M_0 = \mathbb{Z}G$ and

$$
\text{Im } d_1 = \{x = \sum_{g \in G} \alpha_g g \in \mathbb{Z}G \text{ such that } \sum \alpha_g = 0\}
$$

 \triangleright To get resolutions on the right we use the antiisomorphism

$$
\begin{array}{rcl}\n\text{inv}: \mathbb{Z}G & \rightarrow & \mathbb{Z}G \\
\sum \alpha_g g & \mapsto & \sum \alpha_g g^{-1}\n\end{array}
$$

- \triangleright The CTC wall lemma can be used to sum things and get resolutions:
	- \triangleright Suppose we have a resolution,

$$
\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots
$$

which is not free, then we can lift the M_i to free modules $R_{i,0}$

$$
\mathbb{Z} \leftarrow R_{0,0} \leftarrow R_{1,0} \leftarrow R_{2,0} \leftarrow \ldots
$$

but we no longer have the relation $d_i d_{i-1} = 0$

 \triangleright CTC wall gives a method to get a free resolution.

CTC Wall lemma

- ► We denote d_1 the operator of the $R_{i,0} \rightarrow R_{i-1,0}$.
- \blacktriangleright We can find free resolutions of the $R_{i,0}$ G-modules by G-modules

$$
R_{i,0} \leftarrow R_{i,1} \leftarrow R_{i,2} \leftarrow \ldots
$$

with the boundary operators being named d_0 .

Figure Then we search for operators $d_k: R_{i,j} \to R_{i-k,j-1+k}$ such that

$$
D=\sum_{i=0}^{\infty}d_i
$$

realize a free resolutions of G-modules $\sum_{i+j=k} R_{i,j}.$

 \blacktriangleright It suffices to solve the equations

$$
\sum_{h=0}^k d_hd_{k-h}=0
$$

CTC Wall lemma

 \triangleright One way is to have the expression

$$
d_k=-h_0(\sum_{h=1}^k d_hd_{k-h})
$$

with h_0 a contracting homotopy for the d_0 operator, i.e. an operator $h_0 : R_{i,i} \to R_{i,i+1}$ such that $d_0(h_0(x)) = x$ if x belongs to the image of d_0 .

In This gives a recursive method for computing first d_1 from the relations

$$
d_1d_0+d_0d_1=0\\
$$

- \blacktriangleright Then d_2, d_3, \ldots
- \triangleright CTC Wall also gives a contracting homotopy for the obtained resolution.

V. Homology of Mathieu groups

Mathieu groups

- A permutation group G acting on $\{1, \ldots, n\}$ is called *k*-transitive if it is transitive on *k*-uples (x_1, \ldots, x_k) .
- The residual stabilizer $Res_k(G)$ of a k-transitive group is the stabilizer of (x_1, \ldots, x_k) .
- \blacktriangleright The Mathieu groups were discovered by Emil Mathieu:

 \triangleright Note that the 2-transitive groups are classified.

Orbit polytope for Mathieu groups

If G is a k-transitive group acting on n points, then we take the vector

$$
v = (1, 2, 3, ..., k, 0^{n-k})
$$
 and $G.v = Sym(n).v$

- \blacktriangleright The fact that Sym(n) is a Coxeter group means that we can describe the face-lattice of $Sym(n)$. v simply.
- In fact for the vectors v chosen, the orbit polytope $Sym(n)$. is simple, i.e. every vertex is adjacent to $n - 1$ vertices.
- \blacktriangleright The vertex stabilizer has size 48, but this is manageable.

CTC wall in practice: right cosets

- Take $R_{k,0}$, which is sum of orbits O_i of faces of dimension k.
- \blacktriangleright We compute resolutions $\tilde{R}_{k,i,l}$ of Stab f_l with f_l representative of O_l .

$$
R_{k,i}=\oplus_{l=1}^r\tilde{R}_{k,i,l}
$$

- **►** The matrix of the operator d_0 : $R_{k,i} \rightarrow R_{k,i-1}$ is then a block matrix of the $\widetilde{d}_0: \tilde{R}_{k,i,l} \rightarrow \tilde{R}_{k,i-1,l}$
- ► For the contracting homotopy of a vector $v \in R_{k,i}$:
	- ► Decompose v into components $v_l \in \tilde R_{k,i,l}\otimes {\mathbb Z} G$
	- \blacktriangleright Decompose v_l into right cosets

$$
v_I = \sum_s v_{s,I} g_s
$$

with $g_s \in \mathit{G}$ distinct right Stab f_l -cosets and $v_{s,l} \in \tilde{R}_{k,i,l}.$

Apply the contracting homotopy h_0 of the resolution $\tilde{R}_{k,i,l}$ to $v_{s,j}$ and sum

$$
h_0(v_1)=\sum_s h_0(v_{s,l})g_s
$$

CTC wall in practice: signature

- \triangleright Take e an edge and s an element of the stabilizer inverting e.
- ► The element $e e.s$ belong to the image of d_0 , say $d_0(w) = e - e.s$
- If $d_1(e) = v v$.g then we have

$$
d_1(d_0(w)) = d_1(e - e.s)
$$

= $(v - v.g) - (v - v.g).s$
= $v.(Id + g.s) - v.(Id + s.g^{-1}).g,$

which do not belong to $\text{Im}d_0!$

- \triangleright What is needed is for every element $s \in$ Stab f a signature $det_f(s) = \pm 1$, i.e., the determinant of s acting on the linear space of f .
- \blacktriangleright ϵ defines to a $\mathbb Z$ Stab f isomorphism:

$$
\epsilon(\sum \alpha_{\mathbf{g}} \mathbf{g}) = \sum \alpha_{\mathbf{g}} \det_{f}(\mathbf{g}) \mathbf{g}
$$

 \blacktriangleright The matrix d_0 coming from the resolution are replaced by $\epsilon(d_0)$.

 M_{24} (51 minutes, 250M) dimensions 1, 9, 50, 203, 635:

$$
H_0(M_{24}) = \mathbb{Z}, H_1(M_{24}) = 0,
$$

\n
$$
H_2(M_{24}) = 0, \text{ and } H_3(M_{24}) = \mathbb{Z}/12\mathbb{Z}.
$$

 M_{23} (20 minutes, 140M) dimensions 1, 8, 41, 155, 457:

$$
H_0(M_{23}) = \mathbb{Z}, H_1(M_{23}) = 0,
$$

$$
H_2(M_{23}) = 0, \text{ and } H_3(M_{23}) = 0.
$$

What's next?

- Recursive use of CTC Wall?
	- \blacktriangleright This requires computing contracting homotopy at the polyhedral level
	- \triangleright CTC Wall lemma also provides a recursive method of computation.
- \blacktriangleright Banking system?
	- \triangleright Since most of computing time is taken by contracting homotopy, the gain is not obvious.
- \triangleright Other groups?
	- \triangleright The key ingredient of success of the method is that Mathieu groups are k -transitive for high k , and so we can use a polytope coming from Coxeter groups.
	- \triangleright For other groups, there is no reason to expect things to be simple.

THANK YOU