Homology of Mathieu groups

Mathieu Dutour Sikirić

Institut Rudjer Bošković

Ellis Graham NUI Galway

April 27, 2012

I. Homology

Polytopal complex

- ► A polytopal complex *PC* is a family of cells:
 - It contains \emptyset and P such that for every face F one has $\emptyset \subset F \subset P$.
 - If F is a face and

$$\emptyset = F_0 \subset F_1 \subset \cdots \subset F_p = F$$

is a chain, which cannot be further refined, then dim F = p. • We set $\dim \mathcal{PC} = \dim P - 1$

If F_{p-1} and F_{p+1} are two cells of dimension p − 1 and p + 1 then there exist exactly two cells G, G' such that

$$F_{p-1} \subset G, G' \subset F_{p+1}$$

The faces F are equivalent to polytopes.

Example:

- Any plane graph, any map on a surface.
- Any polyhedral subdivision

Boundary operator

- Let PC be a polytopal complex and for any 0 ≤ p ≤ dim PC denote by C_p(PC) the Z-module, whose basis is the p-dimensional faces of PC.
- ▶ We denote by *d_p* the boundary operator:

$$d_p: C_p(\mathcal{PC}) \to C_{p-1}(\mathcal{PC})$$

Note that $d_0 : C_0 \rightarrow \{0\}$.

- Note that d_p(F) is not defined uniquely, we can replace d_p(F) by its opposite with no damage.
- ▶ But if one imposes the relation d_p(d_{p-1}) = 0 then this is the only freedom, which is available.
- If e = {v, v'} is an edge then we will have d(e) = v − v' or v' − v.

Polytopal homology

▶ Take *PC* a polytopal complex of dimension *n* and define

$$B_p(\mathcal{PC}) = \operatorname{Im} d_{p+1}$$
 and $Z_p(\mathcal{PC}) = \operatorname{Ker} d_p$

From the relation $d_p d_{p-1} = 0$ we have $B_p \subset Z_p$ and we define

$$H_p(\mathcal{PC}) = Z_p/B_p$$

- If the tessellation of the space is by simplices, then we speak of "simplicial homology".
- $H_0(\mathcal{PC}) = \mathbb{Z}^p$ with p the number of connected components.
- H_i is a sum of \mathbb{Z} and $\mathbb{Z}/a\mathbb{Z}$ groups.

Topological invariance

► If *M* is a manifold and *PC*₁ and *PC*₂ are two polytopal subdivision modelled on it, then

$$H_p(\mathcal{PC}_1) = H_p(\mathcal{PC}_2)$$

A space X is called contractible if it can be continuously deformed to a point x. For a contractible space, one has

$$H_0(X) = \mathbb{Z}$$
 and $H_p(X) = \{0\}$ for $p > 0$

II. Group homology

Covering space

- If X, Y are two topological spaces, then a mapping φ : X → Y is called a covering map if
 - For any $y \in Y$, there exist a neighborhood N_y of y
 - ► such that for any x ∈ φ⁻¹(y) there exist a neighborhood N_x with
 - $N_y \subset \phi(N_x)$,
 - $N_x \cap N_{x'} = \emptyset$ if $x \neq x'$,
 - $\phi: N_x \to \phi(N_x)$ is bijective.
- ► As a consequence |φ⁻¹(y)| is independent of y and φ is surjective.
- ► There exist a group G of homeomorphisms of X such that for any x, x' ∈ X, there is a g ∈ G such that g(x) = x.
- We then write X/G = Y.

Group homology

- ► Take *G* a group, suppose that:
 - X is a contractible space.
 - G act fixed point free on X.

Then we define $H_p(G) = H_p(X/G)$.

- The space X is then a classifying space.
- Every group has a classifying space but finding them can be difficult.
- For example if G = Z², then X = R², Y = X/G is a 2-dimensional torus and one has
 - $H_0(G) = \mathbb{Z}$, • $H_1(G) = \mathbb{Z}^2$, • $H_2(G) = \mathbb{Z}$, • $H_i(G) = 0 \text{ for } i > 2$.

III. Orbit polytope

Orbit polytope

Suppose a group G has a linear representation in ℝⁿ and v is a vertex. The orbit polytope is then

conv(v.G)

- The interest of the orbit polytope is that it is an approximation of a classifying space:
 - ▶ If v is chosen randomly, the vertices have trivial stabilizers.
 - Then edges have stabilizer of size 1 or 2.
 - 2-faces have cyclic or dihedral stabilizers.
 - 3-faces stabilizers are also classified.
- See for more details:
 - G. Ellis; J. Harris, E. Sköldberg, *Polytopal resolutions for finite groups*. J. Reine Angew. Math. **598** (2006), 131–137

Polyhedral algorithm

- If G is an "interesting group" then it is big and the orbit polytope conv(v.G) has too many vertices to be stored in memory. The facets are also too big.
- The technique is store the set S of vertices adjacent to v, say, $S = \{v_1, \ldots, v_m\} = v \cdot \{g_1, \ldots, g_m\}.$
- Use an iteration
 - Determine an initial set S with (g_i) generating G.
 - ▶ By the group action, we know the vertices adjacent to S.
 - We check if those vertices are adjacent to S.
 - If yes, we update the set S.
 - If no, we return the set S as the reply.
- Several problem:
 - The algorithm can iterate forever to get the correct S, choosing a good initial set S is a good idea.
 - ► To find the adjacencies, one can compute the facets of the cone at v determined by S or linear programming.

Coxeter group case

Take G a finite Coxeter group acting on \mathbb{R}^n by its natural representation.

- Denote by S a fundamental simplex of the group G.
- ► The stabilizer of v ∈ S is the group generated by the reflections on the facets of S containing v.
- If v is inside of S then we obtain the permutahedron; and we have S = v.{s₁,...,s_n}.
- ► If v is contained in some facets of S then we can describe the set of faces of conv(v.G). One possible reference:
 - M. Deza, M. Dutour and S. Shpectorov, Isometric embeddings of Archimedean Wythoff polytopes into hypercubes and half-cubes, MHF Lecture Notes Series, Kyushu University, proceedings of COE workshop on sphere packings (2004) 55–70.
- For non-Coxeter groups, there is few hopes of a simple way to describe the face lattice.

IV. Resolutions

G-modules

- We use the GAP notation for group action, on the right.
- A *G*-module *M* is a \mathbb{Z} -module with an action

$$egin{array}{ccc} M imes G &
ightarrow & M \ (m,g) & \mapsto & m.g \end{array}$$

• The group ring $\mathbb{Z}G$ formed by all finite sums

$$\sum_{g \in G} \alpha_g g$$
 with $\alpha_g \in \mathbb{Z}$

is a G-module.

► If the orbit of a point v under a group G is {v₁,..., v_m}, then the set of sums

$$\sum_{i=1}^m \alpha_i v_i \text{ with } \alpha_i \in \mathbb{Z}$$

is a *G*-module.

 We can define the notion of generating set, free set, basis of a G-module. But not every finitely generated G-module admits a basis.

Free G-modules

- A *G*-module is free if it admits a basis e_1, \ldots, e_k .
- For free G-modules, we can work in much the same way as for vector space, i.e., with matrices.
- Let φ : M → M' be a G-linear homomorphism between two free G-modules and (e_i), (e'_i) two basis of M, M'.
- We can write $\phi(e_i) = \sum_j f_j a_{ij}$ with $a_{ij} \in \mathbb{Z}G$
- but then we have with $g_i \in \mathbb{Z}G$

$$\begin{aligned} \phi(\sum_{i} e_{i}g_{i}) &= \sum_{i} \phi(e_{i}g_{i}) \\ &= \sum_{i} \phi(e_{i})g_{i} \\ &= \sum_{j} f_{j}(\sum_{i} a_{ij}g_{i}) \end{aligned}$$

• More generally the "right" matrix product is AB = C with $c_{ij} = \sum_k b_{kj} a_{ik}$.

Resolutions

Take G a group.

A resolution of a group G is a sequence of G-modules (M_i)_{i≥0}:

$$\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \dots$$

together with a collection of *G*-linear operators $d_i: M_i \to M_{i-1}$ such that Ker $d_i = \text{Im } d_{i-1}$

- ▶ What is useful to homology computations are free resolutions with all M_i being free G-modules.
- ► The homology is then obtained by killing off the G-action of a free resolution, i.e replacing the G-modules (ZG)^k by Z^k, replacing accordingly the d_i by d̃_i and getting

$$H_i(G) = \operatorname{Ker} \tilde{d}_i / \operatorname{Im} \tilde{d}_{i-1}$$

How to get resolutions

► HAP can produce resolutions (with left actions) for finite groups, such that M₀ = ZG and

Im
$$d_1 = \{x = \sum_{g \in G} \alpha_g g \in \mathbb{Z}G \text{ such that } \sum \alpha_g = 0\}$$

To get resolutions on the right we use the antiisomorphism

$$\begin{array}{rcl} \operatorname{inv} : \mathbb{Z}G & \to & \mathbb{Z}G \\ \sum \alpha_g g & \mapsto & \sum \alpha_g g^{-1} \end{array}$$

- The CTC wall lemma can be used to sum things and get resolutions:
 - Suppose we have a resolution,

$$\mathbb{Z} \leftarrow M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \dots$$

which is not free, then we can lift the M_i to free modules $R_{i,0}$

$$\mathbb{Z} \leftarrow R_{0,0} \leftarrow R_{1,0} \leftarrow R_{2,0} \leftarrow \dots$$

but we no longer have the relation $d_i d_{i-1} = 0$

CTC wall gives a method to get a free resolution.

CTC Wall lemma

- We denote d_1 the operator of the $R_{i,0} \rightarrow R_{i-1,0}$.
- ► We can find free resolutions of the *R*_{*i*,0} *G*-modules by *G*-modules

$$R_{i,0} \leftarrow R_{i,1} \leftarrow R_{i,2} \leftarrow \ldots$$

with the boundary operators being named d_0 .

▶ Then we search for operators $d_k : R_{i,j} \rightarrow R_{i-k,j-1+k}$ such that

$$D = \sum_{i=0}^{\infty} d_i$$

realize a free resolutions of *G*-modules $\sum_{i+j=k} R_{i,j}$.

It suffices to solve the equations

$$\sum_{h=0}^k d_h d_{k-h} = 0$$

CTC Wall lemma

One way is to have the expression

$$d_k = -h_0(\sum_{h=1}^k d_h d_{k-h})$$

with h_0 a contracting homotopy for the d_0 operator, i.e. an operator $h_0 : R_{i,j} \to R_{i,j+1}$ such that $d_0(h_0(x)) = x$ if x belongs to the image of d_0 .

This gives a recursive method for computing first d₁ from the relations

$$d_1d_0 + d_0d_1 = 0$$

- ▶ Then *d*₂, *d*₃, ...
- CTC Wall also gives a contracting homotopy for the obtained resolution.

V. Homology of Mathieu groups

Mathieu groups

- ► A permutation group G acting on {1,..., n} is called k-transitive if it is transitive on k-uples (x₁,..., x_k).
- ► The residual stabilizer Res_k(G) of a k-transitive group is the stabilizer of (x₁,..., x_k).
- ► The Mathieu groups were discovered by Émil Mathieu:

Group	simple	sporadic	G	k	$ Res_k(G) $
M_9	no	-	72	2	1
M_{10}	no	-	720	3	1
M_{11}	yes	yes	7920	4	1
<i>M</i> ₁₂	yes	yes	95040	5	1
M ₂₁	yes	= PSL(3,4)	20160	2	48
M_{22}	yes	yes	443520	3	48
M ₂₃	yes	yes	10200960	4	48
<i>M</i> ₂₄	yes	yes	244823040	5	48

• Note that the 2-transitive groups are classified.

Orbit polytope for Mathieu groups

► If G is a k-transitive group acting on n points, then we take the vector

$$v = (1, 2, 3, ..., k, 0^{n-k})$$
 and $G.v = Sym(n).v$

- The fact that Sym(n) is a Coxeter group means that we can describe the face-lattice of Sym(n).v simply.
- In fact for the vectors v chosen, the orbit polytope Sym(n).v is simple, i.e. every vertex is adjacent to n − 1 vertices.
- The vertex stabilizer has size 48, but this is manageable.

CTC wall in practice: right cosets

- Take $R_{k,0}$, which is sum of orbits O_i of faces of dimension k.
- We compute resolutions $\tilde{R}_{k,i,l}$ of Stab f_l with f_l representative of O_l .

$$R_{k,i} = \oplus_{l=1}^r \tilde{R}_{k,i,l}$$

- The matrix of the operator $d_0 : R_{k,i} \to R_{k,i-1}$ is then a block matrix of the $\tilde{d}_0 : \tilde{R}_{k,i,l} \to \tilde{R}_{k,i-1,l}$
- ▶ For the contracting homotopy of a vector $v \in R_{k,i}$:
 - Decompose v into components $v_l \in \tilde{R}_{k,i,l} \otimes \mathbb{Z}G$
 - Decompose v_l into right cosets

$$v_l = \sum_s v_{s,l} g_s$$

with $g_s \in G$ distinct right Stab f_l -cosets and $v_{s,l} \in \tilde{R}_{k,i,l}$.

• Apply the contracting homotopy h_0 of the resolution $\tilde{R}_{k,i,l}$ to $v_{s,l}$ and sum

$$h_0(v_l) = \sum_s h_0(v_{s,l})g_s$$

CTC wall in practice: signature

- ► Take *e* an edge and *s* an element of the stabilizer inverting *e*.
- ► The element e e.s belong to the image of d₀, say d₀(w) = e - e.s
- If $d_1(e) = v v \cdot g$ then we have

$$\begin{array}{lll} d_1(d_0(w)) &=& d_1(e-e.s) \\ &=& (v-v.g)-(v-v.g).s \\ &=& v.(ld+g.s)-v.(ld+s.g^{-1}).g, \end{array}$$

which do not belong to $\text{Im} d_0!$

- What is needed is for every element s ∈ Stab f a signature det_f(s) = ±1, i.e., the determinant of s acting on the linear space of f.
- ϵ defines to a \mathbb{Z} Stab f isomorphism:

$$\epsilon(\sum \alpha_g g) = \sum \alpha_g \det_f(g) g$$

• The matrix d_0 coming from the resolution are replaced by $\epsilon(d_0)$.

▶ *M*₂₄ (51 minutes, 250M) dimensions 1, 9, 50, 203, 635:

$$H_0(M_{24}) = \mathbb{Z}, \ H_1(M_{24}) = 0, \ H_2(M_{24}) = 0, \ \text{and} \ H_3(M_{24}) = \mathbb{Z}/12\mathbb{Z}.$$

▶ *M*₂₃ (20 minutes, 140M) dimensions 1, 8, 41, 155, 457:

$$H_0(M_{23}) = \mathbb{Z}, \ H_1(M_{23}) = 0, \ H_2(M_{23}) = 0, \ \text{and} \ H_3(M_{23}) = 0.$$

What's next?

- Recursive use of CTC Wall?
 - This requires computing contracting homotopy at the polyhedral level
 - CTC Wall lemma also provides a recursive method of computation.
- Banking system?
 - Since most of computing time is taken by contracting homotopy, the gain is not obvious.
- Other groups?
 - The key ingredient of success of the method is that Mathieu groups are k-transitive for high k, and so we can use a polytope coming from Coxeter groups.
 - For other groups, there is no reason to expect things to be simple.

THANK YOU