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|. Homology



Polytopal complex

» A polytopal complex PC is a family of cells:

» It contains () and P such that for every face F one has
hCFcCP.
» If Fis a face and

Q):FoCFlC'-'CFp:F

is a chain, which cannot be further refined, then dim F = p.
» We set dim PC =dim P —1
» If F,_q1 and Fpyq are two cells of dimension p —1 and p+1
then there exist exactly two cells G, G’ such that

Fp,1 C G, G c Fp+1

» The faces F are equivalent to polytopes.
> Example:

» Any plane graph, any map on a surface.
» Any polyhedral subdivision



Boundary operator

> Let PC be a polytopal complex and for any 0 < p < dim PC
denote by C,(PC) the Z-module, whose basis is the
p-dimensional faces of PC.

» We denote by d, the boundary operator:
dp 1 Cp(PC) — Cp—1(PC)

Note that dp : Co — {0}.
> Note that d,(F) is not defined uniquely, we can replace dp(F)
by its opposite with no damage.

» But if one imposes the relation dy(dp—1) = 0 then this is the
only freedom, which is available.

» If e ={v,V'} is an edge then we will have d(e) = v — v/ or
vi—v.



Polytopal homology

v

Take PC a polytopal complex of dimension n and define

B,(PC) = Imdpy1 and Z,(PC) = Ker dp

v

From the relation d,d,_1 = 0 we have B, C Z, and we define

Ho(PC) = Zo/B,

v

If the tessellation of the space is by simplices, then we speak
of “simplicial homology" .

v

Ho(PC) = ZP with p the number of connected components.

v

H; is a sum of Z and Z/37, groups.



Topological invariance

» If M is a manifold and PC; and PCy are two polytopal
subdivision modelled on it, then

Hp(PC1) = Hp(PCo)

> A space X is called contractible if it can be continuously
deformed to a point x. For a contractible space, one has

Ho(X) = Z and Hp(X) = {0} for p >0



Il. Group
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Covering space

v

If X, Y are two topological spaces, then a mapping
¢ : X — Y is called a covering map if
» For any y € Y, there exist a neighborhood N, of y
» such that for any x € ¢~1(y) there exist a neighborhood N,
with
> Ny, C B(Ny),
> NyN N =0 if x # X/,
> ¢ Ny — ¢(Ny) is bijective.

» As a consequence |¢~1(y)| is independent of y and ¢ is
surjective.

v

There exist a group G of homeomorphisms of X such that for
any x,x’ € X, there is a g € G such that g(x) = x.

We then write X/G =Y.

v



Group homology

» Take G a group, suppose that:
» X is a contractible space.
» G act fixed point free on X.
Then we define H,(G) = Hp(X/G).
» The space X is then a classifying space.

» Every group has a classifying space but finding them can be
difficult.

» For example if G = Z?, then X =R?, Y = X/G is a
2—dimensiona| torus and one has

Ho(G)

H(G) =

H(G) =

Hi(G) = 0 for i>2.

v

v vy
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Orbit polytope

» Suppose a group G has a linear representation in R” and v is
a vertex. The orbit polytope is then

conv(v.G)

» The interest of the orbit polytope is that it is an
approximation of a classifying space:
» If v is chosen randomly, the vertices have trivial stabilizers.
Then edges have stabilizer of size 1 or 2.
2-faces have cyclic or dihedral stabilizers.
3-faces stabilizers are also classified.

vV vy

» See for more details:

w G. Ellis; J. Harris, E. Skoldberg, Polytopal resolutions for finite
groups. J. Reine Angew. Math. 598 (2006), 131-137



Polyhedral algorithm

» If G is an “interesting group” then it is big and the orbit
polytope conv(v.G) has too many vertices to be stored in
memory. The facets are also too big.

» The technique is store the set S of vertices adjacent to v, say,
S={vi,...,vm} =v{gL,...,8m}
> Use an iteration

» Determine an initial set S with (g;) generating G.
» By the group action, we know the vertices adjacent to S.
» We check if those vertices are adjacent to S.

> If yes, we update the set S.

> If no, we return the set S as the reply.

» Several problem:
» The algorithm can iterate forever to get the correct S,
choosing a good initial set S is a good idea.
» To find the adjacencies, one can compute the facets of the
cone at v determined by S or linear programming.



Coxeter group case

Take G a finite Coxeter group acting on R” by its natural
representation.

>

>

Denote by S§ a fundamental simplex of the group G.

The stabilizer of v € S is the group generated by the
reflections on the facets of S containing v.

If v is inside of & then we obtain the permutahedron; and we
have S = v.{s1,...,sn}.

If v is contained in some facets of S then we can describe the
set of faces of conv(v.G). One possible reference:

mw M. Deza, M. Dutour and S. Shpectorov, Isometric embeddings
of Archimedean Wythoff polytopes into hypercubes and
half-cubes, MHF Lecture Notes Series, Kyushu University,
proceedings of COE workshop on sphere packings (2004)
55-70.

For non-Coxeter groups, there is few hopes of a simple way to
describe the face lattice.



V. Resolutions



G-modules

> We use the GAP notation for group action, on the right.
» A G-module M is a Z-module with an action

MxG — M
(m,g) — mg
» The group ring ZG formed by all finite sums

Z agg with ag € Z
geai
is a G-module.
» If the orbit of a point v under a group G is {vi,...,Vvn}, then
the set of sums
m
Za,-v,- with a; € Z
i=1
is a G-module.
» We can define the notion of generating set, free set, basis of a
G-module. But not every finitely generated G-module admits
a basis.



Free G-modules

» A G-module is free if it admits a basis eq, ..., e.

» For free G-modules, we can work in much the same way as for
vector space, i.e., with matrices.

» Let ¢ : M — M’ be a G-linear homomorphism between two
free G-modules and (¢;), (e) two basis of M, M'.

» We can write ¢(e;) = ZJ. fa; with a; € ZG
> but then we have with g; € ZG

o(> eigi) =

Il
I
C."\,%\%
©
&

> More generally the “right” matrix product is AB = C with
Cij = Zk bkja,-k.



Resolutions

Take G a group.

> A resolution of a group G is a sequence of G-modules
(Mi)i>o:
Z+— My + My < My < ...

together with a collection of G-linear operators
d; : M; — M;_q1 such that Ker d; = Im d;_1

» What is useful to homology computations are free resolutions
with all M; being free G-modules.

» The homology is then obtained by killing off the G-action of a
free resolution, i.e replacing the G-modules (ZG)* by ZX,
replacing accordingly the d; by d; and getting

Hi(G) = Ker di/lm d;_,



How to get resolutions

» HAP can produce resolutions (with left actions) for finite
groups, such that My = ZG and

Im dy ={x= Z agg € ZG such that Zag =0}
geG
» To get resolutions on the right we use the antiisomorphism

inv:72G — 7ZG
Qg8 Y 0gg
» The CTC wall lemma can be used to sum things and get

resolutions:
» Suppose we have a resolution,

1

Z <+ My < My «+ My + ...
which is not free, then we can lift the M; to free modules R;
7 < RO,O% Rl,O% RQ’O(*

but we no longer have the relation did;_; =0
» CTC wall gives a method to get a free resolution.



CTC Wall lemma

» We denote d; the operator of the R;g — Ri_10.
» We can find free resolutions of the R; o G-modules by
G-modules
R,'70 — R,‘71 — R,‘72 — ...
with the boundary operators being named dp.
» Then we search for operators dj : R;j — Ri_x j—14k such that
oo
p=3 4
i=0
realize a free resolutions of G-modules Zi+j:k Ri;.
» It suffices to solve the equations

k
Z dpdi_p =0
h=0



CTC Wall lemma

» One way is to have the expression

k
di = —ho( _ dncl—)
h=1

with hg a contracting homotopy for the dy operator, i.e. an
operator hg : Rij = Rjj+1 such that do(ho(x)) = x if x
belongs to the image of dp.
» This gives a recursive method for computing first d; from the
relations
didp + dpdy =0

» Then d2, d3,

» CTC Wall also gives a contracting homotopy for the obtained
resolution.
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Mathieu groups

» A permutation group G acting on {1,...,n} is called
. ,Xk).
» The residual stabilizer Resx(G) of a k-transitive group is the

k-transitive if it is transitive on k-uples (xi, ..

stabilizer of (xi,..

.,Xk).

» The Mathieu groups were discovered by Emil Mathieu:

Group | simple | sporadic |G| k | |Resk(G)]
My no - 72 2 1
Mio no - 720 3 1
M1 yes yes 7920 4 1
Mi» yes yes 95040 5 1
Mo yes | = PSL(3,4) 20160 2 48
My yes yes 443520 3 48
Mo3 yes yes 10200960 | 4 48
Moy yes yes 244823040 | 5 48

» Note that the 2-transitive groups are classified.



Orbit polytope for Mathieu groups

» If G is a k-transitive group acting on n points, then we take
the vector

v=(1,2,3,...,k,0""%) and G.v = Sym(n).v

» The fact that Sym(n) is a Coxeter group means that we can
describe the face-lattice of Sym(n).v simply.

» In fact for the vectors v chosen, the orbit polytope Sym(n).v
is simple, i.e. every vertex is adjacent to n — 1 vertices.

» The vertex stabilizer has size 48, but this is manageable.



CTC wall in practice: right cosets

v

Take Ry, which is sum of orbits O; of faces of dimension k.

We compute resolutions Iﬂ?k’,-J of Stab f; with f; representative
of O/.

v

Rii= ®j—1Rx.i

The matrix of the operator do Rk,i — Ri i—1 is then a block
matrix of the do Rk il — Rk i—1,1
For the contracting homotopy of a vector v € Ry ;:

v

v

» Decompose v into components v, € INQ,(,,-}, RZG
» Decompose v into right cosets

VI = § Vs,18s
s

with g; € G distinct right Stab f;-cosets and v ; € /N?k7;7,.
» Apply the contracting homotopy hg of the resolution Ry ;; to

Vs,; and sum
Vi) = Z ho(vs,1)gs
S



CTC wall in practice: signature

> Take e an edge and s an element of the stabilizer inverting e.
» The element e — e.s belong to the image of dp, say

do(w) =e—es
» If di(e) = v — v.g then we have

dl(do(W)) = dl(e — e.s)
= (v—v.g)—(v—v.g)s
= v.(ld+gs)—v.(Id+sg1).g,
which do not belong to Imdp!
> What is needed is for every element s € Stab f a signature
detf(s) = +£1, i.e., the determinant of s acting on the linear
space of f.
> ¢ defines to a Z Stab f isomorphism:

G(Z 0gg) = Z agdetr(g)g
» The matrix dy coming from the resolution are replaced by
e(dp).



Some examples

» Mos (51 minutes, 250M) dimensions 1, 9, 50, 203, 635:

Ho(Mas) = Z, Hi(Mos) =0,
H2(M24) = 0, and H3(M24) = Z/].QZ~

» Ma3 (20 minutes, 140M) dimensions 1, 8, 41, 155, 457:

Ho(Ma3) = Z, Hi(M23) =0,
H2(M23) == 0, and H3(M23) =0.



What's next?

» Recursive use of CTC Wall?
» This requires computing contracting homotopy at the
polyhedral level
» CTC Wall lemma also provides a recursive method of
computation.
» Banking system?
» Since most of computing time is taken by contracting
homotopy, the gain is not obvious.
» Other groups?
» The key ingredient of success of the method is that Mathieu
groups are k-transitive for high k, and so we can use a
polytope coming from Coxeter groups.

» For other groups, there is no reason to expect things to be
simple.
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