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History
-

Mathematics: construction of planar graphs

M. Goldberg, A class of multisymmetric polyhedra,
Tohoku Math. Journal, 43 (1937) 104—-108.

Objective was to maximize the interior volume of the
polytope, i.e. to find 3-dimensional analogs of regular
polygons.

[1 search of equidistributed systems of points on the sphere
for application to Numerical Analysis.
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Biology. explanation of structure of icosahedral viruses

D.Caspar and A.Klug, Physical Principles in the Con-
struction of Regular Viruses, Cold Spring Harbor

History

Symp. Quant. Biol., 27 (1962) 1-24.

(k,1) | symmetry capsid of virion
(1,0) I, gemini virus

(2,0) Iy, hepathite B

(2,1) I, laevo | HK97, rabbit papilloma virus
(3,1) | I, laevo rotavirus

(4,0) Iy, herpes virus, varicella
(5,0) Iy, adenovirus

(6,3)? | I, laevo HIV-1

=
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History

Architecture. construction of geodesic domes
Patent by Buckminster Fuller
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History

o .

Mathematics.

H.S.M. Coxeter, Virus macromolecules and
geodesic domes, in A spectrum of mathematics; ed.
by J.C.Butcher, Oxford University Press/Auckland
University Press: Oxford, U.K./Auckland New-
Zealand, (1971) 98-107.
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History

Chemistry: Buckminsterfullerene Cgg
(football, Truncated Icosahedron)

Kroto, Kurl, Smalley (Nobel prize 1996) syn-
thetized in 1985 a new molecule, whose graph is

G'C1,1(Dodecahedron).
Osawa constructed theoretically Cgp In 1984.
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l. ZIgZags
and

central circuits



Central circuits

-

A 4—valent plane graph G




Central circuits

-

Takean edgeof G




Central circuits

-

Continue It straight ahead ...




Central circuits

-

... until the end




Central circuits

-

A self—intersecting central circuit
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Central circuits

A partition of edges of G

CC=42 6, 8
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Z1g Zags

A plane graph G
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Z1g Zags
-

Take two edges
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Z1g Zags
-

Continue It left-right alternatively ....




Z1g Zags
-

... until we come back




Z1g Zags
-

A self—intersecting zigzag
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Z1g Zags
-

A double covering of 18 edges: 10+10+16
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Notations

o .

#® ZC-circuit stands for “zigzag or central circuit” in 3- or
4-valent plane graphs.

# The length of a ZC-circuit is the number of its edges.

#® The ZC-vector of a 3- or 4-valent plane graph G is the
vector ... ¢, ... where my is the number of

ZC-circuits of length ¢;.
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ll. Goldberg-Coxeter

construction



The construction

-

=

# Take a 3- or 4-valent plane graph Gy. The graph Gj Is
formed of triangles or squares.

# Break the triangles or squares into pieces:

= 7~ = 7 — 1 Z - - 7
| | | | |
R _ 4
| | |
| | |
-1 - -7 - r - 1~ -
| | | | | | |
L J_ L - J_ _L - J_ _ _ 4
| | | | | | |
| | | | | | | |
- - -7 -r 7" - r T
| | | | | | |
L — L - J_ _ L - J_ _L _
| |
| |
= |=2
| |
L —
| |
k=5
3—valent case 4—valent case
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Gluing the pieces

o .

#® Glue the pieces together in a coherent way.

#® We obtain another triangulation or quadrangulation of
the plane.

AN
N

L Case 3-valent Case 4-valent J
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Gluing the pieces

o .

#® Glue the pieces together in a coherent way.

#® We obtain another triangulation or quadrangulation of
the plane.

L (3,0): 3-valent (3,0): 4-valent J
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Gluing the pieces

o .

#® Glue the pieces together in a coherent way.

# We obtain another triangulation or quadrangulation of
the plane.
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Gluing the pieces

o .

#® Glue the pieces together in a coherent way.

#® We obtain another triangulation or quadrangulation of
the plane.

N T NT TN T TN TR =
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Final steps

o .

# Go to the dual and obtain a 3- or 4-valent plane graph,
which is denoted GCjy;(Go) and called

“Goldberg-Coxeter construction”.

#® The construction works for any 3- or 4-valent map on
oriented surface.

Operation GCs
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Example of GC'5 o(Octahedron)

o \ .




Example of GC'5 o(Octahedron)
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Example of GC'5 o(Octahedron)




Example of GC'5 o(Octahedron)
-




°

Properties

One associates > = k + le's (Eisenstein integer) or
z = k + li(Gaussian integer) to the pair (k,[) in 3- or
4-valent case.

If one writes G'C,(Gy) instead of GCY,;(Gop), then one
has:

GC,(GC,(Gp)) = GC,u(Gy)
If Go has n vertices, then GC ;(Go) has

n(k? + kl 4+ 1?) = n|z|? vertices if Gy is 3-valent,
n(k? + 1?) = n|z|? vertices if Gy is 4-valent.
If Gy has a plane of symmetry, we reduceto 0 <[ < k.

GCy1(Gop) has all rotational symmetries of G and all
symmetriesif [ =0o0r( = k.

=

-
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Thecase (k,l) = (1,1)

Case 3-valent Case 4-valent



Thecase (k,l) = (1,1)

—eo o—o

—eo o—o

Case 3-valent Case 4-valent



.

Thecase (k1) = (1,1)

/- ! B
- ! -/

Case 3-valent

G'Ch,1 Is called leapfrog
(=Truncation of the dual)

Case 4-valent
G'Cy 1 Is called medial

— p.14/4!



Goldberg Theorem

o .

® ¢, Is the class of 3-valent plane graphs having only g-
and 6-gonal faces.

#® The class of 4-valent plane graphs having only 3- and
4-gonal faces is called Octahedrites.

Class Groups Construction
3, p3 = 4 T, T, GCy, (Tetrahedron)
4, pa=6 | O, Oy GC,(Cube)
4, ps =6 | Dg, Dgp, G'C(Prismg)
5% ps =12 | I, I G'Ck,(Dodecahedron)
Octahedrites | p3 =8 | O, Oy G'C,(Octahedron)
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The special case GC; g
- -

#® Any ZC-circuit of GGy corresponds to k£ ZC-circuits of
GCy 0(Go) with length multiplied by £.

» Ifthe ZC-vectorof Gy is ..., ¢/, ..., then the ZC-vector
of GCk)O(Go) IS ..., (kcl)kml, Ce
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The special case GC; g
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#® Any ZC-circuit of GGy corresponds to k£ ZC-circuits of
GCy 0(Go) with length multiplied by £.

» Ifthe ZC-vectorof Gy is ..., ¢/, ..., then the ZC-vector
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-

The special case GC; g

#® Any ZC-circuit of GGy corresponds to k£ ZC-circuits of T
GCy 0(Go) with length multiplied by £.

» If the ZC-vectorof Gy is ..., ",
of GCk)O(Go) IS ..., (kcl)kml, Ce

..., then the ZC-vector
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1. The
(k,l)-product



The mapping ¢y

o .

We always assume gcd(k,l) =1

¢k7l:{1,...,k—|—l} — {1,...,k—|—l}

u+l If wedl,... k}
u = :
u—k If we{k+1,...)k+1}

IS bijective and periodic with period & + I.

Example: Case k£ =5, = 2:

o) (1) =1,3,5,7,2,4,6,1,. ..
operations:(+2), (+2), (+2), (=5), (+2), (+2), (—5)



The (k,[)-product
- -

# Definition O (The (k,[)-product)
If L and R are two elements of a group, &,/ > 0 and
gcd(k, 1) = 1; we define
(Po, -+ Pr+1) BY po =1 and p; = ¢y 1 (pi—1).
Set 5; :Lifpz'—pz'_l = [ and S; :Rifpz'—pz‘_l = —k;
then set
L@k’lR:Sk_i_l...SQ'Sl.

By convention, set L ®10 R =L and L ®g1 R = R.
For k =5, | = 2, one gets the expression

L ®ss R=RLLRLLL

# A similar notion is introduced by Norton (1987) in
L “Generalized Moonshine” for the Monster group. J
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Properties

® If L and R commute, L Oy R = LFR!

# Euclidean algorithm formula

L@k,lR L Ok—ql , 1 RLY ifk—ql>0
L@k’lR = RYIL Ok . 1—qk R Ifl — gk >0

[ If L and R do not commute, then L ©; R # Id.

— p.20/4



V. ZC-cIrcuits
IN
GC 1(Go)



Position mapping, 3-valent case

o .

A zigzagin

GG (G



Position mapping, 3-valent case

o .

Put an
Orientation

onit



ent case

Position mapping, 3-val




osition mapping, 3-valent case

Go to the

k=5 - p.22/4



Position mapping, 3-valent case

=

Image of (e, 3)
IS
(f1,9)




Position mapping, 3-valent case

-

Image of (e, 6)
IS
(f2,1)

L k=5



| ter ation

“Position mapping” is denoted PM (¢ 71, dr.1(p T
or ?%Cbk,l (p))
PM* (€ 1)=(€",1). So, one defines “Iterated position

mapping” as [PM(¢) = €.

DE Is the set of directed edges of Gj. IPM is a
permutation of DE.

For every ZC-circuit with pair (¢, 1) denote Ord(ZC)
the smallest s > 0, such that IPM3(¢) = ¢.

For any ZC-circuit of GCy ;(Go) one has:
length(ZC)=2(k* + kil + 1*)Ord(ZC) 3-valent case
length(ZC)=(k* + 1?)Ord(ZC) 4-valent case
The [ZC]-vector of GC},;(Go) is the vector ... ¢, ... J
where my, Is the number of ZC-circuits with order c¢y.

—p.23/4



Themappings L and R
-

# [ and R are the following permutation of D&
L : ? — ?1 R : ? — ?2

with ?1 and ?2 being the first and second choice.
Example of Cube

Dual Cube



Themappings L and R

24 Directed Edges

\




Themappings L and R

Successive images of eby L

N\




Themappings L and R

Successive images of e by R




Moving group and Key Theorem

o .

® Mov(Gy) = (L, R) Is the moving group
In Cube: a subgroup of Sym(24).

® Foru e Mov(Gy), denote ZC'(u) the vector ... ¢, . ..

with multiplicities m;, being the half of the number of

cycles of length ¢, in the permutation « acting on the set
DE.

In Cube: ZC(L) = ZC(R) = 3*

[1 Key Theorem One has for all 3- or 4-valent plane graphs
Goandall £,1 >0

ZC| — vector of GCY 1(Go) = ZC(L Ok R)
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°

Solution of the Cube case

=

L and R do not commute U L ©f; R # Id.
Mov(Cube) = (L, RYy=Alt(4)

K ={((1,2)(3,4),(1,3)(2,4)) normal subgroup of index 3
of Alt(4). L is of order 3.

L Ok, R = Zkﬁl = fk_l
L®p R e K & k—[dvisible by 3

Elements of Alt(4) — K have order 3. Elements of
K — {Id} have order 2.

GCy,(Cube) has [ZC]=2° if k = (mod 3) and [ZC]=3,
otherwise

-
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Possible [ZC]-vectors

=

Denote P(Gy) the set of all pairs (g1, g2) with
gi € Mov(Gy).

Denote Uy, r the smallest subset of P(Gp), which

contains the pair (L, R) and is stable by the two
operations

(z,y) = (z,yz) and (z,y) — (yz,y)

Theorem: The set of possible [ZC]-vectors of GC ;(Go)

IS equal to the set of all vectors ZC'(v), ZC'(w) with
(v,w) € Ur, R.

Computable in finite time for a given Gy.

—p.27/4



-

Examples

® Mov(Dodecahedron) = Alt(5) of order 60. Order of
elements different from Id are 2, 3 or 5.

Possible [ZC] are 2'° or 3V or 5.

® Mov(Klein Map)=PS L, (2) of order 168. Order of

elements different from Id are 2, 3, 4 or 7.

Possible [ZC] are 32° or 421,

139968000000

Mov(Truncated Icosidodecahedron) has size

230 340 230 524
260 320 260 512
290 360
920 630

320 524
340 512
536

1512
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V. SLo(Z) action



S Lo(7Z) action?

o .

P(Gy) Is the set of pairs (g1, g2). One has

L Ok, R=1L Ok—1.1 RL and L Ok, R =RL Ok, 1—k R

The matrices ( 11 (1) ) and < (1) _11 ) generate SLy(7Z).
We want to define ¢, such that
() ¢ is a group action of SLo(Z) on P(Gp)

(i) If M € SLo(7Z), then the mapping ¢(M) : P(Gg) — P(Gyp)
satisfies

O(M)(g1,92) = (h1,h2) = 91 Opym 92 = h1 Ok 2
This is In fact not possible!

o -
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S Lo(7Z) action
- -

® SLo(7Z) 1s generated by matrices

T(O 1)and(](O 1)
—1 0 —1 -1

all relations between T and U are generated by the
relations

T =1, U>=1, and T?°U = UT?

o We write

O(T)(g1,92) = (92,9291 95 ")
o(U)(g1,92) = (92,9297 '95°)

o -
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S Lo(Z) action (continued)

o .

[1 By computation

(1) (91, 92) = $(U)°(g1,92) = Inty —1,-1,.(1,92),
ATV o(U)(g1,92) = o(U)p(T)*(g1,92) -

0 Group action of SLy(Z) on P(Go)/D(Mov(Gy))-

O If M preserve the element (L, R) in P(Go)/D(Mov(Gy)),
then for all pairs (k,1):

GCri(Go) and  GCpym(Go)
have the same [ZC]-vector. This define a

L finite index subgroup of SL2(Z) J



Conjectured generators

Graph Gy Generators of Stab(Gy)
Dodecahedron b=l | —4 3 | -4
1 0 3 2 1 0
Cube (—11)(0—1)
—1 0 1 2
Octahedron o1 -4 =3 -4 -1

1 o /J°\V 3 2 J°\L 1 o0




VI. Remarks



Rot(G) trangitive

o .

DE is the set of all directed edges of Gy.

® Rot(Gp): all rotations in automorphism group Aut(Gy).
s Its action on D€ s free.
s action of Rot(Gy) and Mov(Gg) on DE commute.

® If Rot(Gy) Is transitive on D&, then its action on
ZC-circuit Is transitive too and

{¢E>:MO’U(G()) —  Rot(Gy)
u = ¢z (u)

defined by u=1(¥) = ¢ (u)(¥), is an injective group
morphism. ¢—-(Mov(Gyp)) Is normal in Rot(Gy).

o -
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Extremal cases

=

Rot(Gp) non-trivial = restrictions on Mov(Gy).

Rot(Gp) transitive on DE = |Mov(Gg)|=3n (3-valent
case) or = 4n (4-valent case).

Mov(Gy) Is formed of even permutation on 3n or 4n
directed edges.

In some cases Mov(Gg) = Alt(3n).

WY

We have no example of 4-valent plane graph G with
Mov(Gg) = Alt(4n). J

~ p.36/4




Mov(Gy) commutative

=

Mov(Gg) commutative < G Is either a graph 2, a
graph 3,, or a 4-hedrite.

Class 2,, (Grunbaum-Zaks): Goldberg-Coxeter of the

Bundle @

an
N
Class 3, Class 4-hedrites
(Grunbaum-Motzkin) (Deza-Shtogrin)

No other classes of graphs ¢, or ¢-hedrites is known to
admit such simple descriptions.

-
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VII. Parametrizing

graphs g,



Parametrizing graphsgq,

o .

ldea: the hexagons are of zero curvature, it suffices to give
relative positions of faces of non-zero curvature.

#® Goldberg (1937): All 3,,, 4,, or 5,, of symmetry (T, Ty),
(O, O) or (I, 1) are given by Goldberg-Coxeter
construction GCY ;.

# Fowler and al. (1988) All 5,, of symmetry Ds, Dg Or T
are described in terms of 4 parameters.

# Graver (1999) All 5,, can be encoded by 20 integer
parameters.

#® Thurston (1998) The 5,, are parametrized by 10 complex
parameters.

#® Sah (1994) Thurston’s result implies that the Nrs of 3,,,
\_ 4, 5, ~n, n3, no.
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Thestructure of graphs 3,

f W@

The corresponding trian-
gulation

4 triangles in Z{w

The graph 320(Dayy)




Tightness

f # A railroad in a 3-valent plane graph G Is a circuit of T
hexagons with any two of them adjacent on opposite

edges.
7 \\
7/ N
S
/ \
/ \
1 \
| \
|
1 !
\ /
\ /
\ /
\ /
\ /
\ /7
N 7
~ e
~ //
~ -

They are bounded by two zigzags.

#® A graphis called tight if and only if it has no railroads.

# If a 3- (or 4-)valent plane graph G, has no ¢-gonal faces
 with ¢=6 (or 4) and ged(k, 1) = 1 then GCy(Go) is tight.

— p.41/4



z- and railroad-structure of graphs 3,

o .

All zigzags are simple.
#® The z-vector is of the form

(451)™, (452)"™, (453)"™  with s;m; = 7

the number of railroads is m + mg + m3 — 3.
#® (G has > 3 zigzags with equality if and only if it is tight.

» If G is tight, then z(G) = n? (so, each zigzag is a
Hamiltonian circuit).

» All 3, are tight if and only If 7 Is prime.

® There exists a tight 3,, If and only If 7 Is odd.
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Conjectureon 4, (D3, D3g or Ds)

f ® 4,(Ds3 C Dy, D3g, Dg, Dgp, O, Oy,) are described by two T
complex parameters. They exists if and only if n =0, 2
(mod 6) and n > 8.

4,(D3) with one zigzag  The defining triangles

® 4,(Dsy C Oy, Dgp,) exists if and only if n = 0,8 (mod 12),
n > 8.

# If n increases, then part of 4,,(D3) amongst
L 4 (D3, D3g, D3) goes to 100% J



M or e conjectures

~ ® All 4, with only simple zigzags are: -
o GC]C7()(C’LL[)6), GCk)k(C’ube) and
s the family of 4,,(Ds C ...) with parameters (m, 0) and
(2, m — 2i) with n = 4m(2m — 3i) and
z = (6m — 6i)° 3, (6m)™ %, (12m — 18i)"
They have symmetry D3, or Oy, or Dy,
® Any4,(Ds; C ...)with one zigzag is a 4,,(Ds3).

o Fortight graphs 4,,(Ds C ...) the z-vector Is of the form
a® with k € {1,2,3,6} or a*, b with k,1 € {1, 3}

® Tight4,(D34) existif and only if n =0 (mod 12), they are
z-transitive with

» 2= (n/2)2/3670 Iff n =24 (mod 36) and, otherwise,

s 2=(3n/2)2),,iffn=0,12 (mod 36) o
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The End
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