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Goldberg-Coxeter for the Cube
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Goldberg-Coxeter for the Cube
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Goldberg-Coxeter for the Cube

2,1

– p.2/45



History

Mathematics: construction of planar graphs

M. Goldberg, A class of multisymmetric polyhedra,
Tohoku Math. Journal, 43 (1937) 104–108.

Objective was to maximize the interior volume of the
polytope, i.e. to find

�

-dimensional analogs of regular
polygons.

➠ search of equidistributed systems of points on the sphere
for application to Numerical Analysis.
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History

Biology: explanation of structure of icosahedral viruses

D.Caspar and A.Klug, Physical Principles in the Con-
struction of Regular Viruses, Cold Spring Harbor
Symp. Quant. Biol., 27 (1962) 1-24.

� ��
�

� �

symmetry capsid of virion

��
�

� � �
	 gemini virus

��
�

� � ��	 hepathite B

��
�

� � �

, laevo HK97, rabbit papilloma virus

� �
�

� � �

, laevo rotavirus

�
�

� � �
	 herpes virus, varicella

��
�

� � ��	 adenovirus

��
�

� �

?
�

, laevo HIV-1
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History

Architecture: construction of geodesic domes
Patent by Buckminster Fuller

EPCOT in Disneyland.
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History

Mathematics:
H.S.M. Coxeter, Virus macromolecules and
geodesic domes, in A spectrum of mathematics; ed.
by J.C.Butcher, Oxford University Press/Auckland
University Press: Oxford, U.K./Auckland New-
Zealand, (1971) 98–107.
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History

Chemistry: Buckminsterfullerene

����

(football, Truncated Icosahedron)

Kroto, Kurl, Smalley (Nobel prize 1996) syn-
thetized in 1985 a new molecule, whose graph is� ����� � �� 	 
�� � � � 
�� 	� �

.
Osawa constructed theoretically

��� in 1984.
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I. ZigZags

and

central circuits
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Central circuits

A 4−valent plane graph G
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Central circuits

Take an edge of G
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Central circuits

Continue it straight ahead ...
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Central circuits

... until the end
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Central circuits

A self−intersecting central circuit
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Central circuits

A partition of edges of G

CC=4 ,  6,  82
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Zig Zags

A plane graph G
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Zig Zags

Take two edges
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Zig Zags

Continue it left−right alternatively ....
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Zig Zags

... until we come back
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Zig Zags

A self−intersecting zigzag
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Zig Zags

A double covering of 18 edges: 10+10+16

z=10 ,  162z−vector
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Notations

ZC-circuit stands for “zigzag or central circuit” in
�

- or



-valent plane graphs.

The length of a ZC-circuit is the number of its edges.

The ZC-vector of a

�

- or


-valent plane graph

�� is the
vector � � � �  ���� � � � � where � � is the number of
ZC-circuits of length �.
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II. Goldberg-Coxeter

construction
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The construction

Take a

�

- or



-valent plane graph

�� . The graph
� �� is

formed of triangles or squares.

Break the triangles or squares into pieces:

3−valent case

k=5

l=2
l=2

k=5

4−valent case
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Gluing the pieces

Glue the pieces together in a coherent way.

We obtain another triangulation or quadrangulation of
the plane.

Case
�

-valent Case



-valent
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Gluing the pieces

Glue the pieces together in a coherent way.

We obtain another triangulation or quadrangulation of
the plane.

� �
�

� �
:

�

-valent

� �
�

� �

:



-valent
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Gluing the pieces

Glue the pieces together in a coherent way.

We obtain another triangulation or quadrangulation of
the plane.
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Gluing the pieces

Glue the pieces together in a coherent way.

We obtain another triangulation or quadrangulation of
the plane.

– p.10/45



Final steps

Go to the dual and obtain a

�

- or



-valent plane graph,
which is denoted

� � �� �

� �� �

and called
“Goldberg-Coxeter construction”.

The construction works for any

�

- or


-valent map on
oriented surface.

Operation

� �
�� �
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Example of �
�

� � � � �
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Example of �
�

� � � � �
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Example of �
�

� � � � �
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Example of �
�

� � � � �
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Example of �
�

� � � � �
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Example of �
�

� � � � �
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Example of �
�

� � � � �
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Properties

One associates � � � � � � � �� (Eisenstein integer) or

� � � � �� (Gaussian integer) to the pair

� �
�

� �
in

�

- or



-valent case.

If one writes

� ��
�

� �� �

instead of

� � �� �

� �� �
, then one

has: � �
�

� � �
� 	

� �� � �

� � �
� � 	

� �� �

If

�� has � vertices, then
� � �� �

� �� �

has

� � � � � � � � � � �
� � 
 � 


�

vertices if

�� is

�

-valent,

� � � � � � � �
� � 
 � 


�

vertices if

�� is



-valent.

If

�� has a plane of symmetry, we reduce to

� � � � �

.

� � �� �

� �� �

has all rotational symmetries of

�� and all
symmetries if

� � �

or

� � �

.

– p.13/45



The case �
�

� �
�

�

Case

�

-valent Case



-valent
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The case �
�

� �
�

�

Case

�

-valent Case



-valent
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The case �
�

� �
�

�

Case

�

-valent� ����� � is called leapfrog
(=Truncation of the dual)

Case



-valent� ����� � is called medial
Bonjour
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Goldberg Theorem

��� is the class of

�

-valent plane graphs having only �-
and

�

-gonal faces.

The class of



-valent plane graphs having only

�

- and



-gonal faces is called Octahedrites.

Class Groups Construction

��
� ��� �  �

,
�
	 � ���� �
�

Tetrahedron

�


� ��� � � �
,

��� � ���� �
�

Cube

�


� ��� � � � �,

� �� � ���� �
�

Prism �
�

�
� ��� � � � �

,

�� � ���� �
�

Dodecahedron

�

Octahedrites � � � � �

,

��� � ���� �
�

Octahedron

�
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The special case �
�

�

Any ZC-circuit of

�� corresponds to

�

ZC-circuits of� � �� �
� �� �

with length multiplied by

�

.

If the ZC-vector of

�� is � � � �  ��
� � � � � , then the ZC-vector

of

� � �� �
� �� �

is � � � �
� � �
� � ��
� � � � .
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The special case �
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Any ZC-circuit of
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�
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�
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If the ZC-vector of

�� is � � � �  ��
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The special case �
�

�

Any ZC-circuit of

�� corresponds to

�

ZC-circuits of� � �� �
� �� �

with length multiplied by

�

.

If the ZC-vector of

�� is � � � �  ��
� � � � � , then the ZC-vector

of

� � �� �
� �� �

is � � � �
� � �
� � ��
� � � � .
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III. The

� -product
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The mapping �
�

�

We always assume � 
 � ��
�

� � � �

��
���

� �� � � � �
� � � � �

� � � 	 
 � �
� � � � �

� � � 	

�� 
 � � � if �  � �
� � � � �

� 	

��� �

if �  � � � �
� � � � �

� � � 	

is bijective and periodic with period
� � �.

Example: Case

� � � ,

� � � :

� ��� � �� �
� � �

�
�

�
�

�
�

�
�


�

�
�

�
� � � �

operations:

� �� �
�

� �� �
�

� �� �
�

�� � �
�

� �� �
�

� �� �
�

�� � �
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The �
�

-product

Definition 0 (The

� �
�

� �

-product)
If

�

and

�

are two elements of a group,

��
�

� � �
and� 
 � �

�
� � � � ; we define� �� � � � � � � �� �

�

by �� � � and � � � � �� �

� � ��� � �
.

Set

�
� � �

if � � � � ��� � � � and

�
� � �

if � � � � ��� � � � �

;
then set

� � �� �

� � � � � � � � �
�

�� � � �

By convention, set

� � ��� � � � �

and

� �� � � � � �

.
For

� � � ,

� � � , one gets the expression

� �
	 � �

� � � � � � � � �

A similar notion is introduced by Norton (1987) in
“Generalized Moonshine” for the Monster group.
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Properties

If

�

and

�

commute,

� � �� �

� � � � � �

Euclidean algorithm formula

� � �� �

� � � � �� � �� �

� � �
if

� � � � � �

� � �� �

� � � � � � �� � � � � �
if

� � � � � �

➠ If

�

and

�

do not commute, then

� � �� �

� �
� � 


.
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IV. ZC-circuits

in
�

�

– p.21/45



Position mapping, -valent case

A zigzag in

0GC      (G   )5,2
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Position mapping, -valent case

Put an

on it

Orientation
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Position mapping, -valent case

e

1 2 3 4 5

6

7

A directed
edge e

A position p=3

Encoding:
−

−

a pair ( e, 3)
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Position mapping, -valent case

1 2 3 4 5

6

7

k=5

l=2

e

Go to the

Dual !
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Position mapping, -valent case

l=2

k=5

1

6

7

5432

3 4 521

is

1f

Image of ( e,  3)

( f   , 5)1 e
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Position mapping, -valent case

l=2

k=5

1

6

7e

5432

is

2 3 4 5

6

7

f2

Image of ( e,  6)

( f   , 1)2
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Iteration

“Position mapping” is denoted

� �� 
� � � �=

�� 
�� � � � �� �

� � � �

or

�� 
 �
� �

� �� �

� � � �

� � � � �� 
� �
� �

=

�� 
� �
�

� �

. So, one defines “Iterated position
mapping” as

� � �� 
� �
� � 
� �

.

� �

is the set of directed edges of
� �� .

� �

is a
permutation of

� �

.

For every ZC-circuit with pair
�� 
� �
� �

denote

� � 
 �� � �

the smallest � � �

, such that

� � � �� 
� �
� � 
� .

➠ For any ZC-circuit of
� � �� �

� �� �

one has:

	�
 �  � � � � � �

=

� � � � � � � � � � � � � 
 � � � � �

-valent case	�
 �  � � � � � �
=

� � � � � � � � � 
 � � � � 

-valent case
The [ZC]-vector of

� � �� �

� �� �

is the vector � � � �  ���� � � � �

where � � is the number of ZC-circuits with order �.
– p.23/45



The mappings and

�

and

�

are the following permutation of

� �

� � � 
� 
 � 
 � � � � � 
� 
 � 
 �
�

with

� 
 � � and

� 
 �
� being the first and second choice.

Example of Cube

Dual Cube
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The mappings and

24 Directed Edges

– p.24/45



The mappings and

L(e)

L(L(e))

e

Successive images of e by L
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The mappings and

R(e)

R(R(e))
e

Successive images of e by R
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Moving group and Key Theorem

	� � �� �
�

� �
�

� �

is the moving group
In Cube: a subgroup of

��� � ��  �

.

For �  	 � � �� �

, denote

� � � � � the vector � � � �  ���� � � � �

with multiplicities � �being the half of the number of
cycles of length � in the permutation � acting on the set� �

.
In Cube:

� � � � � � � � � � � � �
�

➠ Key Theorem One has for all

�

- or



-valent plane graphs�� and all

�
�

� � �

�� � � � � � � 	 � of

� � �� �

� �� �
� � � � � � �� �

� �

– p.25/45



Solution of the Cube case

�

and

�

do not commute ➠

� � �� �

� �
� � 


.

	� � � � � � �
�

� �
�

� �

=

� � � � �

� �
� ��
�

� � � �
�

 �
�

��
�

� � ��
�

 � �

normal subgroup of index

�

of

� � � � �

.

�

is of order

�

.

� � �� �

� � � � � �

� � �� �

� � �� �

�  � � � � �

divisible by

�

Elements of

� � � � � � �
have order

�

. Elements of�� � � 
 	

have order
�

.

➠

� � �� �

�

Cube

�

has [ZC]=

� �

if

��� � ��� � 	 � �

and [ZC]=

�
�

,
otherwise
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Possible [ZC]-vectors

Denote

� � �� �

the set of all pairs

� � � � � �
�

with� �  	� � �� �

.

Denote

��� � � the smallest subset of

� � �� �
, which

contains the pair

� �
�

� �

and is stable by the two
operations

��� � � �� 
 ��� � � � �

and
��� � � �� 
 � � � � � �

➠ Theorem: The set of possible [ZC]-vectors of

� � �� �

� �� �

is equal to the set of all vectors

� � � � �

,

� � ��� �

with� � � � �  ��� � �.

Computable in finite time for a given

�� .
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Examples

	� �

Dodecahedron

�
�

� � � �� �

of order

� �

. Order of
elements different from

� 


are

�

,

�

or

�

.
Possible [ZC] are

� � 	

or

� ��

or

� �

.

	� �

Klein Map

�

=

� � ��� �
�� �

of order
� � �

. Order of
elements different from

� 


are

�

,
�

,


or

�
.

Possible [ZC] are

� ��

or

 � �

.

	� �

Truncated Icosidodecahedron

�

has size

� �� � � � � � � � � �

� ��
�

�
�� � ��
�

� � �

� ��
�

� � �

� ��
�

� �� � ��
�

� � � �
��
�

� � �

� �� � �� � � �

� �� � �� � � � �
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V. action
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� action?

� � �� �

is the set of pairs

� � � � � �
�

. One has

� � �� �

� � � � �� �� �

� �

and

� � �� �

� � � � � �� � � � �

The matrices

� �

� � � and

� � �

� � generate

� �
�

� � �

.

We want to define

�

, such that

(i)

�

is a group action of

� �
�

� � �
on

� � �� �

(ii) If  � �
�

� � �

, then the mapping

� � � � � � �� � 
 � � �� �

satisfies

� � � � � � � � �
�
�
� � � � �

�
� � � � � � �� � �� � � � � � � �� �

�
�

This is in fact not possible!

– p.30/45



� action

� �
�

� � �

is generated by matrices

� �

� �

� � � and

� �

� �

� � � �

all relations between

�

and

�

are generated by the
relations

� � � �
� �

� � � �
� and

� � � � � � �

We write

� � � � � � � � � �
�

�

� � � � � � �� �� �� �
�

�

� � � � � � � � � �
�

�

� � � � � � �� �� �� �

�

�

– p.31/45



� action (continued)

➠ By computation

� � � � � � ��� � � � � � � � � � � � �� � � � � � � � �
�� � � ��� � � �� � �

� ��� � � � � �

� � � � � � � � � � �� � � � � � � � � � � � � � � � ��� � � � � �

➠ Group action of

� �
�

� � �

on

� � �� �	� � � 	� � �� � �

.

➠ If preserve the element
� �
�

� �

in

� � �� �
� � � 	 � � �� � �

,
then for all pairs

� �
�

� �

:

� � �� �

� �� �
and

� � � �� � � � � �� �

have the same [ZC]-vector. This define a

finite index subgroup of

� �
�

� � �

– p.32/45



Conjectured generators

Graph

�� Generators of

� � � � � �� �

Dodecahedron

� � �

� � ,

�  � �

� � ,
�  � �

� �

Cube

� � �

� � � ,

� � �

� �

Octahedron

� � �

� � ,
�  � �

� � ,

�  � �

� �

– p.33/45



VI. Remarks
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�

� transitive

� �

is the set of all directed edges of

�� .

� 	 � � �� �

: all rotations in automorphism group
� � � � �� �

.
its action on

� �

is free.
action of

� 	 � � �� �

and 	� � �� �

on
� �

commute.

If

� 	 � � �� �

is transitive on

� �

, then its action on
ZC-circuit is transitive too and

�� ��� � 	� � �� � 
 � 	 � � �� �

�� 
 �� � �
� � �

defined by �� � �� 
� �
� �� � �
� � � �� 
� �

, is an injective group
morphism.

�� � �
� 	 � � �� � �

is normal in

� 	 � � �� �

.

– p.35/45



Extremal cases

� 	 � � �� �

non-trivial � restrictions on 	 � � �� �
.

� 	 � � �� �

transitive on

� � � 
 	 � � �� � 


=

� � (
�

-valent
case) or �  � (



-valent case).

	� � �� �

is formed of even permutation on

� � or

 �

directed edges.

In some cases 	� � �� �
�

� � � � � � �
.

We have no example of



-valent plane graph

�� with	� � �� �
�

� � � � � �

.
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� commutative

	� � �� �

commutative � �� is either a graph
�
� , a

graph

�
� or a



-hedrite.

Class

�
� (Grunbaum-Zaks): Goldberg-Coxeter of the

Bundle

Class

�
�

(Grunbaum-Motzkin)
Class



-hedrites
(Deza-Shtogrin)

No other classes of graphs � � or

�

-hedrites is known to
admit such simple descriptions.
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VII. Parametrizing

graphs
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Parametrizing graphs �

Idea: the hexagons are of zero curvature, it suffices to give
relative positions of faces of non-zero curvature.

Goldberg (1937): All

�
� ,


� or

�
� of symmetry (

�

,

��� ),
(

�

,

� 	 ) or (

�

,

� 	 ) are given by Goldberg-Coxeter
construction

� � �� � .

Fowler and al. (1988) All

�
� of symmetry

� 	 ,

� � or

�

are described in terms of



parameters.

Graver (1999) All

�
� can be encoded by

� �

integer
parameters.

Thurston (1998) The
�
� are parametrized by

� �

complex
parameters.

Sah (1994) Thurston’s result implies that the Nrs of

�
� ,


� ,

�
� � � , � �

, � �

.
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The structure of graphs �



triangles in

� ��� � The corresponding trian-
gulation

The graph

�
�� ��

� �
�
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Tightness
A railroad in a

�

-valent plane graph

�

is a circuit of
hexagons with any two of them adjacent on opposite
edges.

They are bounded by two zigzags.

A graph is called tight if and only if it has no railroads.

If a

�

- (or



-)valent plane graph

�� has no �-gonal faces
with �=

�

(or


) and � 
 � ��
�

� � � � then

� � �� �

� �� �

is tight.
– p.41/45



- and railroad-structure of graphs �

All zigzags are simple.

The �-vector is of the form

� � � � � �
�

� � �
� � �
�

� � � � � �

with � � � � �
�

 �

the number of railroads is � � � � �

� � � � �

.

�

has

� �

zigzags with equality if and only if it is tight.

If

�

is tight, then � � � � � � �
(so, each zigzag is a

Hamiltonian circuit).

All

�
� are tight if and only if

�
� is prime.

There exists a tight

�
� if and only if

�
� is odd.
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Conjecture on � � � � � � � �


�

� � � � � � 	 �
� � � �
� � � � � 	 � �
�

� 	 �

are described by two
complex parameters. They exists if and only if � � �

�
�

��� � 	 � �

and � � �

.

��� � �	� 


with one zigzag The defining triangles

��� � � � � ����� � � � �
exists if and only if � � �� � �� �  ! " �

,� # �

.

If � increases, then part of

� � � � � amongst��� � � �$� � � �� � � � goes to 100%

– p.43/45



More conjectures
All


� with only simple zigzags are:� � �� �
� � � � � �

,

� � �� � � � � � � �

and

the family of


�

� � � � � � � � with parameters
� ��
� �

and��
� ��� � � �

with � �  � �� �� �� �

and

� �
�� �� � � � � �� � �
�

�� � � �� � �
�

�� � ��� � �� � �

They have symmetry

� � � or

� 	 or
� � 	

Any


�

� � � � � � � � with one zigzag is a


�

� � � � .

For tight graphs


�

� � � � � � � � the �-vector is of the form

� �with

�  � �
�

�
�

�
�

� 	
or � �� � �

with

��
�

�  � �
�

� 	

Tight


�

�� � � � exist if and only if � � � ��� � 	 � � �

, they are
z-transitive with

� �
� � � � � �

� � � � � � iff � � �  ��� � 	 �� �

and, otherwise,

� �
� � � � � � �

� � �� � iff � � �
�

� � ��� � 	 �� �
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The End
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