High dimensional computation of fundamental domains

Mathieu Dutour Sikirić

March 21, 2023

Introduction

- ▶ Over many years, I have worked on polyhedral computation using symmetries.
- \blacktriangleright The fields considered are lattice theory, optimization, topology, group theory, number theory.
- ▶ Most of the computations were done using GAP/Sage, but GAP has several limitations (slowness, large memory usage, threading limitation).
- \triangleright Thus I decided to rewrite most of what I need in C_{++} :
	- \triangleright The code is completely available on github and I contribute daily to it.
	- ▶ It is Open Source and everyone can contribute.
	- \blacktriangleright Installations issues are addressed with **dockerfile** which allow easy installs.

<https://github.com/MathieuDutSik/permutalib> https://github.com/MathieuDutSik/polyhedral_common <https://hub.docker.com/r/mathieuds/polyhedralcpp>

I. Library Design

Polyhedral and matrix functionality

- \triangleright The code of **cdd** and **lrs** has been translated into $C++$ by using a template parameter T . It allows to compute the dual description of polytopes that is the facets given the vertices.
- \blacktriangleright The linear programming has been coded as well.
- ▶ For removing redundancies in a set of defining inequalities, we have Clarkson method that uses linear programming very efficiently.
- \triangleright We have similar functionality for matrices where we have functions for fields T and functions for rings $Tint$ with Euclidean division.
- ▶ For the LLL algorithm we have functions with two template parameters:
	- \blacktriangleright **T** for the gram matrix entries.
	- \triangleright Tint for the reduction basis.

Possible Numerical type

- \triangleright The most classical case used is **mpq_class** that allows to have arbitrary precision arithmetic.
- and a precision antimient.

Other types available are $\mathbb{Q}(\sqrt{2})$ d) for d a square free integer. Difficulty is in computing signs. We used the formula

$$
a+b\sqrt{d}=\frac{a-b\sqrt{d}}{a^2-b^2d}
$$

to decide signs.

- \triangleright We have a classic $C++$ class QuadField \le Trat, int \ge .
- ▶ For more complex real fields like $\mathbb{Q}(\alpha)$, e.g. with
	- $\alpha = 2 \cos(2\pi/7)$ of degree 3 we used following approach:
		- \triangleright We used a type $C++$ class RealAlgebraic < Trat, int $>$ with the integer being the index pointing to a global variable that has the field description.
		- ▶ Addition, ok. Product with a loop.
		- ▶ Inverse requires solving a linear system.
		- \triangleright Deciding signs is done by using N precomputed continuous fraction approximants that allow with interval arithmetic to decide the sign. If failing we have a clean error.

permutalib design goals

- \triangleright For general groups, we have some algorithms but in general groups can be very wild. When algorithms exist, they invariably depend on some finite group subcalls.
- ▶ Practically for finite groups we use permutation groups. GAP has implementation of most functionality we may need.
- \blacktriangleright What we need for applications:
	- ▶ Computing the stabilizer of a set under a permutation group.
	- ▶ Testing if two sets are equivalent under a permutation group.
	- \blacktriangleright Finding the canonical form of the action of a group on sets.
	- ▶ Iterating over all group elements.
	- ▶ TODO: Double coset decomposition and testing group conjugacy.
- \triangleright The C_{++} implementation is based on GAP code and 3 to 100 times faster than GAP.
- ▶ There are other code by Christopher Jefferson (Vole) that provides some functionality in Rust.

Linear symmetry groups of a polyhedral cone

- \triangleright Suppose C is a full-dimensional polyhedral cone generated by vectors $(v_i)_{1\leq i\leq N}$ in \mathbb{R}^n .
- \blacktriangleright The linear symmetry group $Lin(C)$ is the group of transformations $\sigma \in \text{Sym}(N)$ such that there exist $A \in \mathsf{GL}_n(\mathbb{R})$ with $\mathcal{A}v_i = v_{\sigma(i)}$ (There are other groups related to polyhedral cones)
- \blacktriangleright We define the form

$$
Q=\sum_{i=1}^N{}^t v_i v_i
$$

 \triangleright Define the edge colored graph $E(C)$ on N vertices with vertex and edge color

$$
c_{ij}=v_iQ^{-1t}v_j
$$

 \blacktriangleright The automorphism group of the edge colored graph is $Lin(C)$ and we use partition backtrack algorithms for computing the group and also testing equivalence.

II. Dual description using symmetries

Dual description problem

 \triangleright Given a polytope P defined by vertices we want to find its facets

- ▶ The problem of going from the facets to the vertices is equivalent to this one by duality (done via $\frac{\text{cdd}}{\text{p}}$).
- \triangleright The dual description problem is useful for many different kind of computations.
- \triangleright Typically, the polytopes of interest are the one with a large symmetry group. We do not want the full set of facets, just representatives.
- \blacktriangleright *n*-dimensional Hypercube has 2*n* facets but 2^{*n*} vertices. Combinatorial explosion is to be expected in general.

The recursive adjacency decomposition method

\blacktriangleright Basic idea:

- \triangleright Compute some initial facet by linear programming
- ▶ For each untreated facet, we compute the adjacent facet (by dual description)
- \triangleright We test for equivalence of the facets.
- ▶ Terminate when all have been trated
- **•** Improvements:
	- \triangleright We can prematurely terminate using some criterion.
	- \triangleright We can apply the method recursively.
	- \triangleright We can use any additional symmetry in the computation.
	- \blacktriangleright We can parallelize the enumeration.
- ▶ Reinvented many times (D. Jaquet 1993, T. Christof and G. Reinelt 1996).
- ▶ Used for many different enumerations and also in some infinite group settings.

Dual description of $W(H_4)$

- \blacktriangleright The Weyl group $W(H_4)$ defines a set of 14400 vectors in \mathbb{R}^{16} .
- The symmetry group has size $2 \times (14400)^2$ (multiplication on the left, right and inverse)
- \triangleright We take the convex hull of those vectors and this defines a polytope.
- ▶ According to a conjecture of
	- ▶ N. McCarthy, D. Ogilvie, I. Spitkovsky, and N. Zobin, Birkhoff's theorem and convex hulls of Coxeter groups, Linear Algebra Appl. 347 (2002), 219–231.

The corresponding polytope has only one orbit of facets.

▶ The conjecture is actually false and it has 1063 orbits of facets.

III. Other functionalities

Perfect forms and related computations

- ▶ We define $S_{\geq 0}^n$ the cone of positive semidefinite matrices.
- \blacktriangleright For a positive definite symmetric matrix A we define

$$
min(A) = min_{x \in \mathbb{Z}^n - \{0\}} A[x]
$$

\n
$$
Min(A) = \{x \in \mathbb{Z}^n \text{ s.t. } A[x] = min(A)\}
$$

A if perfect if defined uniquely by $min(A)$ and $Min(A)$.

$$
\blacktriangleright
$$
 For *A* perfect

$$
Dom(A) = conv\{x^T x \text{ for } x \in Min(A)\}.
$$

▶ Related computations:

- ▶ Enumerating perfect forms.
- ▶ For a configuration of vectors testing if there is a symmetric matrix realizing it.
- ▶ For a given positive form finding B such that $B \in Dom(A)$.

$$
\blacktriangleright S_{\geq 0}^n \text{ is self-dual.}
$$

Copositive programming

▶ Given a symmetric quadratic form $Q \in S^n$ it is called copositive if

 $Q[x] \geq 0$ for $x \in \mathbb{R}^n_+$

This defines a cone COP_n .

 \blacktriangleright It is called completely positive if

$$
Q = \sum_{i=1}^{N} \alpha_i v_i^T v_i
$$

for $\alpha_i \geq 0$ and $v_i \in \mathbb{R}^n_+$. This gets a cone $CP_n = COP_n^*$. \blacktriangleright We have

$$
\mathit{COP}_n \subset S^n_{\geq 0} \subset \mathit{CP}_n
$$

 \triangleright We coded algorithm for deciding membership questions by using cellular decompositions and linear programming.

Edgewalk algorithm by Allcock

- A classical problem for a lattice of signature $(n, 1)$ for which we want to find the Hyperbolic Coxeter group if it exists.
- ▶ Finding the Coxeter group is equivalent to finding the fundamental domain according to Coxeter group.
- \triangleright The classical algorithm is Vinberg's algorithm that builds the domain facets by facet by using some short vector problem.
- \blacktriangleright Allcock in his paper
	- ▶ Allcock, D.An Alternative to Vinberg's Algorithm, ArXiv:2110.03784

introduced another approach: compute vertices and from the vertices find the adjacent vertices. When all vertices have been treated we have actually the polytope.

▶ This is somewhat more general and efficient than Vinberg's algorithm.

IV. Fundamental domains of some cocompact groups (With Paul Gunnells)

Cocompact groups and fundamental domain

- \triangleright A group G acting on a space X is cocompact if the quotient X/G is compact. Example \mathbb{Z}^2 acting on \mathbb{R}^2 has quotient a two dimensional torus.
- \triangleright A fundamental domain is a polyhedral domain D such that for D tiles X by its orbit and every point in the interior of X has trivial stabilizer.

Applications of fundamental domains

- \triangleright We can compute the rational homology of the group.
	- ▶ This requires knowing the cell complex up to the group action.
	- ▶ Possible since the stabilizers are finite by the cocompactness.
- \triangleright We can compute the integral homology of the group.
	- ▶ This requires computing resolution of the face stabilizers and using the CTC Wall lemma.
- ▶ We can also compute the Hecke operators for elements in the group $G(\mathbb{Q})$.
	- ▶ This requires being able to move faces to the skeleton of the fundamental domain
	- ▶ See Voight J. Computing fundamental domains for Fuchsian groups JTNB 21 (2009) 467–489.
- \triangleright We can compute a presentation of the group.
	- \blacktriangleright This is done by using the Poincaré Polyhedron Theorem.
- ▶ Computing normalizers of the group.
	- \triangleright We can compute the automorphism group $Aut(D)$ of the fundamental domain D in $SL_n(\mathbb{R})$ and $Aut(D)$ should be a subgroup of $N(G, SL_n(\mathbb{R}))/G$.

Poincaré Polyhedron Theorem

- \triangleright We have a group G acting on a space X.
- If we have a domain D that tiles X by the action of the group G. Suppose D has N facets F_1, \ldots, F_N .
- \blacktriangleright To each facet F_i corresponds a group element g_i .
- \blacktriangleright Theorem: The elements g_i generate the group and they provide a presentation of the group subject to the following relations:
	- The facet F_i corresponds to a facet F_j in the image $g_i(D)$. The transformation g_i maps it back. Thus we have $g_i g_i = e$.
	- ▶ For each codimension 2 face we have a sequence of transformations $g_{i_1}g_{i_2}\ldots g_{i_k}=e$.
- ▶ For the Coxeter group this gets us the Coxeter presentation.

Venkov reduction theory

- \triangleright Suppose that we have a positive definite quadratic form A and the group $GL_n(\mathbb{Z})$ acts on it.
- \triangleright We obtain the full orbit $Orb(A)$ under the group.
- \blacktriangleright The idea is to consider:

$$
Venkov(A) = \left\{ \begin{array}{c} B \in S^n \text{ s.t. } Tr(BA) \leq Tr(BP^TAP) \\ \text{for } P \in GL_n(\mathbb{Z}) \end{array} \right\}
$$

It is a little similar to Voronoi polytope.

 \blacktriangleright Idea introduced by Venkov but few studies of it:

- ▶ Crisalli, A. J. The fundamental cone and the Minkowski cone. J. Reine Angew. Math. 277 (1975), 74–81.
- ▶ Tammela, P. P. On the theory of the reduction of positive quadratic forms in the sense of Venkov.
- ▶ Venkov B.A. On the Reduction of Positive Definite Quadratic forms.

▶ It is polyhedral for any *n* and the cone is known for $n \leq 3$.

Fundamental domain for general discrete linear groups

 \triangleright Suppose we have a group G acting on a space X. Let $x \in X \subset \mathbb{R}^n$.

 \blacktriangleright We define

$$
X^* = \left\{ y \in \mathbb{R}^n \text{ s.t. } \min_{g \in G} \langle y, x.g \rangle > -\infty \right\}
$$

 \triangleright We define the Venkov domain in the following way:

$$
\mathsf{Venkov}(x,G) = \{y \in \mathbb{R}^n \text{ s.t. } \phi_g(y) \ge 0 \text{ for } g \in G\}
$$

with

$$
\phi_{g}(y) = \langle y, x. g \rangle - \langle y, x \rangle
$$

- \blacktriangleright The domains $Venkov(x, G)$ defines a tessellation of the space X^* . It is a face to face tiling.
- The action of G on X^* is by the contragredient representation $(g^{T})^{-1}$.

Shortest Group Element Problem

▶ For a group G acting on a set $X, x \in X$, and $a \in X^*$ the SGE is

```
\displaystyle \min_{g\in\mathcal{G}}\langle a, xg\rangle
```
and the elements g realizing it.

- \blacktriangleright The problem is unsolvable in full generality.
- \blacktriangleright But a subproblem is actually solvable:
	- \triangleright We have some constant ζ
	- ▶ We know there exist a $g \in G$ such that $\langle a, xg \rangle < C$.
	- \triangleright We want just one such g.
	- \triangleright We have a generating set S of G.

The solution is to iterate over all the group elements by using S.

 \blacktriangleright It turns out that we do not need anything more.

Iterative scheme

- \triangleright Start from a cocompact group and a point x in the interior of X.
- \triangleright We want to find the fundamental domain.
- \triangleright Select a number of elements in the group g_1, \ldots, g_N . Then iterates the following:
	- ▶ Form the polyhedral cone C defined by the inequalities ϕ_{g_i} .
	- \triangleright By Clarkson method, we can identify which inequalities are redundant and eliminate them from the list.
	- \blacktriangleright If C is a fundamental domain then we are done.
	- \blacktriangleright If not, then we can find some new elements to add to the list.
- \triangleright We hope that finitely many inequalities suffice.
	- \blacktriangleright Facet inequalities have to match.
	- ▶ Facet have to match.
	- \blacktriangleright Ridges should be coherent.

Matching facet inequalities

- ▶ For a fundamental domain D defined by inequalities $\phi_{\rm g}$ for $g\in\mathcal{S}$ we have that if $g\in\mathcal{S}$ then $g^{-1}\in\mathcal{S}.$
- \blacktriangleright The problem is interesting for $n > 2$ because for $n = 2$ taking inverse is linear.
- \blacktriangleright It frequently happens that in the intermediate step of enumeration we have that ϕ_{g} defines a non-redundant facet but ϕ_{g-1} is redundant.

▶ This means that $\phi_{\mathbf{g}}$ is made redundant by other inequalities yet to be discovered:

- By linear programming, we can find a point y_{α} interior to the facet inequality defined by ϕ_{α}
- ▶ By using SGE we can find a $h \in G$ such that

$$
\langle y_g, x \cdot h \rangle < \langle y_g, x \rangle
$$

▶ We insert h and h^{-1} into the list of inequalities.

 \blacktriangleright Eventually the processus converges

Face-to-face tilings

It is possible that the inequalities of a domain and the adjacent one are the same up to sign but do not match:

▶ In that case, we can find vertices of the polytope that should not be present.

- ▶ Such vertices can be found either by linear programming or a dual description
- ▶ We apply SGE on them and find corresponding elements to insert.
- \blacktriangleright Iteratively we resolve the problem.

Ridge matching

▶ Around a ridge $((n-2)$ -dimensional cell) we need to have a concordance of the fundamental domains. We want to avoid:

 \blacktriangleright If a collision happens then it means that an element has been missed.

Inserting elements

 \triangleright Suppose that we have built a complex, how can we insert new elements?

- ▶ We do some step to improve using the facet generators.
- ▶ When we cannot improve any more, we used the facet inequalities

There is still room for improvement.

Proving correcteness

- ▶ We typically run the process with a set of generators that we send into the system.
- \triangleright This is the difference with a perfect form based system where the genrators are built as part of the process.
- \blacktriangleright It is not always the case that we have a generating set.
- \triangleright One way to address this is to use volume arguments:
	- ▶ The volume would be computed from abstract argument.
	- ▶ The volume could be computed by numerical integration over the fundamental domain D.
	- \triangleright If equal then we have concluded (equality needs to be within a factor of two)
- ▶ If that fails, then some group element have been missed and thus the iteration should last longer.

V. Example

Witte cocompact subgroup

- \blacktriangleright Let F be a totally real Galois cubic field with ring of integers R. Let $\sigma: F \to F$ generate the Galois group $Gal(F/\mathbb{O})$.
- ► Let $p \in \mathbb{Z}$ be such that the central simple algebra A/\mathbb{Q} constructed from the data $[F, \sigma, p]$ is a division algebra.
- ▶ Given $(x, y, z) \in \mathbb{R}^3$ we define a matrix $\phi(x, y, z) \in M_3(\mathbb{R})$ by

$$
\phi(x,y,z) = \begin{pmatrix} x & y & z \\ p\sigma(z) & \sigma(x) & \sigma(y) \\ p\sigma^2(y) & p\sigma^2(z) & \sigma^2(x) \end{pmatrix}.
$$

Then G is the group of all $\{\phi(x, y, z) \mid x, y, z \in R\}$ of determinant 1.

 \blacktriangleright G is cocompact.

Results

- \triangleright Our example is $F = \mathbb{O}(\alpha)$ with $\alpha = 2\cos(2\pi/7)$ of satisfying $\alpha^3+\alpha^2-2\alpha-1=0$ and $p=2$.
- \blacktriangleright We consider the ring $R = \mathbb{Z}[\alpha]$ of discriminant 49 and $p = 2$.
- ▶ We make it act on the cone of positive definite matrices and obtain a 6 dimensional representation and take $x = Id_3$.
- ▶ One advantage is that the stabilizer is trivial. Not a given. All the theory can be done for finite stabilizers.
- ▶ Already considered in
	- ▶ Braun, Coulagean, Nebe, Schönnenbeck, Computing in arithmetic groups with Voronoi's algorithm, Journal of Algebra 435 (2015) 263–285
- ▶ We make the group act on $S_{\geq 0}^3$ and we set $x = \mathit{ld}_3$.
- \triangleright We take the full orbit and incrementally add elements. Doing the facet matching we get 706 elements. We need to to the ridge matching.