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March 21, 2023



Introduction

▶ Over many years, I have worked on polyhedral computation
using symmetries.

▶ The fields considered are lattice theory, optimization,
topology, group theory, number theory.

▶ Most of the computations were done using GAP/Sage, but
GAP has several limitations (slowness, large memory usage,
threading limitation).

▶ Thus I decided to rewrite most of what I need in C++:
▶ The code is completely available on github and I contribute

daily to it.
▶ It is Open Source and everyone can contribute.
▶ Installations issues are addressed with dockerfile which allow

easy installs.

https://github.com/MathieuDutSik/permutalib

https://github.com/MathieuDutSik/polyhedral_common

https://hub.docker.com/r/mathieuds/polyhedralcpp

https://github.com/MathieuDutSik/permutalib
https://github.com/MathieuDutSik/polyhedral_common
https://hub.docker.com/r/mathieuds/polyhedralcpp


I. Library Design



Polyhedral and matrix functionality

▶ The code of cdd and lrs has been translated into C++ by
using a template parameter T. It allows to compute the dual
description of polytopes that is the facets given the vertices.

▶ The linear programming has been coded as well.

▶ For removing redundancies in a set of defining inequalities, we
have Clarkson method that uses linear programming very
efficiently.

▶ We have similar functionality for matrices where we have
functions for fields T and functions for rings Tint with
Euclidean division.

▶ For the LLL algorithm we have functions with two template
parameters:
▶ T for the gram matrix entries.
▶ Tint for the reduction basis.



Possible Numerical type
▶ The most classical case used is mpq class that allows to have

arbitrary precision arithmetic.
▶ Other types available are Q(

√
d) for d a square free integer.

Difficulty is in computing signs. We used the formula

a+ b
√
d =

a− b
√
d

a2 − b2d

to decide signs.
▶ We have a classic C++ class QuadField<Trat,int>.
▶ For more complex real fields like Q(α), e.g. with

α = 2 cos(2π/7) of degree 3 we used following approach:
▶ We used a type C++ class RealAlgebraic<Trat,int> with

the integer being the index pointing to a global variable that
has the field description.

▶ Addition, ok. Product with a loop.
▶ Inverse requires solving a linear system.
▶ Deciding signs is done by using N precomputed continuous

fraction approximants that allow with interval arithmetic to
decide the sign. If failing we have a clean error.



permutalib design goals

▶ For general groups, we have some algorithms but in general
groups can be very wild. When algorithms exist, they
invariably depend on some finite group subcalls.

▶ Practically for finite groups we use permutation groups. GAP
has implementation of most functionality we may need.

▶ What we need for applications:
▶ Computing the stabilizer of a set under a permutation group.
▶ Testing if two sets are equivalent under a permutation group.
▶ Finding the canonical form of the action of a group on sets.
▶ Iterating over all group elements.
▶ TODO: Double coset decomposition and testing group

conjugacy.

▶ The C++ implementation is based on GAP code and 3 to
100 times faster than GAP.

▶ There are other code by Christopher Jefferson (Vole) that
provides some functionality in Rust.



Linear symmetry groups of a polyhedral cone

▶ Suppose C is a full-dimensional polyhedral cone generated by
vectors (vi )1≤i≤N in Rn.

▶ The linear symmetry group Lin(C ) is the group of
transformations σ ∈ Sym(N) such that there exist
A ∈ GLn(R) with Avi = vσ(i) (There are other groups related
to polyhedral cones)

▶ We define the form

Q =
N∑
i=1

tvivi

▶ Define the edge colored graph E (C ) on N vertices with vertex
and edge color

cij = viQ
−1tvj

▶ The automorphism group of the edge colored graph is Lin(C )
and we use partition backtrack algorithms for computing the
group and also testing equivalence.



II. Dual description

using symmetries



Dual description problem

▶ Given a polytope P defined by vertices we want to find its
facets

▶ The problem of going from the facets to the vertices is
equivalent to this one by duality (done via cdd/ppl/lrs).

▶ The dual description problem is useful for many different kind
of computations.

▶ Typically, the polytopes of interest are the one with a large
symmetry group. We do not want the full set of facets, just
representatives.

▶ n-dimensional Hypercube has 2n facets but 2n vertices.
Combinatorial explosion is to be expected in general.



The recursive adjacency decomposition method

▶ Basic idea:
▶ Compute some initial facet by linear programming
▶ For each untreated facet, we compute the adjacent facet (by

dual description)
▶ We test for equivalence of the facets.
▶ Terminate when all have been trated.

▶ Improvements:
▶ We can prematurely terminate using some criterion.
▶ We can apply the method recursively.
▶ We can use any additional symmetry in the computation.
▶ We can parallelize the enumeration.

▶ Reinvented many times (D. Jaquet 1993, T. Christof and G.
Reinelt 1996).

▶ Used for many different enumerations and also in some
infinite group settings.



Dual description of W (H4)

▶ The Weyl group W (H4) defines a set of 14400 vectors in R16.

▶ The symmetry group has size 2× (14400)2 (multiplication on
the left, right and inverse)

▶ We take the convex hull of those vectors and this defines a
polytope.

▶ According to a conjecture of
▶ N. McCarthy, D. Ogilvie, I. Spitkovsky, and N. Zobin,

Birkhoff’s theorem and convex hulls of Coxeter groups, Linear
Algebra Appl. 347 (2002), 219–231.

The corresponding polytope has only one orbit of facets.

▶ The conjecture is actually false and it has 1063 orbits of
facets.



III. Other functionalities



Perfect forms and related computations

▶ We define Sn
≥0 the cone of positive semidefinite matrices.

▶ For a positive definite symmetric matrix A we define

min(A) = minx∈Zn−{0} A[x ]
Min(A) = {x ∈ Zn s.t. A[x ] = min(A)}

A if perfect if defined uniquely by min(A) and Min(A).

▶ For A perfect

Dom(A) = conv{xT x for x ∈ Min(A)}.

▶ Related computations:
▶ Enumerating perfect forms.
▶ For a configuration of vectors testing if there is a symmetric

matrix realizing it.
▶ For a given positive form finding B such that B ∈ Dom(A).

▶ Sn
≥0 is self-dual.



Copositive programming

▶ Given a symmetric quadratic form Q ∈ Sn it is called
copositive if

Q[x ] ≥ 0 for x ∈ Rn
+

This defines a cone COPn.

▶ It is called completely positive if

Q =
N∑
i=1

αiv
T
i vi

for αi ≥ 0 and vi ∈ Rn
+. This gets a cone CPn = COP∗

n .

▶ We have
COPn ⊂ Sn

≥0 ⊂ CPn

▶ We coded algorithm for deciding membership questions by
using cellular decompositions and linear programming.



Edgewalk algorithm by Allcock

▶ A classical problem for a lattice of signature (n, 1) for which
we want to find the Hyperbolic Coxeter group if it exists.

▶ Finding the Coxeter group is equivalent to finding the
fundamental domain according to Coxeter group.

▶ The classical algorithm is Vinberg’s algorithm that builds the
domain facets by facet by using some short vector problem.

▶ Allcock in his paper
▶ Allcock, D.An Alternative to Vinberg’s Algorithm,

ArXiv:2110.03784

introduced another approach: compute vertices and from the
vertices find the adjacent vertices. When all vertices have
been treated we have actually the polytope.

▶ This is somewhat more general and efficient than Vinberg’s
algorithm.



IV. Fundamental domains

of some cocompact groups

(With Paul Gunnells)



Cocompact groups and fundamental domain
▶ A group G acting on a space X is cocompact if the quotient

X/G is compact. Example Z2 acting on R2 has quotient a
two dimensional torus.

▶ A fundamental domain is a polyhedral domain D such that for
D tiles X by its orbit and every point in the interior of X has
trivial stabilizer.

Cocompact Not cocompact



Applications of fundamental domains
▶ We can compute the rational homology of the group.

▶ This requires knowing the cell complex up to the group action.
▶ Possible since the stabilizers are finite by the cocompactness.

▶ We can compute the integral homology of the group.
▶ This requires computing resolution of the face stabilizers and

using the CTC Wall lemma.

▶ We can also compute the Hecke operators for elements in the
group G (Q).
▶ This requires being able to move faces to the skeleton of the

fundamental domain
▶ See Voight J. Computing fundamental domains for Fuchsian

groups JTNB 21 (2009) 467–489.

▶ We can compute a presentation of the group.
▶ This is done by using the Poincaré Polyhedron Theorem.

▶ Computing normalizers of the group.
▶ We can compute the automorphism group Aut(D) of the

fundamental domain D in SLn(R) and Aut(D) should be a
subgroup of N(G ,SLn(R))/G .



Poincaré Polyhedron Theorem

▶ We have a group G acting on a space X .

▶ If we have a domain D that tiles X by the action of the group
G . Suppose D has N facets F1, . . . , FN .

▶ To each facet Fi corresponds a group element gi .
▶ Theorem: The elements gi generate the group and they

provide a presentation of the group subject to the following
relations:
▶ The facet Fi corresponds to a facet Fj in the image gi (D).

The transformation gj maps it back. Thus we have gigj = e.
▶ For each codimension 2 face we have a sequence of

transformations gi1gi2 . . . gik = e.

▶ For the Coxeter group this gets us the Coxeter presentation.



Venkov reduction theory

▶ Suppose that we have a positive definite quadratic form A and
the group GLn(Z) acts on it.

▶ We obtain the full orbit Orb(A) under the group.

▶ The idea is to consider:

Venkov(A) =

{
B ∈ Sn s.t. Tr(BA) ≤ Tr(BPTAP)

for P ∈ GLn(Z)

}
It is a little similar to Voronoi polytope.

▶ Idea introduced by Venkov but few studies of it:
▶ Crisalli, A. J. The fundamental cone and the Minkowski cone.

J. Reine Angew. Math. 277 (1975), 74–81.
▶ Tammela, P. P. On the theory of the reduction of positive

quadratic forms in the sense of Venkov.
▶ Venkov B.A. On the Reduction of Positive Definite Quadratic

forms.

▶ It is polyhedral for any n and the cone is known for n ≤ 3.



Fundamental domain for general discrete linear groups

▶ Suppose we have a group G acting on a space X . Let
x ∈ X ⊂ Rn.

▶ We define

X ∗ =

{
y ∈ Rn s.t. min

g∈G
⟨y , x .g⟩ > −∞

}
▶ We define the Venkov domain in the following way:

Venkov(x ,G ) = {y ∈ Rn s.t. ϕg (y) ≥ 0 for g ∈ G}

with
ϕg (y) = ⟨y , x .g⟩ − ⟨y , x⟩

▶ The domains Venkov(x ,G ) defines a tessellation of the space
X ∗. It is a face to face tiling.

▶ The action of G on X ∗ is by the contragredient representation
(gT )−1.



Shortest Group Element Problem

▶ For a group G acting on a set X , x ∈ X , and a ∈ X ∗ the SGE
is

min
g∈G

⟨a, xg⟩

and the elements g realizing it.

▶ The problem is unsolvable in full generality.
▶ But a subproblem is actually solvable:

▶ We have some constant C .
▶ We know there exist a g ∈ G such that ⟨a, xg⟩ < C .
▶ We want just one such g .
▶ We have a generating set S of G .

The solution is to iterate over all the group elements by using
S .

▶ It turns out that we do not need anything more.



Iterative scheme

▶ Start from a cocompact group and a point x in the interior of
X .

▶ We want to find the fundamental domain.
▶ Select a number of elements in the group g1, . . . , gN . Then

iterates the following:
▶ Form the polyhedral cone C defined by the inequalities ϕgi .
▶ By Clarkson method, we can identify which inequalities are

redundant and eliminate them from the list.
▶ If C is a fundamental domain then we are done.
▶ If not, then we can find some new elements to add to the list.

▶ We hope that finitely many inequalities suffice.
▶ Facet inequalities have to match.
▶ Facet have to match.
▶ Ridges should be coherent.



Matching facet inequalities

▶ For a fundamental domain D defined by inequalities ϕg for
g ∈ S we have that if g ∈ S then g−1 ∈ S .

▶ The problem is interesting for n > 2 because for n = 2 taking
inverse is linear.

▶ It frequently happens that in the intermediate step of
enumeration we have that ϕg defines a non-redundant facet
but ϕg−1 is redundant.

▶ This means that ϕg is made redundant by other inequalities
yet to be discovered:
▶ By linear programming, we can find a point yg interior to the

facet inequality defined by ϕg

▶ By using SGE we can find a h ∈ G such that

⟨yg , x .h⟩ < ⟨yg , x⟩

▶ We insert h and h−1 into the list of inequalities.

▶ Eventually the processus converges



Face-to-face tilings

It is possible that the inequalities of a domain and the adjacent
one are the same up to sign but do not match:

▶ In that case, we can find vertices of the polytope that should
not be present.

▶ Such vertices can be found either by linear programming or a
dual description

▶ We apply SGE on them and find corresponding elements to
insert.

▶ Iteratively we resolve the problem.



Ridge matching

▶ Around a ridge ((n − 2)-dimensional cell) we need to have a
concordance of the fundamental domains. We want to avoid:

▶ If a collision happens then it means that an element has been
missed.



Inserting elements

▶ Suppose that we have built a complex, how can we insert new
elements?

▶ We do some step to improve using the facet generators.

▶ When we cannot improve any more, we used the facet
inequalities

There is still room for improvement.



Proving correcteness

▶ We typically run the process with a set of generators that we
send into the system.

▶ This is the difference with a perfect form based system where
the genrators are built as part of the process.

▶ It is not always the case that we have a generating set.
▶ One way to address this is to use volume arguments:

▶ The volume would be computed from abstract argument.
▶ The volume could be computed by numerical integration over

the fundamental domain D.
▶ If equal then we have concluded (equality needs to be within a

factor of two)

▶ If that fails, then some group element have been missed and
thus the iteration should last longer.



V. Example



Witte cocompact subgroup

▶ Let F be a totally real Galois cubic field with ring of integers
R. Let σ : F → F generate the Galois group Gal(F/Q).

▶ Let p ∈ Z be such that the central simple algebra A/Q
constructed from the data [F , σ, p] is a division algebra.

▶ Given (x , y , z) ∈ R3 we define a matrix ϕ(x , y , z) ∈ M3(R) by

ϕ(x , y , z) =

 x y z
pσ(z) σ(x) σ(y)
pσ2(y) pσ2(z) σ2(x)

 .

Then G is the group of all {ϕ(x , y , z) | x , y , z ∈ R} of
determinant 1.

▶ G is cocompact.



Results

▶ Our example is F = Q(α) with α = 2 cos(2π/7) of satisfying
α3 + α2 − 2α− 1 = 0 and p = 2.

▶ We consider the ring R = Z[α] of discriminant 49 and p = 2.

▶ We make it act on the cone of positive definite matrices and
obtain a 6 dimensional representation and take x = Id3.

▶ One advantage is that the stabilizer is trivial. Not a given. All
the theory can be done for finite stabilizers.

▶ Already considered in
▶ Braun, Coulagean, Nebe, Schönnenbeck, Computing in

arithmetic groups with Voronoi’s algorithm, Journal of Algebra
435 (2015) 263–285

▶ We make the group act on S3
≥0 and we set x = Id3.

▶ We take the full orbit and incrementally add elements. Doing
the facet matching we get 706 elements.
We need to to the ridge matching.


