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Introduction

» Over many years, | have worked on polyhedral computation
using symmetries.

» The fields considered are lattice theory, optimization,
topology, group theory, number theory.

» Most of the computations were done using GAP /Sage, but
GAP has several limitations (slowness, large memory usage,
threading limitation).

» Thus | decided to rewrite most of what | need in C++:

» The code is completely available on github and | contribute
daily to it.
» It is Open Source and everyone can contribute.

» Installations issues are addressed with dockerfile which allow
easy installs.

https://github.com/MathieuDutSik/permutalib
https://github.com/MathieuDutSik/polyhedral_common
https://hub.docker.com/r/mathieuds/polyhedralcpp


https://github.com/MathieuDutSik/permutalib
https://github.com/MathieuDutSik/polyhedral_common
https://hub.docker.com/r/mathieuds/polyhedralcpp

|. Library Design



Polyhedral and matrix functionality

» The code of cdd and Irs has been translated into C++ by
using a template parameter T. It allows to compute the dual
description of polytopes that is the facets given the vertices.

» The linear programming has been coded as well.

» For removing redundancies in a set of defining inequalities, we
have Clarkson method that uses linear programming very
efficiently.

» We have similar functionality for matrices where we have
functions for fields T and functions for rings Tint with
Euclidean division.

» For the LLL algorithm we have functions with two template
parameters:

» T for the gram matrix entries.
» Tint for the reduction basis.



Possible Numerical type

» The most classical case used is mpq_class that allows to have
arbitrary precision arithmetic.

> Other types available are Q(v/d) for d a square free integer.
Difficulty is in computing signs. We used the formula

a— bvd
a+b\f:7az—b2d

to decide signs.

» We have a classic C++ class QuadField<Trat,int>.
» For more complex real fields like Q(«), e.g. with
a = 2cos(27/7) of degree 3 we used following approach:
> We used a type C++ class RealAlgebraic<Trat,int> with
the integer being the index pointing to a global variable that
has the field description.
» Addition, ok. Product with a loop.
» Inverse requires solving a linear system.
» Deciding signs is done by using N precomputed continuous
fraction approximants that allow with interval arithmetic to
decide the sign. If failing we have a clean error.



permutalib design goals

» For general groups, we have some algorithms but in general
groups can be very wild. When algorithms exist, they
invariably depend on some finite group subcalls.

» Practically for finite groups we use permutation groups. GAP
has implementation of most functionality we may need.
> What we need for applications:
» Computing the stabilizer of a set under a permutation group.
» Testing if two sets are equivalent under a permutation group.
» Finding the canonical form of the action of a group on sets.
> |terating over all group elements.
» TODO: Double coset decomposition and testing group
conjugacy.
» The C+4++ implementation is based on GAP code and 3 to
100 times faster than GAP.

» There are other code by Christopher Jefferson (Vole) that
provides some functionality in Rust.



Linear

| 2

>

symmetry groups of a polyhedral cone

Suppose C is a full-dimensional polyhedral cone generated by
vectors (v;)i<i<n in R”.

The linear symmetry group Lin(C) is the group of
transformations o € Sym(N) such that there exist

A € GL,(R) with Av; = v, ;) (There are other groups related
to polyhedral cones)

We define the form
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Define the edge colored graph E(C) on N vertices with vertex
and edge color
Cj = v,-Q_ltvj

The automorphism group of the edge colored graph is Lin(C)
and we use partition backtrack algorithms for computing the
group and also testing equivalence.



ll. Dual description
using symmetries



Dual description problem

>

Given a polytope P defined by vertices we want to find its

facets

The problem of going from the facets to the vertices is
equivalent to this one by duality (done via cdd/ppl/Irs).

The dual description problem is useful for many different kind
of computations.

Typically, the polytopes of interest are the one with a large
symmetry group. We do not want the full set of facets, just
representatives.

n-dimensional Hypercube has 2n facets but 2" vertices.
Combinatorial explosion is to be expected in general.



The recursive adjacency decomposition method

» Basic idea:
» Compute some initial facet by linear programming
» For each untreated facet, we compute the adjacent facet (by
dual description)
P> We test for equivalence of the facets.
» Terminate when all have been trated.
P Improvements:
» We can prematurely terminate using some criterion.
» We can apply the method recursively.
» We can use any additional symmetry in the computation.
» We can parallelize the enumeration.

» Reinvented many times (D. Jaquet 1993, T. Christof and G.
Reinelt 1996).

» Used for many different enumerations and also in some
infinite group settings.



Dual description of W(H,)

» The Weyl group W/(Hj) defines a set of 14400 vectors in R1°,

» The symmetry group has size 2 x (14400)? (multiplication on
the left, right and inverse)

> We take the convex hull of those vectors and this defines a
polytope.

» According to a conjecture of

» N. McCarthy, D. Ogilvie, I. Spitkovsky, and N. Zobin,
Birkhoff’s theorem and convex hulls of Coxeter groups, Linear
Algebra Appl. 347 (2002), 219-231.

The corresponding polytope has only one orbit of facets.

» The conjecture is actually false and it has 1063 orbits of
facets.



[11. Other functionalities



Perfect forms and related computations

> We define 5, the cone of positive semidefinite matrices.
» For a positive definite symmetric matrix A we define
min(A) = mingczn_goy AlX]
Min(A) = {x € Z" s.t. A[x] = min(A)}
A if perfect if defined uniquely by min(A) and Min(A).
» For A perfect

Dom(A) = conv{xx for x € Min(A)}.

P Related computations:
» Enumerating perfect forms.
» For a configuration of vectors testing if there is a symmetric
matrix realizing it.
» For a given positive form finding B such that B € Dom(A).

> S1, is self-dual.



Copositive programming

» Given a symmetric quadratic form Q € S" it is called
copositive if
Q[x] > 0 for x € R,
This defines a cone COP,,.

> It is called completely positive if

N
Q=> av
i=1

for a; > 0 and v; € R’}. This gets a cone CP, = COP;,.
> We have
COP, C S, C CP,

» We coded algorithm for deciding membership questions by
using cellular decompositions and linear programming.



Edgewalk algorithm by Allcock

>

A classical problem for a lattice of signature (n,1) for which
we want to find the Hyperbolic Coxeter group if it exists.

Finding the Coxeter group is equivalent to finding the
fundamental domain according to Coxeter group.

The classical algorithm is Vinberg's algorithm that builds the
domain facets by facet by using some short vector problem.
Allcock in his paper

» Allcock, D.An Alternative to Vinberg's Algorithm,

ArXiv:2110.03784

introduced another approach: compute vertices and from the
vertices find the adjacent vertices. When all vertices have
been treated we have actually the polytope.

This is somewhat more general and efficient than Vinberg's
algorithm.



IV. Fundamental domains
of some cocompact groups

(With Paul Gunnells)



Cocompact groups and fundamental domain

» A group G acting on a space X is cocompact if the quotient
X/G is compact. Example Z? acting on R? has quotient a
two dimensional torus.

» A fundamental domain is a polyhedral domain D such that for
D tiles X by its orbit and every point in the interior of X has
trivial stabilizer.

Cocompact Not cocompact



Applications of fundamental domains

> We can compute the rational homology of the group.
» This requires knowing the cell complex up to the group action.
» Possible since the stabilizers are finite by the cocompactness.
> We can compute the integral homology of the group.
» This requires computing resolution of the face stabilizers and
using the CTC Wall lemma.
> We can also compute the Hecke operators for elements in the
group G(Q).
» This requires being able to move faces to the skeleton of the
fundamental domain
» See Voight J. Computing fundamental domains for Fuchsian
groups JTNB 21 (2009) 467-489.
> We can compute a presentation of the group.
» This is done by using the Poincaré Polyhedron Theorem.
» Computing normalizers of the group.

» We can compute the automorphism group Aut(D) of the
fundamental domain D in SL,(R) and Aut(D) should be a
subgroup of N(G,SL,(R))/G.



Poincaré Polyhedron Theorem

» We have a group G acting on a space X.

» If we have a domain D that tiles X by the action of the group
G. Suppose D has N facets Fq, ..., Fy.

» To each facet F; corresponds a group element g;.

» Theorem: The elements g; generate the group and they
provide a presentation of the group subject to the following
relations:

» The facet F; corresponds to a facet F; in the image gi(D).
The transformation g; maps it back. Thus we have gig; = e.

» For each codimension 2 face we have a sequence of
transformations gj, g, . .. g, = €.

» For the Coxeter group this gets us the Coxeter presentation.



Venkov reduction theory

» Suppose that we have a positive definite quadratic form A and
the group GL,(Z) acts on it.

» We obtain the full orbit Orb(A) under the group.

» The idea is to consider:

[ BeS"st. Tr(BA) < Tr(BPT AP)
Venkov(A) = { for P € GL,(Z)
It is a little similar to Voronoi polytope.
» Idea introduced by Venkov but few studies of it:

» Crisalli, A. J. The fundamental cone and the Minkowski cone.
J. Reine Angew. Math. 277 (1975), 74-81.

» Tammela, P. P. On the theory of the reduction of positive
quadratic forms in the sense of Venkov.

» Venkov B.A. On the Reduction of Positive Definite Quadratic
forms.

> It is polyhedral for any n and the cone is known for n < 3.



Fundamental domain for general discrete linear groups

>

>

Suppose we have a group G acting on a space X. Let
xe X CR"

We define
X* = {y € R"s.t. min(y,x.g) > —OO}
geaG
We define the Venkov domain in the following way:

Venkov(x, G) = {y € R" s.t. ¢4(y) >0 for g e G}

with

Pg(y) = (v:x-g) = (¥, %)
The domains Venkov(x, G) defines a tessellation of the space
X*. It is a face to face tiling.

The action of G on X* is by the contragredient representation
(")



Shortest Group Element Problem

» For a group G acting on a set X, x € X, and a € X* the SGE
is

min(a,
min(a, xg)

and the elements g realizing it.
» The problem is unsolvable in full generality.
» But a subproblem is actually solvable:
» We have some constant C.
> We know there exist a g € G such that (a, xg) < C.

> We want just one such g.
» We have a generating set S of G.

The solution is to iterate over all the group elements by using
S.

> [t turns out that we do not need anything more.



[terative scheme

» Start from a cocompact group and a point x in the interior of
X.

» We want to find the fundamental domain.

» Select a number of elements in the group g1, ..., gn. Then
iterates the following:

» Form the polyhedral cone C defined by the inequalities ¢g;.

» By Clarkson method, we can identify which inequalities are
redundant and eliminate them from the list.

» If C is a fundamental domain then we are done.

» If not, then we can find some new elements to add to the list.

» We hope that finitely many inequalities suffice.

» Facet inequalities have to match.
» Facet have to match.
» Ridges should be coherent.



Matching facet inequalities

» For a fundamental domain D defined by inequalities ¢4 for
g € S we have that if g € S then g1 € S.

» The problem is interesting for n > 2 because for n = 2 taking
inverse is linear.

» It frequently happens that in the intermediate step of
enumeration we have that ¢, defines a non-redundant facet
but ¢,-1 is redundant.

» This means that ¢, is made redundant by other inequalities
yet to be discovered:
» By linear programming, we can find a point y, interior to the
facet inequality defined by ¢,
» By using SGE we can find a h € G such that

(Vg, x.h) < (yg,x)

» We insert h and h™! into the list of inequalities.

» Eventually the processus converges



Face-to-face tilings

It is possible that the inequalities of a domain and the adjacent
one are the same up to sign but do not match:

» In that case, we can find vertices of the polytope that should
not be present.

» Such vertices can be found either by linear programming or a
dual description

» We apply SGE on them and find corresponding elements to
insert.

> [teratively we resolve the problem.



Ridge matching

» Around a ridge ((n — 2)-dimensional cell) we need to have a
concordance of the fundamental domains. We want to avoid:

» If a collision happens then it means that an element has been
missed.



Inserting elements

» Suppose that we have built a complex, how can we insert new
elements?

> We do some step to improve using the facet generators.

» When we cannot improve any more, we used the facet
inequalities

There is still room for improvement.



Proving correcteness

> We typically run the process with a set of generators that we
send into the system.

» This is the difference with a perfect form based system where
the genrators are built as part of the process.

P It is not always the case that we have a generating set.
» One way to address this is to use volume arguments:
» The volume would be computed from abstract argument.
» The volume could be computed by numerical integration over
the fundamental domain D.
> |If equal then we have concluded (equality needs to be within a
factor of two)
> If that fails, then some group element have been missed and
thus the iteration should last longer.



V. Example



Witte cocompact subgroup

» Let F be a totally real Galois cubic field with ring of integers
R. Let 0: F — F generate the Galois group Gal(F/Q).

» Let p € Z be such that the central simple algebra A/Q
constructed from the data [F, o, p] is a division algebra.

> Given (x,y,z) € R? we define a matrix ¢(x, y, z) € M3(R) by

X y z
¢(x.y,2)= | pa(z) o(x) a(y)
poi(y) poi(z) o?(x)
Then G is the group of all {¢(x,y,z) | x,y,z € R} of
determinant 1.

» G is cocompact.



Results

>

Our example is F = Q(«) with a = 2 cos(27/7) of satisfying
ad+a?—2a—1=0and p=2.
We consider the ring R = Z[«] of discriminant 49 and p = 2.

We make it act on the cone of positive definite matrices and
obtain a 6 dimensional representation and take x = Id3.

One advantage is that the stabilizer is trivial. Not a given. All
the theory can be done for finite stabilizers.
Already considered in

» Braun, Coulagean, Nebe, Schonnenbeck, Computing in
arithmetic groups with Voronoi's algorithm, Journal of Algebra
435 (2015) 263-285

We make the group act on Sio and we set x = Idj.

We take the full orbit and incrementally add elements. Doing
the facet matching we get 706 elements.
We need to to the ridge matching.



