Fullerenes: applications and generalizations

Michel Deza

Ecole Normale Superieure, Paris

Mathieu Dutour Sikirić

Rudjer Bošković Institute, Zagreb, and ISM, Tokyo

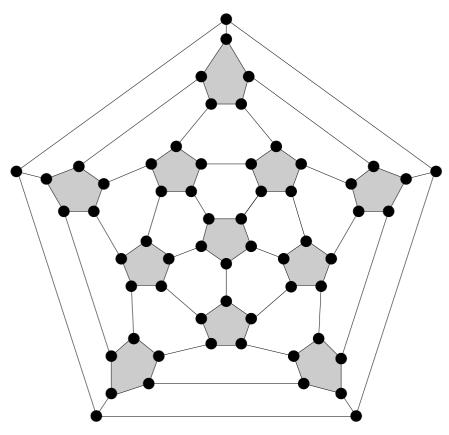
Generalsetting

Definition

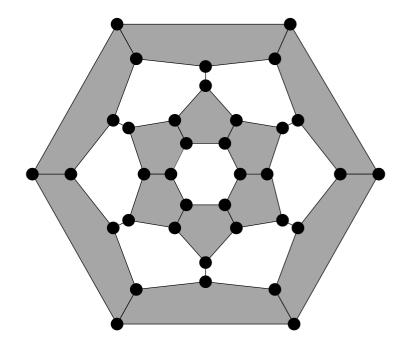
A fullerene F_n is a simple polyhedron (putative carbon molecule) whose n vertices (carbon atoms) are arranged in 12 pentagons and $(\frac{n}{2} - 10)$ hexagons.

The $\frac{3}{2}n$ edges correspond to carbon-carbon bonds.

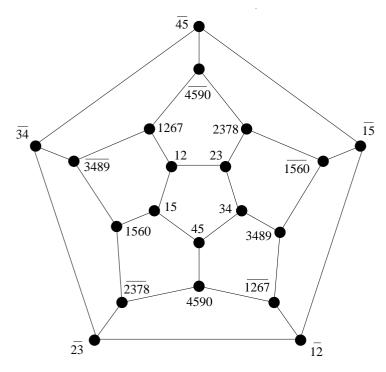
- F_n exist for all even $n \ge 20$ except n = 22.
- \bullet 1, 2, 3, ..., 1812 isomers F_n for n = 20, 28, 30, ..., 60.
- preferable fullerenes, C_n , satisfy isolated pentagon rule.
- $C_{60}(I_h)$, $C_{80}(I_h)$ are only icosahedral (i.e., with symmetry I_h or I) fullerenes with $n \le 80$ vertices



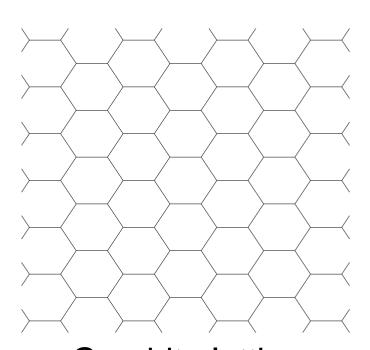
buckminsterfullerene $C_{60}(I_h)$ truncated icosahedron, soccer ball



 $F_{36}(D_{6h})$ elongated hexagonal barrel $F_{24}(D_{6d})$

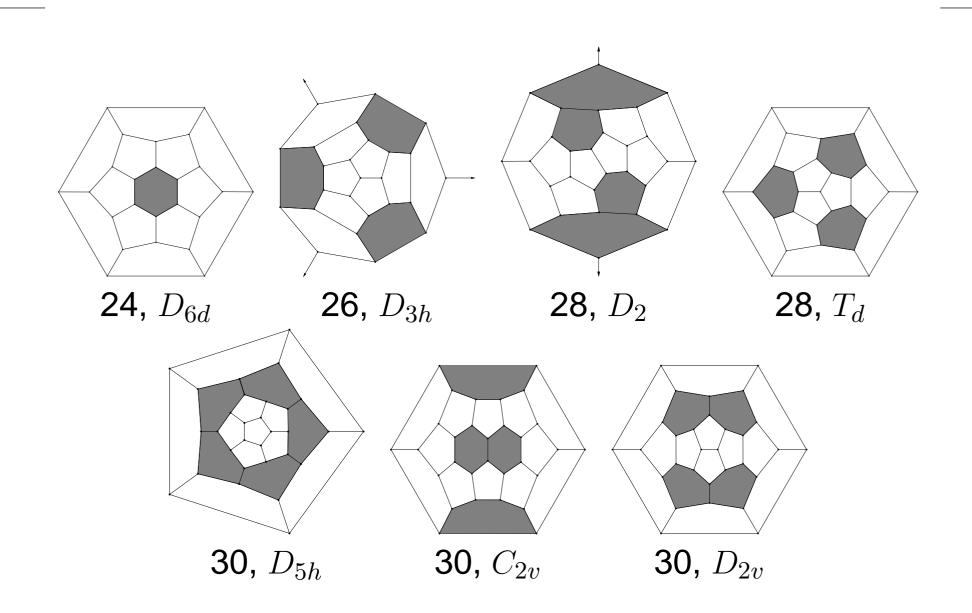


Dodecahedron $F_{20}(I_h) \rightarrow \frac{1}{2}H_{10}$ the smallest fullerene

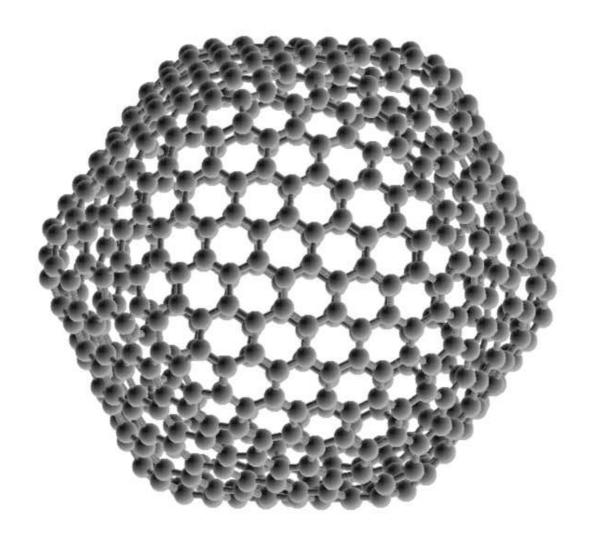


Graphite lattice $F_{\infty} \to Z_3$ the "largest" (infinite) fullerene

Small fullerenes



A C_{540}



What nature wants?

Fullerenes C_n or their duals C_n^* appear in architecture and nanoworld:

- Biology: virus capsids and clathrine coated vesicles
- Organic (i.e., carbon) Chemistry
- also: (energy) minimizers in Thomson problem (for n unit charged particles on sphere) and Skyrme problem (for given baryonic number of nucleons); maximizers, in Tammes problem, of minimum distance between n points on sphere

Simple polyhedra with given number of faces, which are the "best" approximation of sphere?

Conjecture: FULLERENES

Graver's superfullerenes

- Almost all optimizers for Thomson and Tammes problems, in the range $25 \le n \le 125$ are fullerenes.
- For n > 125, appear 7-gonal faces; almost always for n > 300.
- ▶ However, J.Graver (2005): in all large optimizers the 5and 7-gonal faces occurs in 12 distinct clusters, corresponding to a unique underlying fullerene.

Isoperimetric problem for polyhedra

Lhuilier 1782, Steiner 1842, Lindelöf 1869, Steinitz 1927, Goldberg 1933, Fejes Tóth 1948, Pólya 1954

- Polyhedron of greatest volume V with a given number of faces and a given surface S?
- Polyhedron of least volume with a given number of faces circumscribed around a sphere?
- Maximize Isoperimetric Quotient for solids $IQ = 36\pi \frac{V^2}{S^3} \le 1$ (with equality only for sphere)

Isoperimetric problem for polyhedra

polyhedron	IQ(P)	upper bound
Tetrahedron	$\frac{\pi}{6\sqrt{3}} \simeq 0.302$	$\frac{\pi}{6\sqrt{3}}$
Cube	$\frac{\pi}{6} \simeq 0.524$	$\frac{\pi}{6}$
Octahedron	$\frac{\pi}{3\sqrt{3}} \simeq 0.605$	$\simeq 0.637$
Dodecahedron	$\frac{\pi au^{7/2}}{3.5^{5/4}} \simeq 0.755$	$rac{\pi au^{7/2}}{3.5^{5/4}}$
Icosahedron	$\frac{\pi\tau^4}{15\sqrt{3}} \simeq 0.829$	$\simeq 0.851$

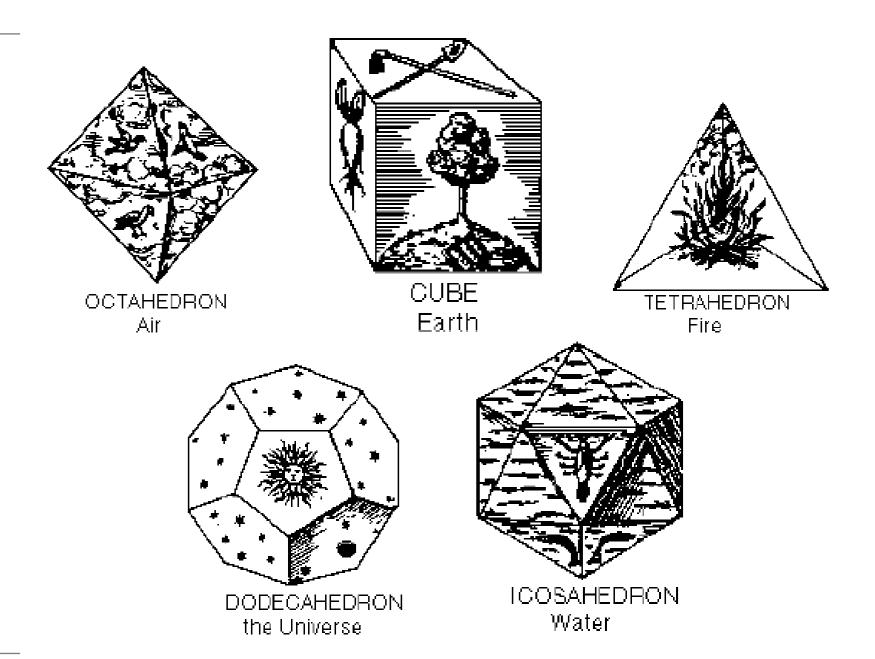
IQ of Platonic solids

 $(au = rac{1+\sqrt{5}}{2}$: golden mean)

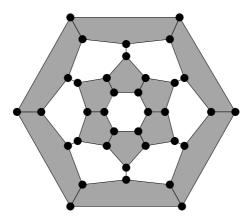
Conjecture (Steiner 1842):

Each of the 5 Platonic solids is the best of all isomorphic polyhedra (still open for the Icosahedron)

Five Platonic solids



Goldberg Conjecture



 $IQ(Icosahedron) \leq IQ(F_{36}) \simeq 0.848$

Conjecture (Goldberg 1933):

The polyhedron with $m \ge 12$ facets with greatest IQ is a fullerene (called "medial polyhedron" by Goldberg)

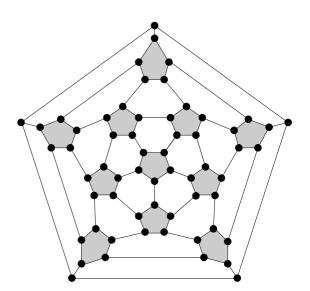
polyhedron	IQ(P)	upper bound
Dodecahedron $F_{20}(I_h)$	$\frac{\pi au^{7/2}}{3.5^{5/4}} \simeq 0.755$	$rac{\pi au^{7/2}}{3.5^{5/4}}$
Truncated icosahedron $C_{60}(I_h)$	$\simeq 0.9058$	$\simeq 0.9065$
Chamfered dodecahed. $C_{80}(I_h)$	$\simeq 0.928$	$\simeq 0.929$
Sphere	1	1 —

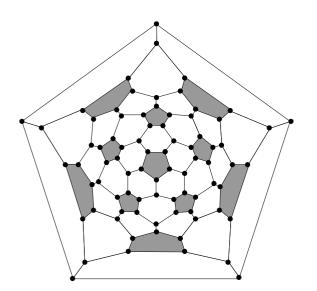
I. Icosahedralfullerenes

Icosahedral fullerenes

Call icosahedral any fullerene with symmetry I_h or I

- All icosahedral fullerenes are preferable, except $F_{20}(I_h)$
- \bullet n=20T, where $T=a^2+ab+b^2$ (triangulation number) with 0 < b < a.
- I_h for $a = b \neq 0$ or b = 0 (extended icosahedral group); I for 0 < b < a (proper icosahedral group)





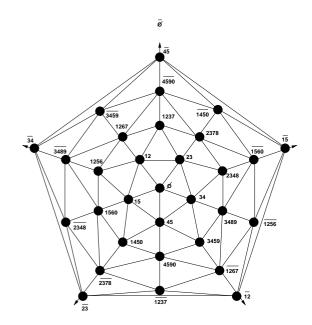
truncated icosahedron

 $C_{60}(I_h)=(1,1)$ -dodecahedron $C_{80}(I_h)=(2,0)$ -dodecahedron chamfered dodecahedron

Icosadeltahedra

Call icosadeltahedron the dual of an icosahedral fullerene $C^*_{20T}(I_h)$ or $C^*_{20T}(I)$

- Geodesic domes: B.Fuller
- Capsids of viruses: Caspar and Klug, Nobel prize 1962



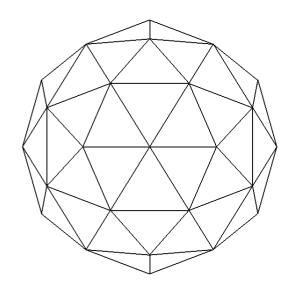
Dual $C_{60}^*(I_h)$, (a,b)=(1,1) pentakis-dodecahedron

GRAVIATION (Esher 1952) omnicapped dodecahedron

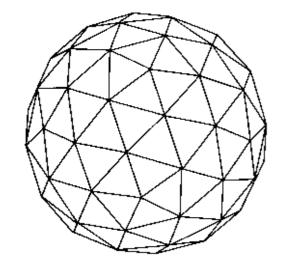
Icosadeltahedra in Architecture

(a,b)	Fullerene	Geodesic dome	
(1,0)	$F_{20}^*(I_h)$	One of Salvador Dali houses	
(1,1)	$C_{60}^*(I_h)$	Artic Institute, Baffin Island	
(3,0)	$C_{180}^*(I_h)$	Bachelor officers quarters, US Air Force, Korea	
(2,2)	$C_{240}^*(I_h)$	U.S.S. Leyte	
(4,0)	$C_{320}^*(I_h)$	Geodesic Sphere, Mt Washington, New Hampshire	
(5,0)	$C_{500}^*(I_h)$	US pavilion, Kabul Afghanistan	
(6,0)	$C^*_{720}(I_h)$	Radome, Artic dEW	
(8,8)	$C_{3840}^*(I_h)$	Lawrence, Long Island	
(16,0)	$C_{5120}^*(I_h)$	US pavilion, Expo 67, Montreal	
(18,0)	$C_{6480}^*(I_h)$	Géode du Musée des Sciences, La Villete, Paris	
(18,0)	$C_{6480}^*(I_h)$	Union Tank Car, Baton Rouge, Louisiana	

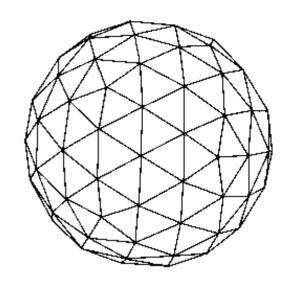
b=0 Alternate, b=a Triacon and a+b Frequency (distance of two 5-valent neighbors) are Buckminster Fullers's terms



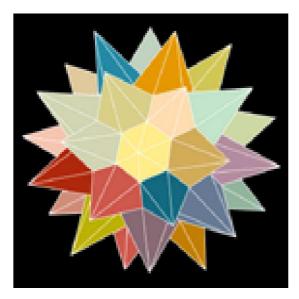
 $C_{80}^*(I_h), (a,b)=(2,0)$



 $C_{140}^*(I)$, (a,b)=(2,1)

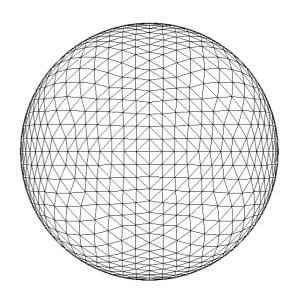


 $C_{180}^*(I_h), (a,b) = (3,0)$

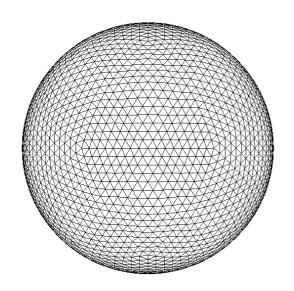


 $C^*_{180}(I_h)$ as omnicapped buckminsterfullerene C_{60}

Triangulations, spherical wavelets



Dual 4-chamfered cube $(a, b) = (16, 0), O_h$



Dual 4-cham. dodecahedron C_{5120}^* , (a,b)=(16,0), I_h

Used in Computer Graphics and Topography of Earth

III. Fullerenes in Chemistry and Biology

Fullerenes in Chemistry

Carbon C and, possibly, silicium Si are only 4-valent elements producing homoatomic long stable chains or nets

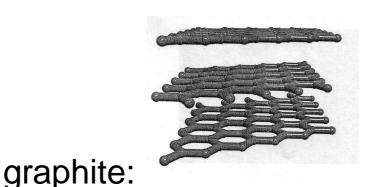
- Graphite sheet: bi-lattice (6^3) , Voronoi partition of the hexagonal lattice (A_2) , "infinite fullerene"
- Diamond packing: bi-lattice D-complex, α_3 -centering of the lattice f.c.c.= A_3
- Fullerenes: 1985 (Kroto, Curl, Smalley): $C_{60}(I_h)$ tr. icosahedon, soccerball, Cayley A_5 ; Nobel prize 1996. But Ozawa (in japanese): 1984. "Cheap" C_{60} : 1990. 1991 (lijima): nanotubes (coaxial cylinders). Also isolated chemically by now: C_{70} , C_{76} , C_{78} , C_{82} , C_{84} . If > 100 carbon atoms, they go on concentric layers; if < 20, cage opens for high t^0 . Full. alloys, stereo org. chemistry, carbon: semi-metal

Allotropes of carbon

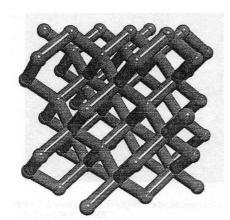
- **●** Diamond: cryst.tetrahedral, electro-isolating, hard, transparent. Rarely > 50 carats, unique > 800ct: Cullinan 3106ct = 621g. M.Kuchner: diamond planets?
- Graphite: cryst.hexagonal, soft, opaque, el. conducting
- Fullerenes: 1985, spherical
- Nanotubes: 1991, cylindrical
- Carbon nanofoam: 1997, clusters of about 4000 atoms linked in graphite-like sheets with some 7-gons (negatively curved), ferromagnetic
- Amorphous carbon (no long-range pattern): synthetic; coal and soot are almost such
- White graphite (chaoite): cryst.hexagonal; 1968, in shock-fused graphite from Ries crater, Bavaria

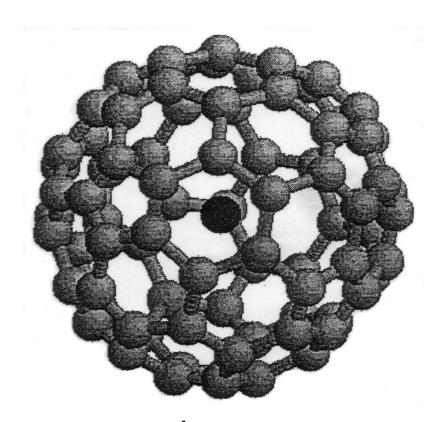
Allotropes of carbon

- Carbon(VI): cr.hex.??; 1972, obtained with chaoite
- Supersized carbon: 2005, 5-6 nm supermolecules (benzene rings "atoms", carbon chains "bonds")
- Hexagonal diamond (lonsdaleite): cryst.hex., very rare; 1967, in shock-fused graphite from several meteorites
- ANDR (aggregated diamond nanorods): 2005, Bayreuth University; hardest known substance

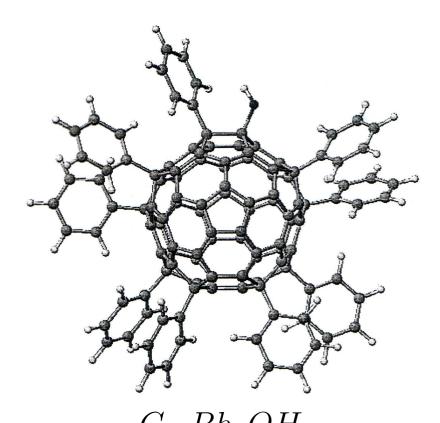


diamond:



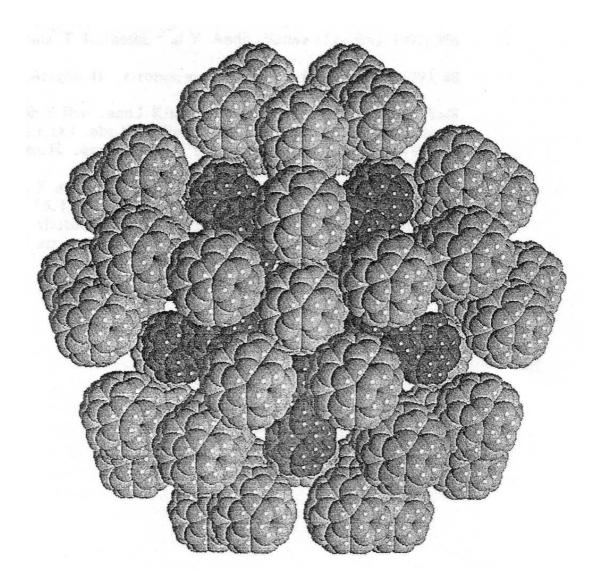


 $\begin{array}{c} {\rm La}C_{82}\\ {\rm first\ Endohedral\ Fullerene}\\ {\rm compound} \end{array}$



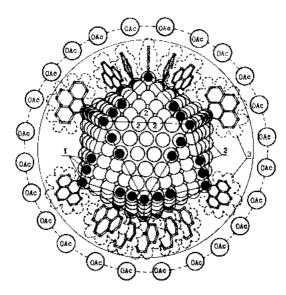
 $C_{10}Ph_{9}OH$ Exohedral Fullerene compound (first with a single hydroxy group attached)

A quasicrystalline cluster (H. Terrones)



In silico: from C_{60} and $F_{40}(T_d)$ (dark); cf. 2 atoms in quasicrystals

Onion-like metallic clusters



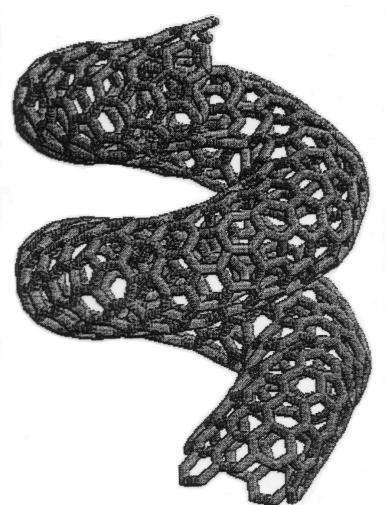
Palladium icosahedral 5-cluster

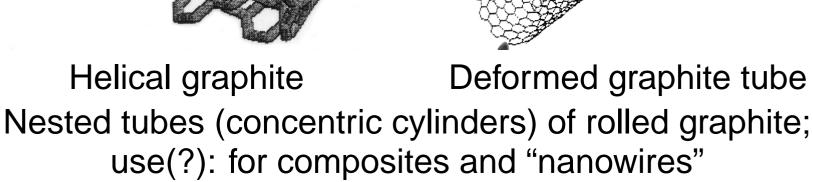
$$Pd_{561}L_{60}(O_2)_{180}(OAc)_{180}$$

α	Outer shell	Total # of atoms	# Metallic cluster
1	$C_{20}^*(I_h)$	13	$Au_{13}(PMe_2Ph)_{10}Cl_2]^{3+}$
2	$RhomDode_{80}^*(O_h)$	55	$Au_{55}(PPh_3)_{12}Cl_6$
4	$RhomDode_{320}^*(O_h)$	309	$Pt_{309}(Phen_{36}O_{30\pm10})$
5	$C_{500}^*(I_h)$	561	$Pd_{561}L_{60}(O_2)_{180}(OAc)_{180}$

Icosahedral and cuboctahedral metallic clusters

Nanotubes and Nanotechnology





Other possible applications

- Superconductors: alcali-doped fullerene compounds K_3C_{60} at $18K,\ldots,Rb_3C_{60}$ at 30K but still too low transition T_c
- HIV-1: Protease Inhibitor since derivatives of C_{60} are highly hydrophobic and have large size and stability; 2003: drug design based on antioxydant property of fullerenes (they soak cell-damaging free radicals)
- Carbon nanotubes
 - ? superstrong materials
 - ? nanowires
 - ! already soon: sharper scanning microscope

But nanotubes are too expensive at present

Chemical context

- Crystals: from basic units by symm. operations, incl. translations, excl. order 5 rotations ("cryst. restriction"). Units: from few (inorganic) to thousands (proteins).
- Other very symmetric mineral structures: quasicrystals, fullerenes and like, icosahedral packings (no translations but rotations of order 5)
- Fullerene-type polyhedral structures (polyhedra, nanotubes, cones, saddles, ...) were first observed with carbon. But also inorganic ones were considered: boron nitrides, tungsten, disulphide, allumosilicates and, possibly, fluorides and chlorides. May 2006, Wang-Zeng-al.: first metal hollow cages $Au_n = F_{2n-4}^*$ ($16 \le n \le 18$). F_{28}^* is the smallest; the gold clusters are flat if n < 16 and compact (solid) if n > 18.

Stability

Minimal total energy:

- I-energy and
- the strain in the 6-system.

Hückel theory of I-electronic structure: every eigenvalue λ of the adjacency matrix of the graph corresponds to an orbital of energy $\alpha + \lambda \beta$.

 α : Coulomb parameter (same for all sites)

 β : resonance parameter (same for all bonds)

The best *I*-structure: same # of positive and negative eigenvalues

Skyrmions and fullerenes

Conjecture (Sutcliffe et al.):

any minimal energy Skyrmion (baryonic density isosurface for single soliton solution) with baryonic number (the number of nucleons) $B \geq 7$ is a fullerene F_{4B-8} . Conjecture (true for B < 107; open from (b,a) = (1,4)): there exist icosahedral minimal energy Skyrmion for any $B = 5(a^2 + ab + b^2) + 2$ with integers $0 \leq b < a$, gcd(a,b) = 1 (not any icosahedral Skyrmion has minimal energy).

Skyrme model (1962) is a Lagrangian approximating QCD (a gauge theory based on SU(3) group). Skyrmions are special topological solitons used to model baryons.

Life fractions

- life: DNA and RNA (cells)
- 1/2-life: DNA or RNA (cell parasites: viruses)
- "naked" RNA, no protein (satellite viruses, viroids)
- DNA, no protein (plasmids, nanotech, "junk" DNA, ...)
- no life: no DNA, nor RNA (only proteins, incl. prions)

	Atom	DNA	Cryo-EM	Prion	Viruses
size	0.2-0.3	$\simeq 2$	$\simeq 5$	11	20 - 50 - 100 - 400
nm					B-19, HIV, Mimi

Virion: protein capsid (or env.spikes) icosadeltahedron C_{20T}^* , $T=a^2+ab+b^2$ (triangulation number)

Digression on viruses

life	1/2-life	viroidsnon-life
DNA and RNA	DNA or RNA	neither DNA, nor RNA
Cells	Viruses	Proteins, incl. prions

Seen in 1930 (electronic microscope): tobacco mosaic. $1mm^3$ of seawater has $\simeq 10$ million viruses; all seagoing viruses $\simeq 270$ million tons (more 20 x weight of all whales). Origin: ancestors or vestiges of cells, or gene mutation? Or, evolved in parallel with cellular forms from self-replicating molecules in prebiotic "RNA world" Virus: virion, then (rarely) cell parasite Virion: capsid (protein coat), capsomers structure Number of protein subunits is 60T, but EM resolves only clusters-"capsomers" (12T + 2 vertices of C_{20T}^*), including 12 "pentamers" (5-valent vertices) at minimal distance a + b

1954, Watson and Crick conjectured: symmetry is cylindrical or icosahedral (i.e. dual I, I_h fullerenes). It holds, and almost all DNA and dsRNA viruses with known shape are icosahedral.

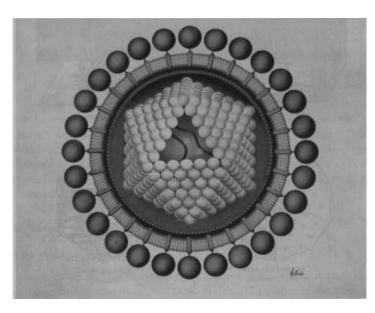
AIDS: icosahedral, but (a,b)? Plant viruses? Chirality? nm: 1 typical molecule; 20 Parvovirus B-19, 400 Mimivirus; 150 "minimal cell" (bacterium Micoplasma genitalium); 90 smallest feature of computer chip (= diam. HIV-1).

Main defense of multi-cellular organism, sexual reproduction, is not effective (in cost, risk, speed) but arising mutations give some chances against viruses.

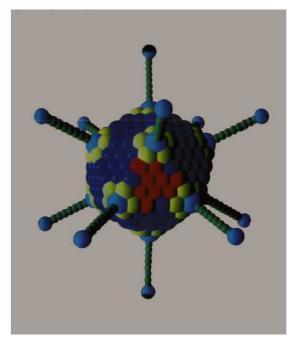
Capsids of viruses

(a,b)	Fullerene	Virus capsid (protein coat)
	$F_{20}^*(I_h)$	Gemini virus
	$C_{60}^*(I_h)$	turnip yellow mosaic virus
	$C_{80}^*(I_h)$	hepatitis B, Bacteriophage ΦR
	$C_{140}^*(I)_{laevo}$	HK97, rabbit papilloma virus
	$C^*_{140}(I)_{dextro}$	human wart virus
(3,1)	$C^*_{200}(I)_{laevo}$	rotavirus
(4,0)	$C_{320}^*(I_h)$	herpes virus, varicella
(5,0)	$C_{500}^*(I_h)$	adenovirus
(6,0)	$C_{720}^*(I_h)$	infectious canine hepatitis virus, HTLV-1
	$C_{1620}^*(I_h)$	Tipula virus
(6,3)?	$C^*_{1260}(I)_{laevo}$	HIV-1
(7,7)?	$C_{2940}^*(I_h)$	iridovirus

Some viruses



Icosadeltahedron $C^*_{720}(I_h)$, the icosahedral structure of the HTLV-1



Simulated adenovirus $C_{500}^*(I_h)$ with its spikes (5,0)-dodecahedron $C_{500}(I_h)$

IV. Somefullerene-like3-valent maps

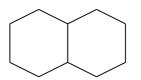
Mathematical chemistry

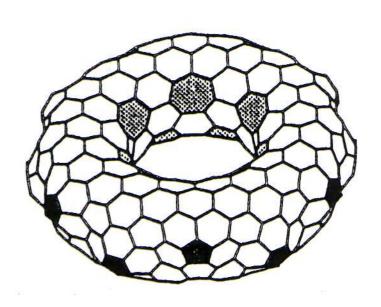
use following fullerene-like 3-valent maps:

- Polyhedra (p_5, p_6, p_n) for n = 4, 7 or 8 ($v_{min} = 14, 30, 34$) Aulonia hexagona (E. Haeckel 1887): plankton skeleton
- Azulenoids (p_5, p_7) on torus g = 1; so, $p_5 = p_7$

azulen

is an isomer $C_{10}H_8$ of naftalen



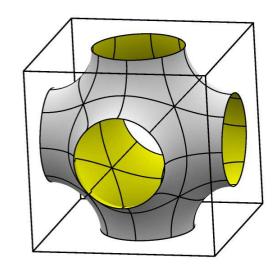


$$(p_5, p_6, p_7) = (12, 142, 12),$$

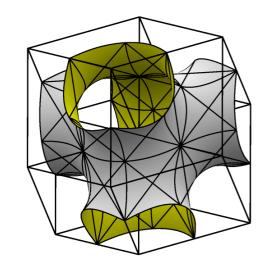
 $v = 432, D_{6d}$

Schwarzits

Schwarzits (p_6, p_7, p_8) on minimal surfaces of constant negative curvature $(g \ge 3)$. We consider case g = 3:



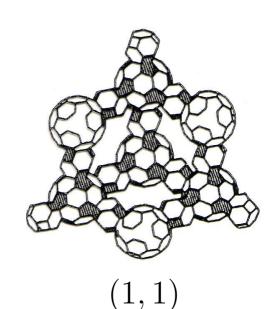
Schwarz P-surface



Schwarz *D*-surface

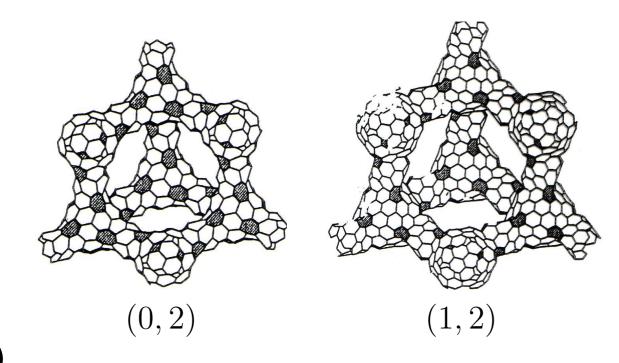
- We take a 3-valent genus 3-map and cut it along zigzags and paste it to form D- or P-surface.
- We need 3 non-intersecting zigzags. For example, Klein-map has 5 types of such triples.

(6,7)-surfaces



D168: putative carbon, 1992,

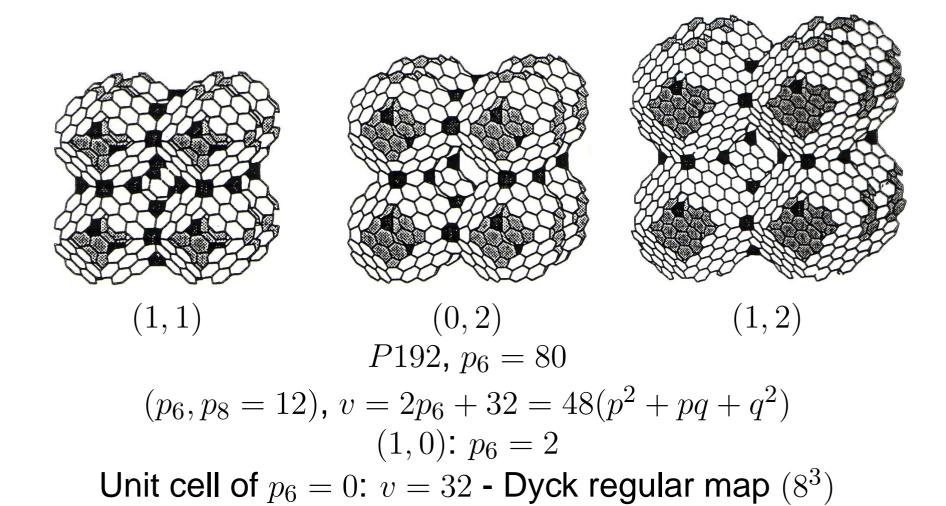
(Vanderbilt-Tersoff)



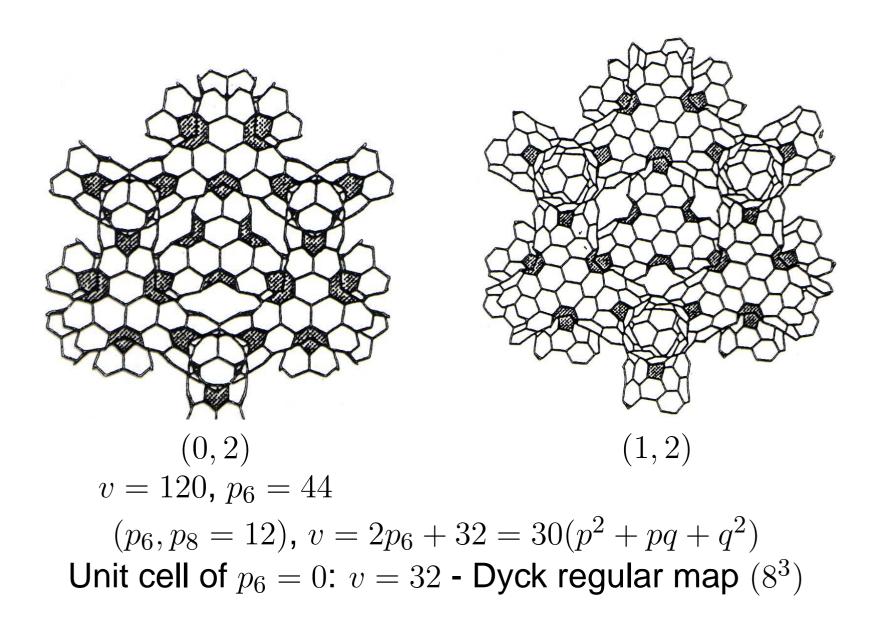
$$(p_6, p_7 = 24), v = 2p_6 + 56 = 56(p^2 + pq + q^2)$$

Unit cell of $(1, 0)$: $D56$ - Klein regular map (7^3)

(6,8)-surfaces



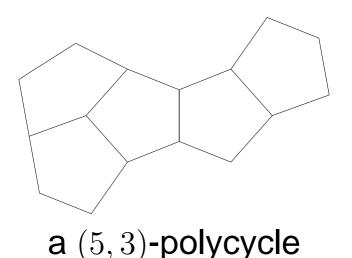
More (6, 8)-surfaces



Polycycles (with Dutour and Shtogrin)

A finite (p,q)-polycycle is a plane 2-connected finite graph, such that :

- all interior faces are (combinatorial) p-gons,
- ullet all interior vertices are of degree q,
- ullet all boundary vertices are of degree in [2,q].



Examples of (p, 3)-polycycles

- p = 3: $\{3,3\}$, $\{3,3\} v$, $\{3,3\} e$;
- p = 4: $\{4,3\}$, $\{4,3\} v$, $\{4,3\} e$, $P_2 \times A$ ($A = P_{n \ge 1}$, P_N , P_Z)
- Continuum for any $p \ge 5$. But 39 proper (5,3)-polycycles, i.e., partial subgraphs of Dodecahedron
- p = 6: polyhexes=benzenoids

Theorem

- (i) Planar graphs admit at most one realization as (p,3)-polycycle
- (ii) any unproper (p,3)-polycycle is a (p,3)-helicene (homomorphism into the plane tiling $\{p,3\}$ by regular p-gons)

Icosahedral fulleroids (with Delgado)

 $m{ ilde{J}}$ 3-valent polyhedra with $p=(p_5,p_{n>6})$ and symmetry I or I_h

orbit size	60	30	20	12
# of orbits	any	≤ 1	≤ 1	1
i-gonal face	any	3t	2t	$\boxed{5t}$

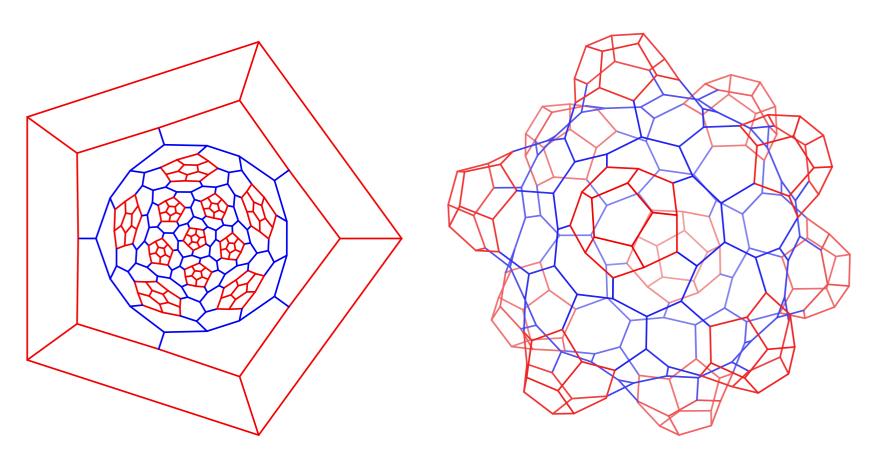
$$A_{n,k}:(p_5,p_n)=(12+60k,\frac{60k}{n-6})$$
 with $k\geq 1$, $n>6$

$$B_{n,k}:(p_5,p_n)=(60k,12\frac{5k-1}{n-6})$$
 with $k\geq 1$, $n=5t>5$

I-fulleroids

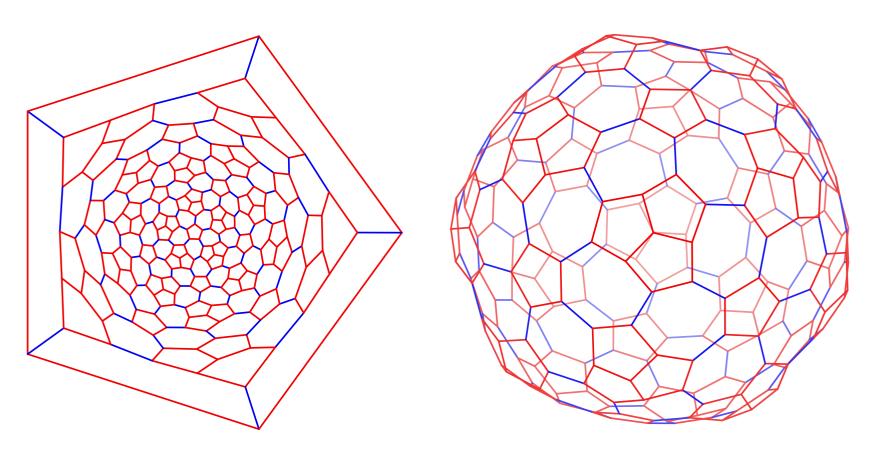
	p_5	$n; p_n$	v	# of	Sym
$A_{7,1}$	72	7,60	260	2	I
$A_{8,1}$	72	8,30	200	1	I_h
$A_{9,1}$	72	9,20	180	1	I_h
$B_{10,1}$	60	10,12	140	1	I_h
$A_{11,5}$	312	11,60	740	?	
$A_{12,2}$	132	12,20	300	—	
$A_{12,3}$	192	12,30	440	1	I_h
$A_{13,7}$	432	13,60	980	?	
$A_{14,4}$	252	$\boxed{14,30}$	560	1	I_h
$B_{15,2}$	120	$\boxed{15,12}$	260	1	I_h

First (5,7)-sphere icosahedral I



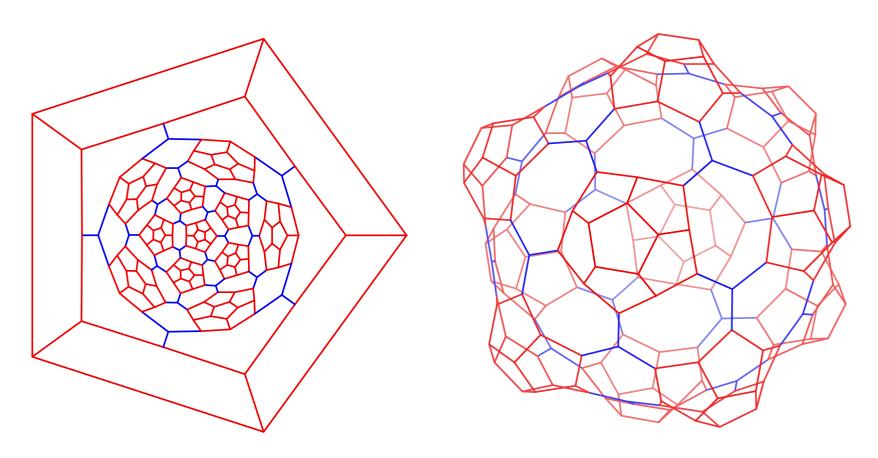
$$F_{5,7}(I)a = P(C_{140}(I)); v = 260$$

Second (5,7)-sphere icosahedral I



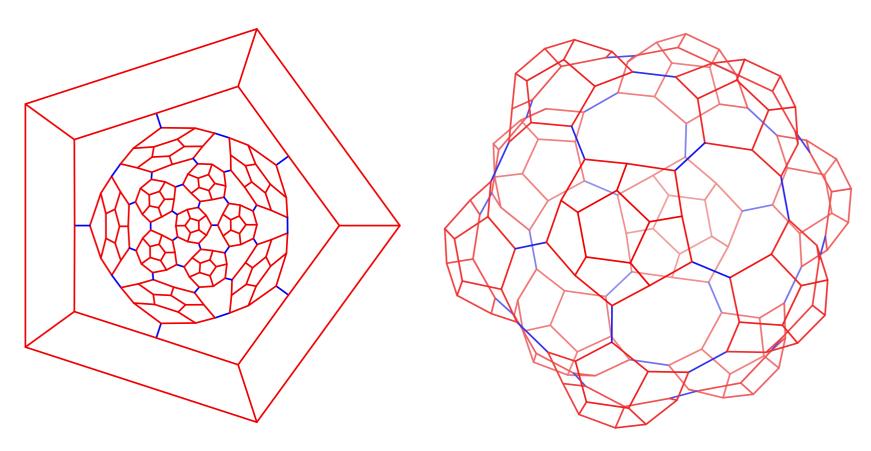
$$F_{5,7}(I)b = T_1(C_{180}(I_h)); v = 260$$

(5,8)-sphere icosahedral



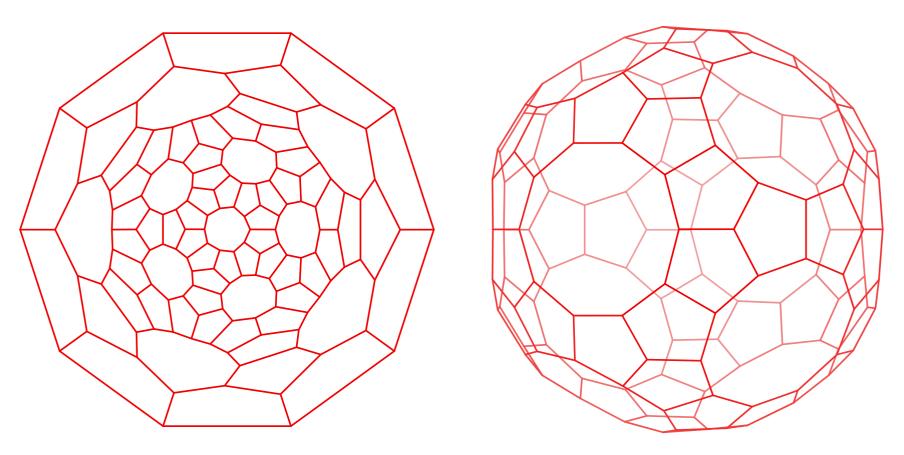
$$F_{5,8}(I_h) = P(C_{80}(I_h)); v = 200$$

(5,9)-sphere icosahedral



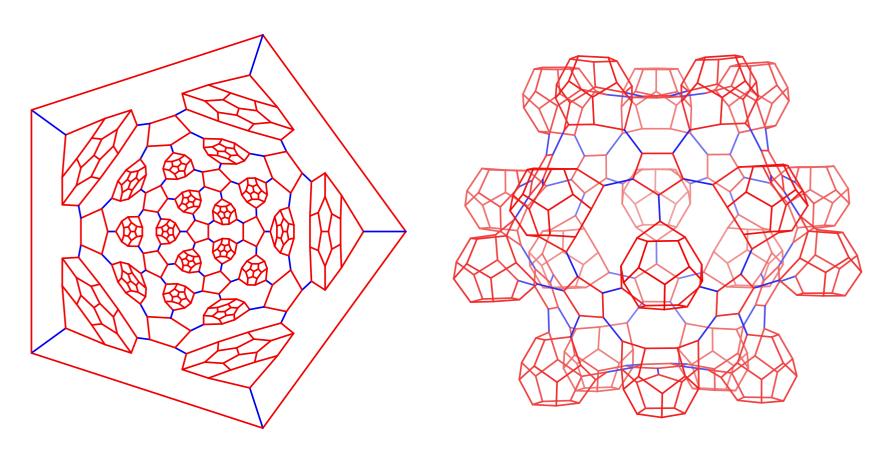
$$F_{5,9}(I_h) = P(C_{60}(I_h)); v = 180$$

(5, 10)-sphere icosahedral



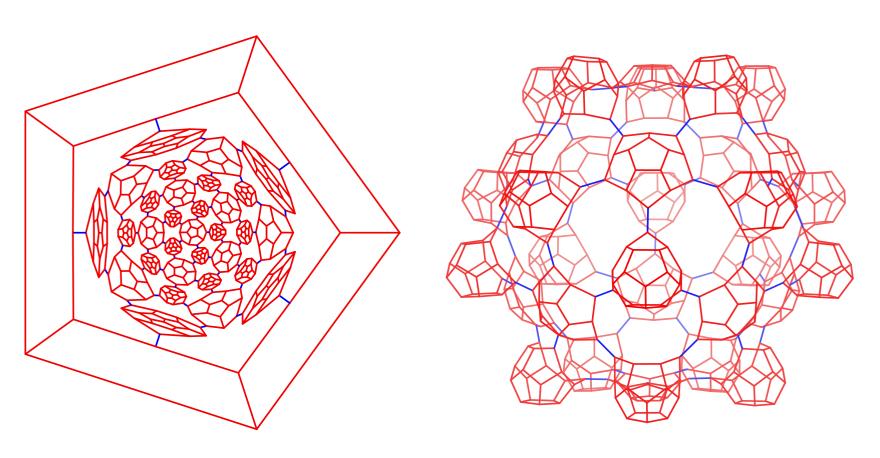
$$F_{5,10}(I_h) = T_1(C_{60}(I_h)); v = 140$$

(5, 12)-sphere icosahedral



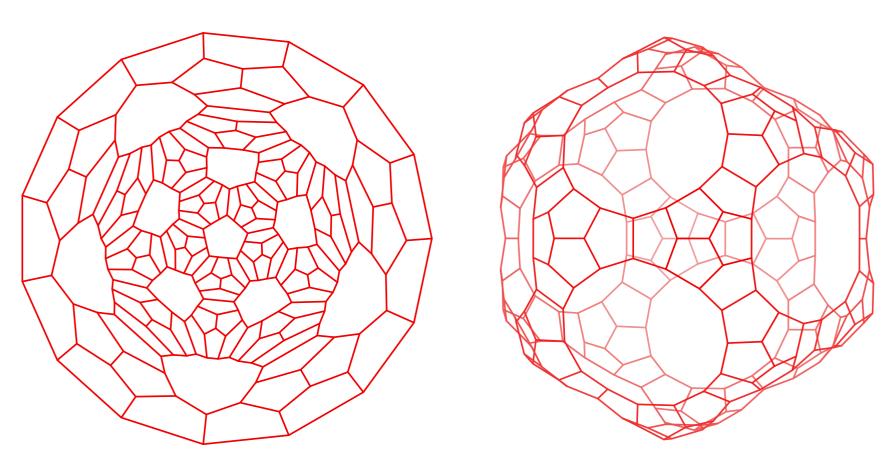
$$F_{5,12}(I_h) = T_3(C_{80}(I_h)); v = 440$$

(5, 14)-sphere icosahedral



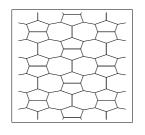
$$F_{5,14}(I_h) = P(F_{5,12}(I_h)); v = 560$$

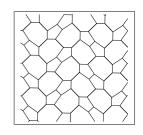
(5, 15)-sphere icosahedral

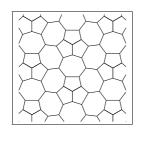


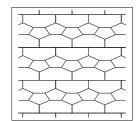
$$F_{5,15}(I_h) = T_2(C_{60}(I_h)); v = 260$$

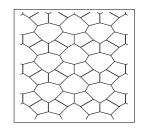
All seven 2-isohedral (5, n)-planes

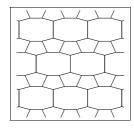


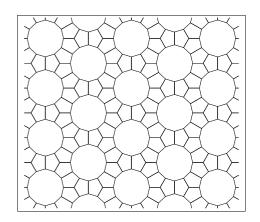












A (5, n)-plane is a 3-valent plane tiling by 5- and n-gons.

A plane tiling is 2-homohedral if its faces form 2 orbits under group of combinatorial automorphisms Aut.

It is 2-isohedral if, moreover, its symmetry group is isomorphic to Aut.

V. d-dimensional fullerenes (with Shtogrin)

d-fullerenes

(d-1)-dim. simple (d-valent) manifold (loc. homeomorphic to \mathbb{R}^{d-1}) compact connected, any 2-face is 5- or 6-gon. So, any i-face, $3 \le i \le d$, is an polytopal i-fullerene. So, d=2,3,4 or 5 only since (Kalai, 1990) any 5-polytope has a 3- or 4-gonal 2-face.

- All finite 3-fullerenes
- ullet ∞ : plane 3- and space 4-fullerenes
- Finite 4-fullerenes; constructions:
 - A (tubes of 120-cells) and B (coronas)
 - Inflation-decoration method (construction C, D)
- Quotient fullerenes; polyhexes
- 5-fullerenes from 5333

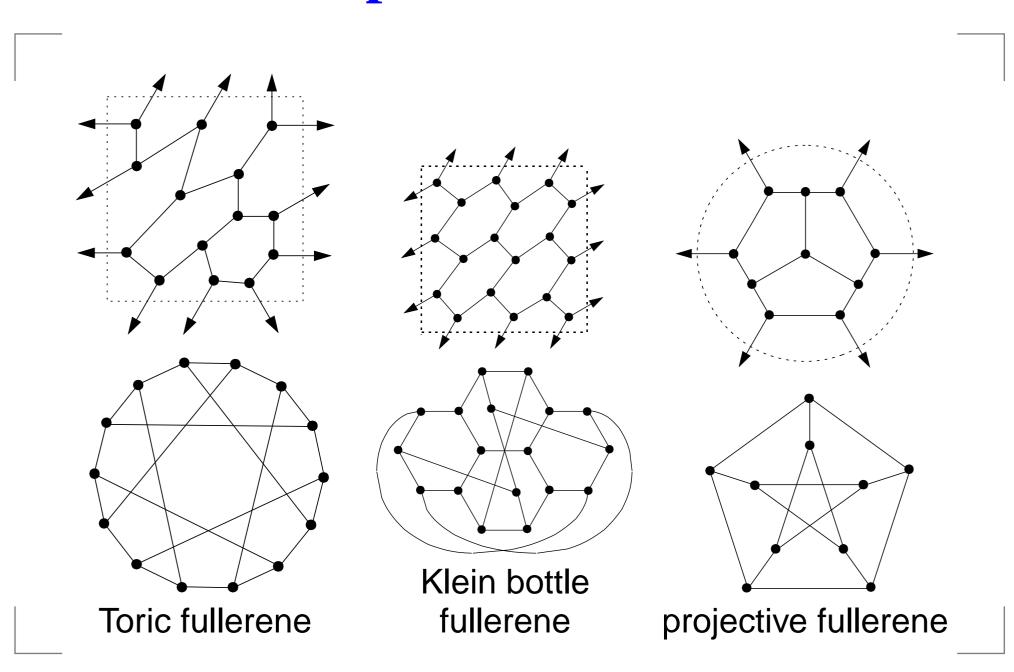
All finite 3-fullerenes

• Euler formula $\chi = v - e + p = \frac{p_5}{6} \ge 0$.

• Any 2-manifold is homeomorphic to S^2 with g (genus) handles (cyl.) if oriented or cross-caps (Möbius) if not.

g	0	1(<i>or</i> .)	$2(not \ or.)$	$1(not \ or.)$
surface	S^2	T^2	K^2	P^2
p_5	12	0	0	6
p_6	$\geq 0, \neq 1$	≥ 7	≥ 9	$\geq 0, \neq 1, 2$
3-fullerene	usual sph.	polyhex	polyhex	elliptic

Smallest non-spherical finite 3-fullerenes



Non-spherical finite 3-fullerenes

- Elliptic fullerenes are antipodal quotients of centrally symmetric spherical fullerenes, i.e. with symmetry C_i , C_{2h} , D_{2h} , D_{6h} , D_{3d} , D_{5d} , T_h , I_h . So, $v \equiv 0 \pmod{4}$. Smallest CS fullerenes $F_{20}(I_h)$, $F_{32}(D_{3d})$, $F_{36}(D_{6h})$
- Toroidal fullerenes have $p_5 = 0$. They are described by S.Negami in terms of 3 parameters.
- Klein bottle fullerenes have $p_5 = 0$. They are obtained by quotient of toroidal ones by a fixed-point free involution reversing the orientation.

Plane fullerenes (infinite 3-fullerenes)

- ▶ Plane fullerene: a 3-valent tiling of E^2 by (combinatorial) 5- and 6-gons.
- If $p_5 = 0$, then it is the graphite $\{6^3\} = F_{\infty} = 63$.
- **●** Theorem: plane fullerenes have $p_5 \le 6$ and $p_6 = \infty$.
- A.D. Alexandrov (1958): any metric on E^2 of non-negative curvature can be realized as a metric of convex surface on E^3 .

Consider plane metric such that all faces became regular in it. Its curvature is 0 on all interior points (faces, edges) and ≥ 0 on vertices. A convex surface is at most half S^2 .

Space 4-fullerenes (infinite 4-fullerene)

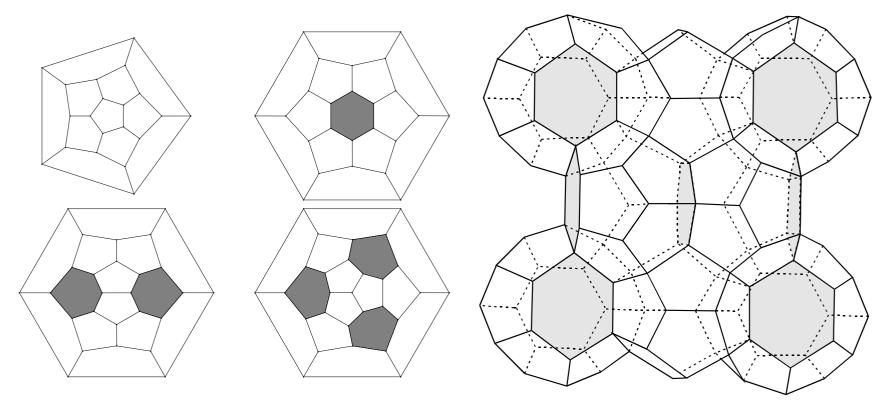
- 4 Frank-Kasper polyhedra (isolated-hexagon fullerenes): $F_{20}(I_h)$, $F_{24}(D_{6d})$, $F_{26}(D_{3h})$, $F_{28}(T_d)$
- Space fullerene: a 4-valent tiling of E^3 by them Space 4-fullerene: a 4-valent tiling of E^3 by any fullerenes
- They occur in:
 - ordered tetrahedrally closed-packed phases of metallic alloys with cells being atoms. There are > 20 t.c.p. alloys (in addition to all quasicrystals)
 - soap froths (foams, liquid crystals)
 - hypothetical silicate (or zeolite) if vertices are tetrahedra SiO_4 (or $SiAlO_4$) and cells H_2O
 - better solution to the Kelvin problem

Main examples of space fullerenes

Also in clathrate "ice-like" hydrates: vertices are H_2O , hydrogen bonds, cells are sites of solutes (Cl, Br, ...).

t.c.p.	alloys	exp. clathrate	# 20	# 24	# 26	# 28
A_{15}	$Cr_3.Si$	$1:4Cl_{2}.7H_{2}O$	1	3	0	0
C_{15}	$MgCu_2$	$II: CHCl_3.17H_2O$	2	0	0	1
Z	Zr_4Al_3	$III: Br_2.86H_2O$	3	2	2	0
σ	$Cr_{46}.Fe_{54}$		5	8	2	0
$\mid \mu \mid$	Mo_6Co_7		7	2	2	2
δ	MoNi		6	5	2	1
C	$V_2(Co,Si)_3$		15	2	2	6
$\mid T \mid$	$Mg_{32}(Zn,Al)_{49}$	T_I (Bergman)	49	6	6	20
$\lfloor SM \rfloor$		T_P (Sadoc-Mossieri)	49	9	0	26

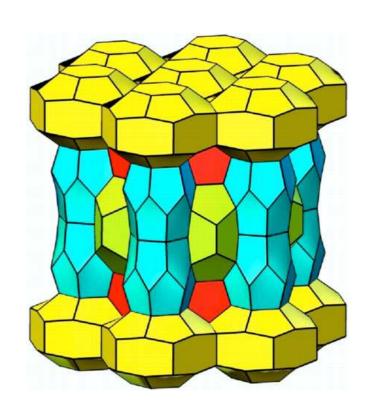
Frank-Kasper polyhedra and A_{15}

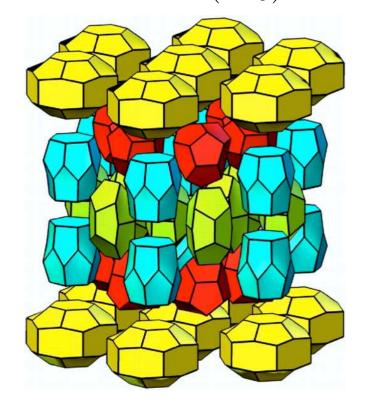


Mean face-size of all known space fullerenes is in $[5 + \frac{1}{10}(C_{15}), 5 + \frac{1}{9}(A_{15})]$. Closer to impossible 5 (120-cell on 3-sphere) means energetically competitive with diamond.

New space 4-fullerene (with Shtogrin)

The only known which is not by F_{20} , F_{24} , F_{26} and $F_{28}(T_d)$. By F_{20} , F_{24} and its elongation $F_{36}(D_{6h})$ in ratio 7:2:1; so, smallest known mean face-size $5.091 < 5.1(C_{15})$.





All space 4-fullerenes with at most 7 kinds of vertices: A_{15} , C_{15} , Z, σ and this one (Delgado, O'Keeffe; 3,3,5,7,7).

Kelvin problem

Partition E^3 into cells of equal volume and minimal surface.

Kelvin's partition

Weaire, Phelan's partition

- Weaire-Phelan partition (A15) is 0.3% better than Kelvin's, best is unknown
- In dimension 2, best is honeycomb (Ferguson, Hales)

Projection of 120-cell in 3-space (G.Hart)

(533): 600 vertices, 120 dodecahedral facets, |Aut| = 14400

Regular (convex) polytopes

A regular polytope is a polytope, whose symmetry group acts transitively on its set of flags.

The list consists of:

regular polytope	group
regular polygon P_n	$I_2(n)$
Icosahedron and Dodecahedron	H_3
120-cell and 600-cell	H_4
24-cell	F_4
γ_n (hypercube) and β_n (cross-polytope)	B_n
α_n (simplex)	$A_n = Sym(n+1)$

There are 3 regular tilings of Euclidean plane: $44 = \delta_2$, 36 and 63, and an infinity of regular tilings pq of hyperbolic plane. Here pq is shortened notation for (p^q) .

2-dim. regular tilings and honeycombs

Columns and rows indicate vertex figures and facets, resp. Blue are elliptic (spheric), red are parabolic (Euclidean).

	2	3	4	5	6	7	m	∞
2	22	23	24	25	26	27	2m	2∞
3	32	α_3	β_3	Ico	36	37	3m	3∞
4	42	γ_3	δ_2	45	46	47	4m	4∞
5	52	Do	54	55	56	57	5m	5∞
6	62	63	64	65	66	67	6m	6∞
7	72	73	74	75	76	77	7m	7∞
m	m2	m3	m4	m5	m6	m7	mm	$m\infty$
∞	$\infty 2$	∞ 3	$\infty 4$	$\infty 5$	$\infty 6$	$\infty 7$	∞m	∞

3-dim. regular tilings and honeycombs

	α_3	γ_3	eta_3	Do	Ico	δ_2	63	36
α_3	α_4*		eta_4*		600-			336
eta_3		24-				344		
γ_3	γ_4*		δ_3*		435*			436*
Ico				353				
Do	120-		534		535			536
δ_2		443*				444*		
36							363	
63	633*		634*		635*			636*

4-dim. regular tilings and honeycombs

	α_4	γ_4	eta_4	24-	120-	600-	δ_3
α_4	α_5*		eta_5*			3335	
eta_4				$De(D_4)$			
γ_4	γ_5*		δ_4*			4335*	
24-		$Vo(D_4)$					3434
600-							
120-	5333		5334			5335	
δ_3				4343*			

Finite 4-fullerenes

- $\chi = f_0 f_1 + f_2 f_3 = 0$ for any finite closed 3-manifold, no useful equivalent of Euler formula.
- Prominent 4-fullerene: 120-cell.

 Conjecture: it is unique equifacetted 4-fullerene

 ($\simeq Do = F_{20}$)
- A. Pasini: there is no 4-fullerene facetted with $C_{60}(I_h)$ (4-football)
- Few types of putative facets: $\simeq F_{20}$, F_{24} (hexagonal barrel), F_{26} , $F_{28}(T_d)$, $F_{30}(D_{5h})$ (elongated Dodecahedron), $F_{32}(D_{3h})$, $F_{36}(D_{6h})$ (elongated F_{24})

4 constructions of finite 4-fullerenes

		V	3-faces are \simeq to
	120 -cell*	600	$F_{20} = Do$
$\forall i \geq 1$	A_i^*	560i + 40	$F_{20}, F_{30}(D_{5h})$
$\forall 3 - full.F$	B(F)	30v(F)	$F_{20}, F_{24}, F(two)$
decoration	C(120 -cell)	20600	$F_{20}, F_{24}, F_{28}(T_d)$
decoration	D(120-cell)	61600	$F_{20}, F_{26}, F_{32}(D_{3h})$

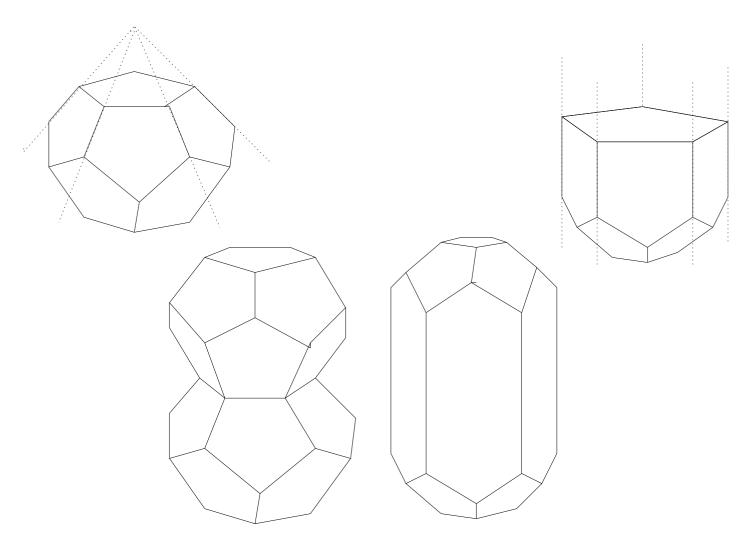
* indicates that the construction creates a polytope; otherwise, the obtained fullerene is a 3-sphere.

 A_i : tube of 120-cells

B: coronas of any simple tiling of \mathbb{R}^2 or H^2

C, D: any 4-fullerene decorations

Construction A of polytopal 4-fullerene



Similarly, tubes of 120-cell's are obtained in 4D

Inflation method

- Poughly: find out in simplicial d-polytope (a dual d-fullerene F^*) a suitable "large" (d-1)-simplex, containing an integer number t of "small" (fundamental) simplices.
- Constructions C, D: $F^*=600$ -cell; t=20, 60, respectively.
- The decoration of F^* comes by "barycentric homothety" (suitable projection of the "large" simplex on the new "small" one) as the orbit of new points under the symmetry group

All known 5-fullerenes

- \blacksquare Exp 1: 5333 (regular tiling of H^4 by 120-cell)
- Exp 2 (with 6-gons also): glue two 5333's on some 120-cells and delete their interiors. If it is done on only one 120-cell, it is $\mathbb{R} \times S^3$ (so, simply-connected)
- Exp 3: (finite 5-fullerene): quotient of 5333 by its symmetry group; it is a compact 4-manifold partitioned into a finite number of 120-cells
- Exp 3': glue above
- Pasini: no polytopal 5-fullerene exist.

All known d-fullerenes come from usual spheric fullerenes or from the regular d-fullerenes: 5, 53=Dodecahedron, 533=120-cell, 5333, or 6, 63=graphite lattice, 633

Quotient d-fullerenes

A. Selberg (1960), A. Borel (1963): if a discrete group of motions of a symmetric space has a compact fund. domain, then it has a torsion-free normal subgroup of finite index. So, quotient of a *d*-fullerene by such symmetry group is a finite *d*-fullerene.

Exp 1: Poincaré dodecahedral space

- quotient of 120-cell (on S^3) by the binary icosahedral group I_h of order 120; so, f-vector $(5,10,6,1)=\frac{1}{120}f(120-\text{cell})$
- It comes also from $F_{20}=Do$ by gluing of its opposite faces with $\frac{1}{10}$ right-handed rotation

Quot. of H^3 tiling: by F_{20} : $(1,6,6,p_5,1)$ Seifert-Weber space and by F_{24} : $(24,72,48+8=p_5+p_6,8)$ Löbell space

Polyhexes

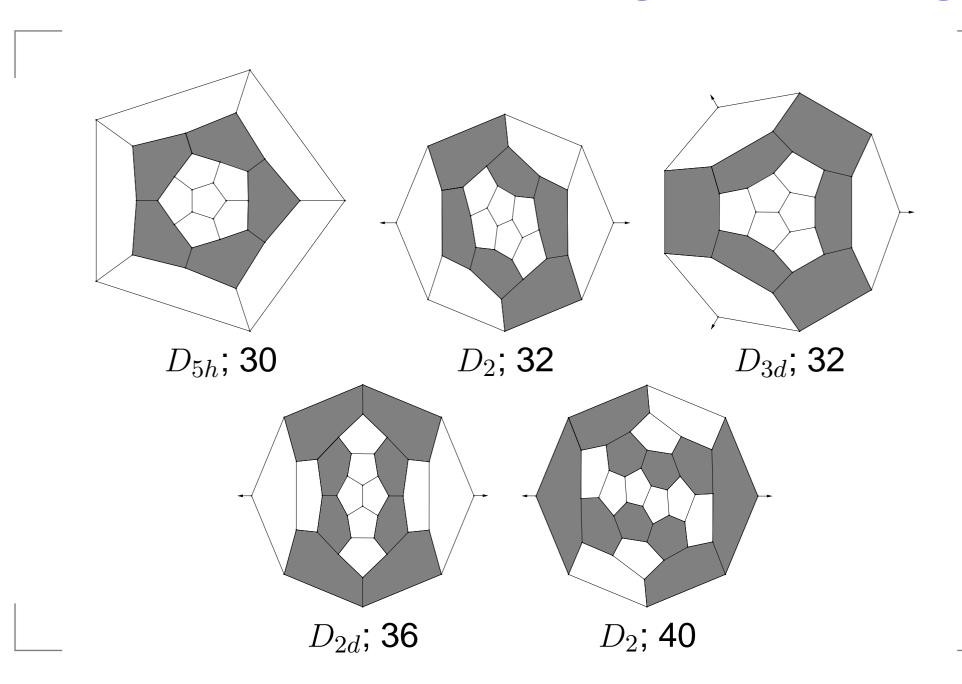
Polyhexes on T^2 , cylinder, its twist (Möbius surface) and K^2 are quotients of graphite 63 by discontinuous and fixed-point free group of isometries, generated by resp.:

- 2 translations,
- a translation, a glide reflection
- a translation and a glide reflection.

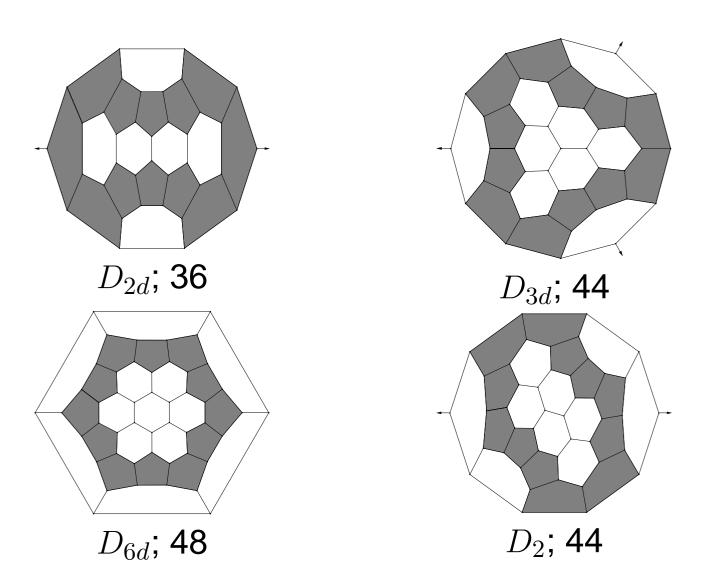
The smallest polyhex has $p_6 = 1$: on T^2 . The "greatest" polyhex is 633 (the convex hull of vertices of 63, realized on a horosphere); it is not compact (i.e. with not compact fundamental domain), but cofinite (i.e., of finite volume) infinite 4-fullerene.

VI. Some special fullerenes (with Grishukhin)

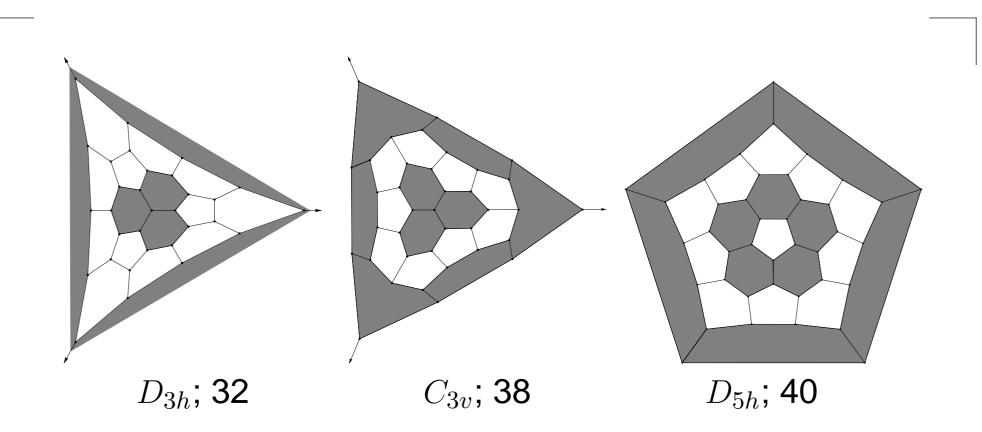
All fullerenes with hexagons in 1 ring



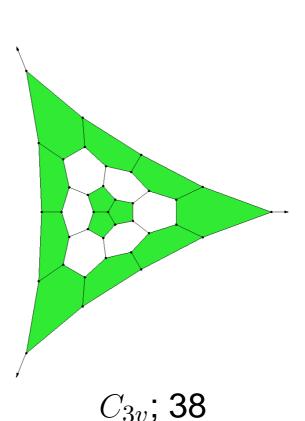
All fullerenes with pentagons in 1 ring

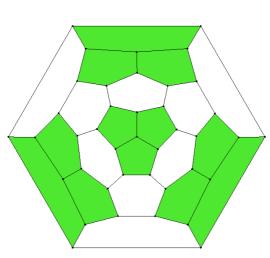


All fullerenes with hexagons in > 1 ring

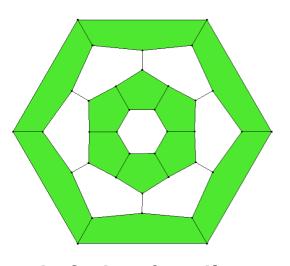


All fullerenes with pentagons in > 1 ring





infinite family: 4 triples in F_{4t} , $t \ge 10$, from collapsed 3_{4t+8}

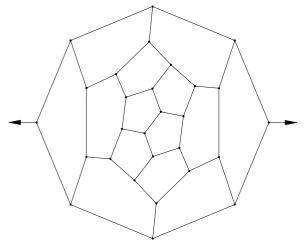


infinite family: $F_{24+12t}(D_{6d}),$ $t \geq 1,$ $D_{6h} \text{ if } t \text{ odd}$ elongations of hexagonal barrel

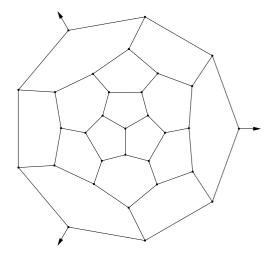
Face-regular fullerenes

A fullerene called $5R_i$ if every 5-gon has i exactly 5-gonal neighbors; it is called $6R_i$ if every 6-gon has exactly i 6-gonal neighbors.

i	0	1	2	3	4	5
$\#$ of $5R_i$	∞	∞	∞	2	1	1
$\#$ of $6R_i$	4	2	8	5	7	1



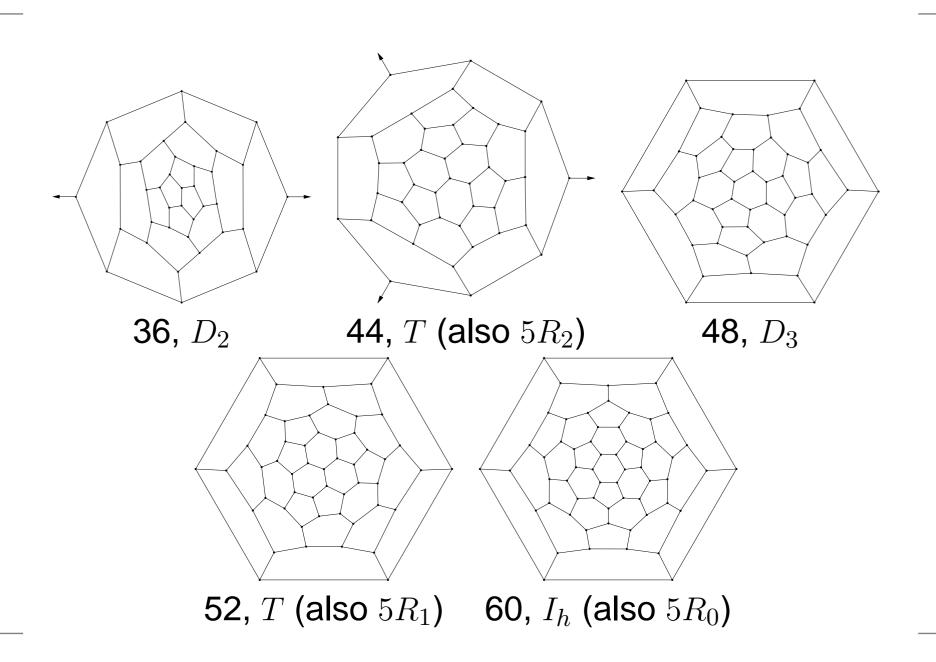
28, *D*₂



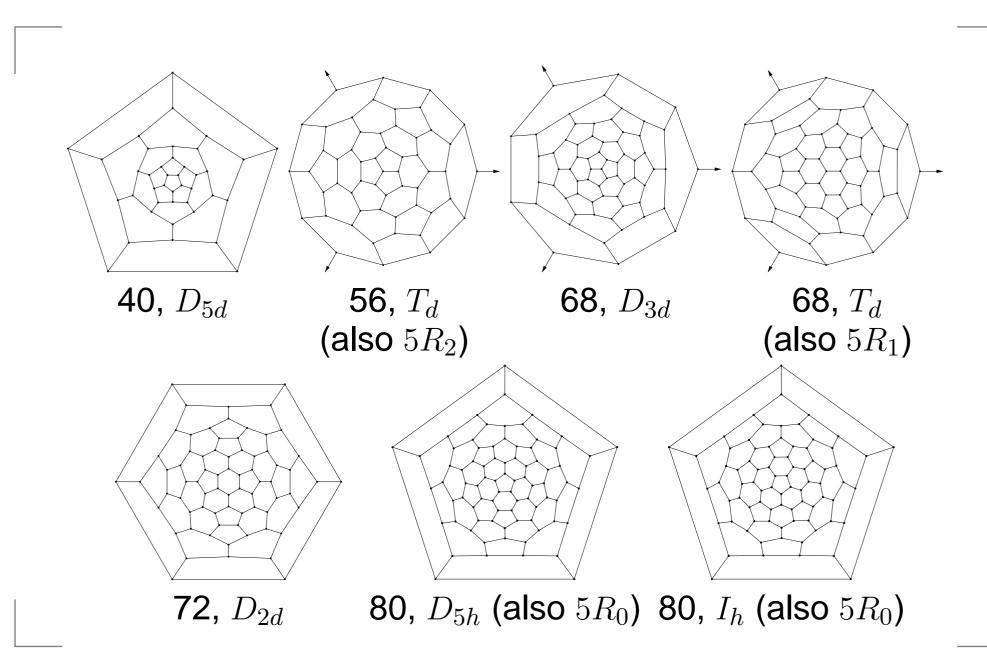
32, D_3

All fullerenes, which are $6R_1$

All fullerenes, which are $6R_3$



All fullerenes, which are $6R_4$



fullerenes as isom, subgraphs of half-cube

• All isometric embeddings of skeletons (with $(5R_i, 6R_j)$) of F_n), for I_h - or I-fullerenes or their duals, are:

$$F_{20}(I_h)(5,0) \to \frac{1}{2}H_{10}$$
 $F_{20}^*(I_h)(5,0) \to \frac{1}{2}H_6$
 $F_{60}^*(I_h)(0,3) \to \frac{1}{2}H_{10}$ $F_{80}(I_h)(0,4) \to \frac{1}{2}H_{22}$

• Conjecture (checked for $n \le 60$): all such embeddings, for fullerenes with other symmetry, are:

$$F_{26}(D_{3h})(-,0) \rightarrow \frac{1}{2}H_{12}$$
 $F_{28}^*(T_d)(3,0) \rightarrow \frac{1}{2}H_7$ $F_{36}^*(D_{6h})(2,-) \rightarrow \frac{1}{2}H_8$
 $F_{40}(T_d)(2,-) \rightarrow \frac{1}{2}H_{15}$ $F_{44}(T)(2,3) \rightarrow \frac{1}{2}H_{16}$

Also, for graphite lattice (infinite fullerene), it holds:

$$(6^3)=F_{\infty}(0,6)\to H_{\infty}, Z_3 \text{ and } (3^6)=F_{\infty}^*(0,6)\to \frac{1}{2}H_{\infty}, \frac{1}{2}Z_3.$$

Embeddable dual fullerenes in Biology

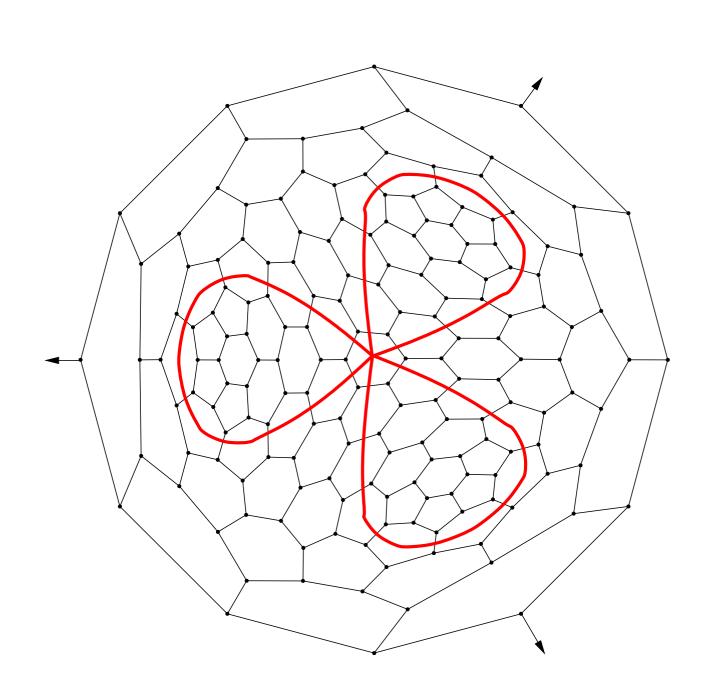
The five above embeddable dual fullerenes F_n^* correspond exactly to five special (Katsura's "most uniform") partitions $(5^3, 5^2.6, 5.6^2, 6^3)$ of n vertices of F_n into 4 types by 3 gonalities (5- and 6-gonal) faces incident to each vertex.

- $F_{20}^*(I_h) \to \frac{1}{2}H_6$ corresponds to (20, -, -, -)
- $F_{28}^*(T_d) \to \frac{1}{2}H_7$ corresponds to (4, 24, -, -)
- $F_{36}^*(D_{6h}) \to \frac{1}{2}H_8$ corresponds to (-, 24, 4, -)
- $F_{60}^*(I_h) \to \frac{1}{2}H_{10}$ corresponds to (-,-,60,-)
- $F_{\infty}^* \to \frac{1}{2} H_{\infty}$ corresponds to $(-,-,-,\infty)$

It turns out, that exactly above 5 fullerenes were identified as clatrin coated vesicles of eukaryote cells (the vitrified cell structures found during cryo-electronic microscopy).

VII. Knots and zigzagsin fullerenes(with Dutour and Fowler)

Triply intersecting railroad in $F_{172}(C_{3v})$

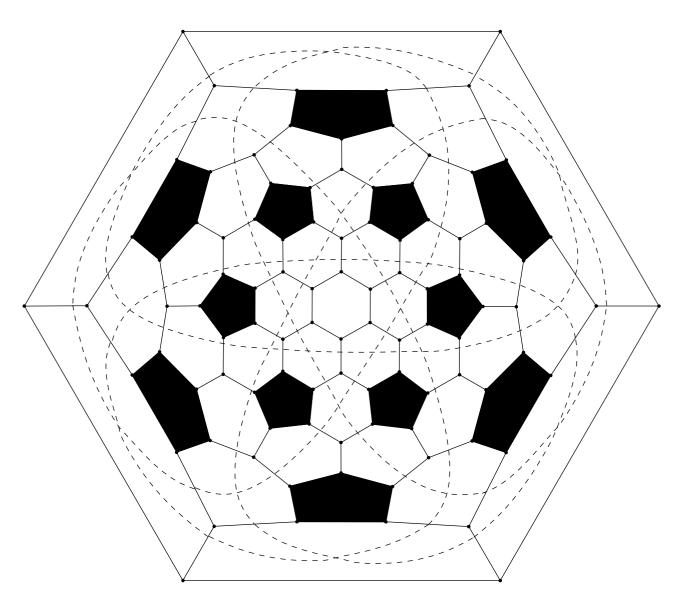


Tight F_n with only simple zigzags

n	group	z-vector	orbit lengths	int. vector
20	I_h	10^{6}	6	2^5
28	T_d	12^{7}	3,4	2^6
48	D_3	16^{9}	3,3,3	2^8
60	I_h	18^{10}	10	2^9
60	D_3	18^{10}	1,3,6	2^9
76	D_{2d}	$22^4, 20^7$	1,2,4,4	$4,2^9$ and 2^{10}
88	T	22^{12}	12	2^{11}
92	T_h	$22^6, 24^6$	6,6	$igg 2^{11}$ and $2^{10},4$ $igg $
140	I	28^{15}	15	2^{14}

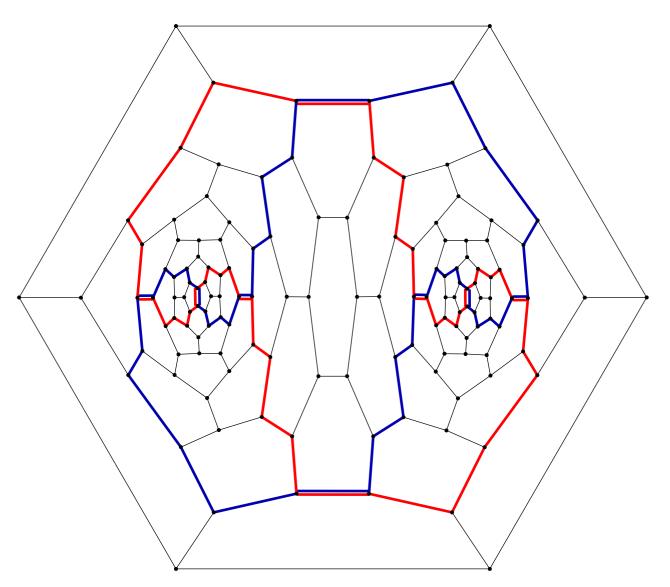
Conjecture: this list is complete (checked for $n \le 200$). It gives 7 Grünbaum arrangements of plane curves.

First IPR fullerene with self-int. railroad



 $F_{96}(D_{6d})$; realizes projection of Conway knot $(4 \times 6)^*$

Intersection of zigzags



For any n, there is a fullerene with two zigzags having intersection 2n

Parametrizing fullerenes F_n

Idea: the hexagons are of zero curvature, it suffices to give relative positions of faces of non-zero curvature.

- Goldberg (1937) All F_n of symmetry (I, I_h) are given by Goldberg-Coxeter construction $GC_{k,l}$.
- Fowler and al. (1988) All F_n of symmetry D_5 , D_6 or T are described in terms of 4 parameters.
- Graver (1999) All F_n can be encoded by 20 integer parameters.
- **■** Thurston (1998) All F_n are parametrized by 10 complex parameters.
- Sah (1994) Thurston's result implies that the number of fullerenes F_n is $\sim n^9$.