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I. General

setting
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Definition

A fullerene Fn is a simple polyhedron (putative carbon
molecule) whose n vertices (carbon atoms) are arranged in
12 pentagons and (n

2
− 10) hexagons.

The 3

2
n edges correspond to carbon-carbon bonds.

Fn exist for all even n ≥ 20 except n = 22.

1, 2, 3, . . . , 1812 isomers Fn for n = 20, 28, 30,. . . , 60.

preferable fullerenes, Cn, satisfy isolated pentagon rule.

C60(Ih), C80(Ih) are only icosahedral (i.e., with
symmetry Ih or I) fullerenes with n ≤ 80 vertices
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buckminsterfullerene C60(Ih)
truncated icosahedron,

soccer ball

F36(D6h)
elongated hexagonal barrel

F24(D6d)
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Small fullerenes

24, D6d 26, D3h 28, D2 28, Td

30, D5h 30, C2v 30, D2v
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A C540
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What nature wants?

Fullerenes Cn or their duals C∗
n appear in architecture and

nanoworld:

Biology: virus capsids and clathrine coated vesicles

Organic (i.e., carbon) Chemistry

also: (energy) minimizers in Thomson problem (for n
unit charged particles on sphere) and Skyrme problem
(for given baryonic number of nucleons); maximizers, in
Tammes problem, of minimum distance between n
points on sphere

Simple polyhedra with given number of faces, which are the
“best” approximation of sphere?

Conjecture: FULLERENES
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Graver’s superfullerenes

Almost all optimizers for Thomson and Tammes
problems, in the range 25 ≤ n ≤ 125 are fullerenes.

For n > 125, appear 7-gonal faces; almost always for
n > 300.

However, J.Graver (2005): in all large optimizers the 5-
and 7-gonal faces occurs in 12 distinct clusters,
corresponding to a unique underlying fullerene.
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Isoperimetric problem for polyhedra

Lhuilier 1782, Steiner 1842, Lindelöf 1869, Steinitz 1927,
Goldberg 1933, Fejes Tóth 1948, Pólya 1954

Polyhedron of greatest volume V with a given number
of faces and a given surface S?

Polyhedron of least volume with a given number of
faces circumscribed around a sphere?

Maximize Isoperimetric Quotient for solids
IQ = 36π V 2

S3 ≤ 1 (with equality only for sphere)
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Isoperimetric problem for polyhedra

polyhedron IQ(P ) upper bound
Tetrahedron π

6
√
3
≃ 0.302 π

6
√
3

Cube π
6
≃ 0.524 π

6

Octahedron π

3
√
3
≃ 0.605 ≃ 0.637

Dodecahedron πτ7/2

3.55/4
≃ 0.755 πτ7/2

3.55/4

Icosahedron πτ4

15
√
3
≃ 0.829 ≃ 0.851

IQ of Platonic solids
(τ = 1+

√
5

2
: golden mean)

Conjecture (Steiner 1842):
Each of the 5 Platonic solids is the best of all isomorphic
polyhedra (still open for the Icosahedron)
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Five Platonic solids
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Goldberg Conjecture

IQ(Icosahedron) ≤ IQ(F36) ≃ 0.848

Conjecture (Goldberg 1933):
The polyhedron with m ≥ 12 facets with greatest IQ is a
fullerene (called “medial polyhedron” by Goldberg)

polyhedron IQ(P ) upper bound

Dodecahedron F20(Ih)
πτ7/2

3.55/4
≃ 0.755 πτ7/2

3.55/4

Truncated icosahedron C60(Ih) ≃ 0.9058 ≃ 0.9065

Chamfered dodecahed. C80(Ih) ≃ 0.928 ≃ 0.929

Sphere 1 1
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II. Icosahedral

fullerenes
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Icosahedral fullerenes
Call icosahedral any fullerene with symmetry Ih or I

All icosahedral fullerenes are preferable, except F20(Ih)

n = 20T , where T = a2 + ab+ b2 (triangulation number)
with 0 ≤ b ≤ a.

Ih for a = b 6= 0 or b = 0 (extended icosahedral group);
I for 0 < b < a (proper icosahedral group)

C60(Ih)=(1, 1)-dodecahedron
truncated icosahedron

C80(Ih)=(2, 0)-dodecahedron
chamfered dodecahedron
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Icosadeltahedra

Call icosadeltahedron the dual of an icosahedral fullerene
C∗
20T (Ih) or C∗

20T (I)

Geodesic domes: B.Fuller

Capsids of viruses: Caspar and Klug, Nobel prize 1962
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Dual C∗
60(Ih), (a, b) = (1, 1)

pentakis-dodecahedron
GRAVIATION (Esher 1952)
omnicapped dodecahedron
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Icosadeltahedra in Architecture

(a, b) Fullerene Geodesic dome

(1, 0) F ∗

20
(Ih) One of Salvador Dali houses

(1, 1) C∗

60
(Ih) Artic Institute, Baffin Island

(3, 0) C∗

180
(Ih) Bachelor officers quarters, US Air Force, Korea

(2, 2) C∗

240
(Ih) U.S.S. Leyte

(4, 0) C∗

320
(Ih) Geodesic Sphere, Mt Washington, New Hampshire

(5, 0) C∗

500
(Ih) US pavilion, Kabul Afghanistan

(6, 0) C∗

720
(Ih) Radome, Artic dEW

(8, 8) C∗

3840
(Ih) Lawrence, Long Island

(16, 0) C∗

5120
(Ih) US pavilion, Expo 67, Montreal

(18, 0) C∗

6480
(Ih) Géode du Musée des Sciences, La Villete, Paris

(18, 0) C∗

6480
(Ih) Union Tank Car, Baton Rouge, Louisiana

b = 0 Alternate, b = a Triacon and a+ b Frequency (distance
of two 5-valent neighbors) are Buckminster Fullers’s terms
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C∗
80(Ih), (a, b)=(2, 0) C∗

140(I), (a, b)=(2, 1)
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C∗
180(Ih), (a, b) = (3, 0)

Bonjour
C∗
180(Ih) as omnicapped

buckminsterfullerene C60
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Triangulations, spherical wavelets

Dual 4-chamfered cube
(a, b) = (16, 0), Oh

Dual 4-cham. dodecahedron
C∗
5120, (a, b) = (16, 0), Ih

Used in Computer Graphics and Topography of Earth
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III. Fullerenes in

Chemistry and Biology
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Fullerenes in Chemistry

Carbon C and, possibly, silicium Si are only 4-valent
elements producing homoatomic long stable chains or nets

Graphite sheet: bi-lattice (63), Voronoi partition of the
hexagonal lattice (A2), “infinite fullerene”

Diamond packing: bi-lattice D-complex, α3-centering of
the lattice f.c.c.=A3

Fullerenes: 1985 (Kroto, Curl, Smalley): C60(Ih)
tr. icosahedon, soccerball, Cayley A5; Nobel prize 1996.
But Ozawa (in japanese): 1984. “Cheap” C60: 1990.
1991 (Iijima): nanotubes (coaxial cylinders).
Also isolated chemically by now: C70, C76, C78, C82, C84.
If > 100 carbon atoms, they go on concentric layers; if
< 20, cage opens for high t0.
Full. alloys, stereo org. chemistry, carbon: semi-metal
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Allotropes of carbon

Diamond: cryst.tetrahedral, electro-isolating, hard,
transparent. Rarely > 50 carats, unique > 800ct:
Cullinan 3106ct = 621g. M.Kuchner: diamond planets?

Graphite: cryst.hexagonal, soft, opaque, el. conducting

Fullerenes: 1985, spherical

Nanotubes: 1991, cylindrical

Carbon nanofoam: 1997, clusters of about 4000 atoms
linked in graphite-like sheets with some 7-gons
(negatively curved), ferromagnetic

Amorphous carbon (no long-range pattern): synthetic;
coal and soot are almost such

White graphite (chaoite): cryst.hexagonal; 1968, in
shock-fused graphite from Ries crater, Bavaria
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Allotropes of carbon

Carbon(VI): cr.hex.??; 1972, obtained with chaoite

Supersized carbon: 2005, 5-6 nm supermolecules
(benzene rings "atoms", carbon chains "bonds")

Hexagonal diamond (lonsdaleite): cryst.hex., very rare;
1967, in shock-fused graphite from several meteorites

ANDR (aggregated diamond nanorods): 2005,
Bayreuth University; hardest known substance

graphite: diamond:
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LaC82

first Endohedral Fullerene
compound

C10Ph9OH
Exohedral Fullerene

compound (first with a single
hydroxy group attached)
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A quasicrystalline cluster (H. Terrones)

In silico: from C60 and F40(Td)(dark); cf. 2 atoms in
quasicrystals
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Onion-like metallic clusters

Palladium icosahedral 5-cluster
Pd561L60(O2)180(OAc)180

α Outer shell Total # of atoms # Metallic cluster

1 C∗
20(Ih) 13 [Au13(PMe2Ph)10Cl2]

3+

2 RhomDode∗80(Oh) 55 Au55(PPh3)12Cl6

4 RhomDode∗320(Oh) 309 Pt309(Phen36O30±10)

5 C∗
500(Ih) 561 Pd561L60(O2)180(OAc)180

Icosahedral and cuboctahedral metallic clusters
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Nanotubes and Nanotechnology

Helical graphite Deformed graphite tube
Nested tubes (concentric cylinders) of rolled graphite;

use(?): for composites and “nanowires”
– p. 26



Other possible applications

Superconductors: alcali-doped fullerene compounds
K3C60 at 18K,. . . , Rb3C60 at 30K
but still too low transition Tc

HIV-1: Protease Inhibitor since derivatives of C60 are
highly hydrophobic and have large size and stability;
2003: drug design based on antioxydant property of
fullerenes (they soak cell-damaging free radicals)

Carbon nanotubes
? superstrong materials
? nanowires
! already soon: sharper scanning microscope

But nanotubes are too expensive at present
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Chemical context

Crystals: from basic units by symm. operations, incl.
translations, excl. order 5 rotations (“cryst. restriction”).
Units: from few (inorganic) to thousands (proteins).

Other very symmetric mineral structures: quasicrystals,
fullerenes and like, icosahedral packings (no
translations but rotations of order 5)

Fullerene-type polyhedral structures (polyhedra,
nanotubes, cones, saddles, . . . ) were first observed
with carbon. But also inorganic ones were considered:
boron nitrides, tungsten, disulphide, allumosilicates
and, possibly, fluorides and chlorides.
May 2006, Wang-Zeng-al.: first metal hollow cages
Aun = F ∗

2n−4 (16 ≤ n ≤ 18). F ∗
28 is the smallest; the gold

clusters are flat if n < 16 and compact (solid) if n > 18.
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Stability

Minimal total energy:

I-energy and

the strain in the 6-system.

Hückel theory of I-electronic structure: every eigenvalue λ
of the adjacency matrix of the graph corresponds to an
orbital of energy α + λβ.
α: Coulomb parameter (same for all sites)
β: resonance parameter (same for all bonds)
The best I-structure: same # of positive and negative
eigenvalues
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Skyrmions and fullerenes

Conjecture (Sutcliffe et al.):
any minimal energy Skyrmion (baryonic density isosurface
for single soliton solution) with baryonic number (the
number of nucleons) B ≥ 7 is a fullerene F4B−8.
Conjecture (true for B < 107; open from (b, a) = (1, 4)):
there exist icosahedral minimal energy Skyrmion for any
B = 5(a2 + ab+ b2) + 2 with integers 0 ≤ b < a, gcd(a, b) = 1
(not any icosahedral Skyrmion has minimal energy).

Skyrme model (1962) is a Lagrangian approximating QCD
(a gauge theory based on SU(3) group). Skyrmions are
special topological solitons used to model baryons.
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Life fractions

life: DNA and RNA (cells)

1/2-life: DNA or RNA (cell parasites: viruses)

“naked” RNA, no protein (satellite viruses, viroids)

DNA, no protein (plasmids, nanotech, “junk” DNA, ...)

no life: no DNA, nor RNA (only proteins, incl. prions)

Atom DNA Cryo-EM Prion Viruses

size 0.2-0.3 ≃ 2 ≃ 5 11 20− 50− 100− 400

nm B-19, HIV, Mimi

Virion: protein capsid (or env.spikes) icosadeltahedron
C∗
20T , T = a2 + ab+ b2 (triangulation number)
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Digression on viruses

life 1/2-life . . . viroids . . . non-life
DNA and RNA DNA or RNA neither DNA, nor RNA

Cells Viruses Proteins, incl. prions
Seen in 1930 (electronic microscope): tobacco mosaic.
1mm3 of seawater has ≃ 10 million viruses; all seagoing
viruses ≃ 270 million tons (more 20 x weight of all whales).
Origin: ancestors or vestiges of cells, or gene mutation?
Or, evolved in parallel with cellular forms from
self-replicating molecules in prebiotic “RNA world"
Virus: virion, then (rarely) cell parasite
Virion: capsid (protein coat), capsomers structure
Number of protein subunits is 60T , but EM resolves only
clusters-“capsomers” (12T + 2 vertices of C∗

20T ), including 12

“pentamers” (5-valent vertices) at minimal distance a+ b
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1954, Watson and Crick conjectured: symmetry is
cylindrical or icosahedral (i.e. dual I, Ih fullerenes). It holds,
and almost all DNA and dsRNA viruses with known shape
are icosahedral.

AIDS: icosahedral, but (a, b)? Plant viruses? Chirality? nm:
1 typical molecule; 20 Parvovirus B-19, 400 Mimivirus;
150 “minimal cell” (bacterium Micoplasma genitalium);
90 smallest feature of computer chip (= diam. HIV-1).

Main defense of multi-cellular organism, sexual
reproduction, is not effective (in cost, risk, speed) but
arising mutations give some chances against viruses.
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Capsids of viruses

(a, b) Fullerene Virus capsid (protein coat)

(1, 0) F ∗

20
(Ih) Gemini virus

(1, 1) C∗

60
(Ih) turnip yellow mosaic virus

(2, 0) C∗

80
(Ih) hepatitis B, Bacteriophage ΦR

(2, 1) C∗

140
(I)laevo HK97, rabbit papilloma virus

(1, 2) C∗

140
(I)dextro human wart virus

(3, 1) C∗

200
(I)laevo rotavirus

(4, 0) C∗

320
(Ih) herpes virus, varicella

(5, 0) C∗

500
(Ih) adenovirus

(6, 0) C∗

720
(Ih) infectious canine hepatitis virus, HTLV-1

(9, 0) C∗

1620
(Ih) Tipula virus

(6, 3)? C∗

1260
(I)laevo HIV-1

(7, 7)? C∗

2940
(Ih) iridovirus
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Some viruses

Icosadeltahedron C∗
720(Ih),

the icosahedral structure of
the HTLV-1

Simulated adenovirus
C∗
500(Ih) with its spikes

(5, 0)-dodecahedron C500(Ih)
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IV. Some

fullerene-like

3-valent maps
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Mathematical chemistry

use following fullerene-like 3-valent maps:

Polyhedra (p5, p6, pn) for n = 4, 7 or 8 (vmin = 14, 30, 34)
Aulonia hexagona (E. Haeckel 1887): plankton skeleton

Azulenoids (p5, p7) on torus g = 1; so, p5 = p7

azulen is an isomer C10H8 of naftalen

(p5, p6, p7) = (12, 142, 12),
v = 432, D6d
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Schwarzits
Schwarzits (p6, p7, p8) on minimal surfaces of constant
negative curvature (g ≥ 3). We consider case g = 3:

Schwarz P -surface Schwarz D-surface

We take a 3-valent genus 3-map and cut it along

zigzags and paste it to form D- or P -surface.

We need 3 non-intersecting zigzags. For example,
Klein-map has 5 types of such triples.
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(6, 7)-surfaces

(1, 1)
D168: putative
carbon, 1992,

(Vanderbilt-Tersoff)
(0, 2)

Bonjour
(1, 2)

Bonjour
(p6, p7 = 24), v = 2p6 + 56 = 56(p2 + pq + q2)

Unit cell of (1, 0): D56 - Klein regular map (73)
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(6, 8)-surfaces

(1, 1)
Bonjour

(0, 2)
P192, p6 = 80

(1, 2)
Bonjour

(p6, p8 = 12), v = 2p6 + 32 = 48(p2 + pq + q2)
(1, 0): p6 = 2

Unit cell of p6 = 0: v = 32 - Dyck regular map (83)
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More (6, 8)-surfaces

(0, 2)
v = 120, p6 = 44

(1, 2)
Bonjour

(p6, p8 = 12), v = 2p6 + 32 = 30(p2 + pq + q2)

Unit cell of p6 = 0: v = 32 - Dyck regular map (83)
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Polycycles (with Dutour and Shtogrin)

A finite (p, q)-polycycle is a plane 2-connected finite graph,
such that :

all interior faces are (combinatorial) p-gons,

all interior vertices are of degree q,

all boundary vertices are of degree in [2, q].

a (5, 3)-polycycle
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Examples of(p, 3)-polycycles

p = 3: {3, 3}, {3, 3} − v, {3, 3} − e;

p = 4: {4, 3}, {4, 3} − v, {4, 3} − e, P2 × A (A = Pn≥1, PN,
PZ)

Continuum for any p ≥ 5.
But 39 proper (5, 3)-polycycles, i.e., partial subgraphs of
Dodecahedron

p = 6: polyhexes=benzenoids

Theorem
(i) Planar graphs admit at most one realization as
(p, 3)-polycycle
(ii) any unproper (p, 3)-polycycle is a (p, 3)-helicene
(homomorphism into the plane tiling {p, 3} by regular
p-gons)
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Icosahedral fulleroids (with Delgado)

3-valent polyhedra with p = (p5, pn>6) and symmetry I or
Ih

orbit size 60 30 20 12

# of orbits any ≤ 1 ≤ 1 1

i-gonal face any 3t 2t 5t

An,k : (p5, pn) = (12 + 60k, 60k
n−6

) with k ≥ 1, n > 6

Bn,k : (p5, pn) = (60k, 125k−1

n−6
) with k ≥ 1, n = 5t > 5
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I-fulleroids

p5 n; pn v # of Sym

A7,1 72 7, 60 260 2 I

A8,1 72 8, 30 200 1 Ih

A9,1 72 9, 20 180 1 Ih

B10,1 60 10, 12 140 1 Ih

A11,5 312 11, 60 740 ?

A12,2 132 12, 20 300 −

A12,3 192 12, 30 440 1 Ih

A13,7 432 13, 60 980 ?

A14,4 252 14, 30 560 1 Ih

B15,2 120 15, 12 260 1 Ih
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First (5, 7)-sphere icosahedralI

F5,7(I)a = P (C140(I)); v = 260
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Second(5, 7)-sphere icosahedralI

F5,7(I)b = T1(C180(Ih)); v = 260
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(5, 8)-sphere icosahedral

F5,8(Ih) = P (C80(Ih)); v = 200
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(5, 9)-sphere icosahedral

F5,9(Ih) = P (C60(Ih)); v = 180
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(5, 10)-sphere icosahedral

F5,10(Ih) = T1(C60(Ih)); v = 140
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(5, 12)-sphere icosahedral

F5,12(Ih) = T3(C80(Ih)); v = 440
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(5, 14)-sphere icosahedral

F5,14(Ih) = P (F5,12(Ih)); v = 560
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(5, 15)-sphere icosahedral

F5,15(Ih) = T2(C60(Ih)); v = 260
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All seven2-isohedral (5, n)-planes

A (5, n)-plane is a 3-valent
plane tiling by 5- and n-
gons.
A plane tiling is 2-
homohedral if its faces
form 2 orbits under group
of combinatorial automor-
phisms Aut.
It is 2-isohedral if, more-
over, its symmetry group is
isomorphic to Aut.
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V. d-dimensional

fullerenes (with Shtogrin)
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d-fullerenes

(d− 1)-dim. simple (d-valent) manifold (loc. homeomorphic
to Rd−1) compact connected, any 2-face is 5- or 6-gon.
So, any i-face, 3 ≤ i ≤ d, is an polytopal i-fullerene.
So, d = 2, 3, 4 or 5 only since (Kalai, 1990) any 5-polytope
has a 3- or 4-gonal 2-face.

All finite 3-fullerenes

∞: plane 3- and space 4-fullerenes

Finite 4-fullerenes; constructions:
A (tubes of 120-cells) and B (coronas)
Inflation-decoration method (construction C, D)

Quotient fullerenes; polyhexes

5-fullerenes from 5333
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All finite 3-fullerenes

Euler formula χ = v − e+ p = p5
6
≥ 0.

But χ =

{

2(1− g) if oriented
2− g if not

Any 2-manifold is homeomorphic to S2 with g (genus)
handles (cyl.) if oriented or cross-caps (Möbius) if not.

g 0 1(or.) 2(not or.) 1(not or.)

surface S2 T 2 K2 P 2

p5 12 0 0 6

p6 ≥ 0, 6= 1 ≥ 7 ≥ 9 ≥ 0, 6= 1, 2

3-fullerene usual sph. polyhex polyhex elliptic
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Smallest non-spherical finite3-fullerenes

Toric fullerene
Klein bottle

fullerene projective fullerene
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Non-spherical finite3-fullerenes

Elliptic fullerenes are antipodal quotients of centrally
symmetric spherical fullerenes, i.e. with symmetry Ci,
C2h, D2h, D6h, D3d, D5d, Th, Ih. So, v ≡ 0 (mod 4).
Smallest CS fullerenes F20(Ih), F32(D3d), F36(D6h)

Toroidal fullerenes have p5 = 0. They are described by
S.Negami in terms of 3 parameters.

Klein bottle fullerenes have p5 = 0. They are obtained
by quotient of toroidal ones by a fixed-point free
involution reversing the orientation.
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Plane fullerenes (infinite3-fullerenes)

Plane fullerene: a 3-valent tiling of E2 by (combinatorial)
5- and 6-gons.

If p5 = 0, then it is the graphite {63} = F∞ = 63.

Theorem: plane fullerenes have p5 ≤ 6 and p6 = ∞.

A.D. Alexandrov (1958): any metric on E2 of
non-negative curvature can be realized as a metric of
convex surface on E3.
Consider plane metric such that all faces became
regular in it. Its curvature is 0 on all interior points
(faces, edges) and ≥ 0 on vertices. A convex surface is
at most half S2.
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Space4-fullerenes (infinite 4-fullerene)

4 Frank-Kasper polyhedra (isolated-hexagon
fullerenes): F20(Ih), F24(D6d), F26(D3h), F28(Td)

Space fullerene: a 4-valent tiling of E3 by them
Space 4-fullerene: a 4-valent tiling of E3 by any
fullerenes

They occur in:
ordered tetrahedrally closed-packed phases of
metallic alloys with cells being atoms. There are
> 20 t.c.p. alloys (in addition to all quasicrystals)
soap froths (foams, liquid crystals)
hypothetical silicate (or zeolite) if vertices are
tetrahedra SiO4 (or SiAlO4) and cells H2O

better solution to the Kelvin problem
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Main examples of space fullerenes

Also in clathrate “ice-like” hydrates: vertices are H2O,
hydrogen bonds, cells are sites of solutes (Cl, Br, . . . ).

t.c.p. alloys exp. clathrate # 20 # 24 # 26 # 28

A15 Cr3.Si I:4Cl2.7H2O 1 3 0 0

C15 MgCu2 II:CHCl3.17H2O 2 0 0 1

Z Zr4Al3 III:Br2.86H2O 3 2 2 0

σ Cr46.F e54 5 8 2 0

µ Mo6Co7 7 2 2 2

δ MoNi 6 5 2 1

C V2(Co, Si)3 15 2 2 6

T Mg32(Zn,Al)49 TI (Bergman) 49 6 6 20

SM TP (Sadoc-Mossieri) 49 9 0 26
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Frank-Kasper polyhedra andA15

Mean face-size of all known space fullerenes is in
[5 + 1

10
(C15), 5 +

1

9
(A15)]. Closer to impossible 5 (120-cell on

3-sphere) means energetically competitive with diamond.
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New space4-fullerene (with Shtogrin)
The only known which is not by F20, F24, F26 and F28(Td).
By F20, F24 and its elongation F36(D6h) in ratio 7 : 2 : 1;
so, smallest known mean face-size 5.091 < 5.1(C15).

All space 4-fullerenes with at most 7 kinds of vertices:
A15, C15, Z, σ and this one (Delgado, O’Keeffe; 3,3,5,7,7).

– p. 64



Kelvin problem

Partition E3 into cells of equal volume and minimal surface.

Kelvin’s partition Weaire, Phelan’s partition

Weaire-Phelan partition (A15) is 0.3% better than
Kelvin’s, best is unknown

In dimension 2, best is honeycomb (Ferguson, Hales)
– p. 65



Projection of 120-cell in 3-space (G.Hart)

(533): 600 vertices, 120 dodecahedral facets, |Aut| = 14400
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Regular (convex) polytopes
A regular polytope is a polytope, whose symmetry group
acts transitively on its set of flags.
The list consists of:

regular polytope group
regular polygon Pn I2(n)

Icosahedron and Dodecahedron H3

120-cell and 600-cell H4

24-cell F4

γn(hypercube) and βn(cross-polytope) Bn

αn(simplex) An=Sym(n+ 1)

There are 3 regular tilings of Euclidean plane: 44 = δ2, 36
and 63, and an infinity of regular tilings pq of hyperbolic
plane. Here pq is shortened notation for (pq).
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2-dim. regular tilings and honeycombs
Columns and rows indicate vertex figures and facets, resp.
Blue are elliptic (spheric), red are parabolic (Euclidean).

2 3 4 5 6 7 m ∞

2 22 23 24 25 26 27 2m 2∞

3 32 α3 β3 Ico 36 37 3m 3∞

4 42 γ3 δ2 45 46 47 4m 4∞

5 52 Do 54 55 56 57 5m 5∞

6 62 63 64 65 66 67 6m 6∞

7 72 73 74 75 76 77 7m 7∞

m m2 m3 m4 m5 m6 m7 mm m∞

∞ ∞2 ∞3 ∞4 ∞5 ∞6 ∞7 ∞m ∞∞
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3-dim. regular tilings and honeycombs

α3 γ3 β3 Do Ico δ2 63 36

α3 α4∗ β4∗ 600- 336

β3 24- 344

γ3 γ4∗ δ3∗ 435* 436*

Ico 353

Do 120- 534 535 536

δ2 443* 444*

36 363

63 633* 634* 635* 636*
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4-dim. regular tilings and honeycombs

α4 γ4 β4 24- 120- 600- δ3

α4 α5∗ β5∗ 3335

β4 De(D4)

γ4 γ5∗ δ4∗ 4335∗

24- V o(D4) 3434

600-

120- 5333 5334 5335

δ3 4343∗
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Finite 4-fullerenes

χ = f0 − f1 + f2 − f3 = 0 for any finite closed 3-manifold,
no useful equivalent of Euler formula.

Prominent 4-fullerene: 120-cell.
Conjecture: it is unique equifacetted 4-fullerene
(≃ Do = F20)

A. Pasini: there is no 4-fullerene facetted with C60(Ih)
(4-football)

Few types of putative facets: ≃ F20, F24 (hexagonal
barrel), F26, F28(Td), F30(D5h) (elongated
Dodecahedron), F32(D3h), F36(D6h) (elongated F24)
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4 constructions of finite 4-fullerenes

|V | 3-faces are ≃ to
120-cell∗ 600 F20 = Do

∀i ≥ 1 A∗
i 560i+ 40 F20, F30(D5h)

∀3− full.F B(F ) 30v(F ) F20, F24, F (two)
decoration C(120-cell) 20600 F20, F24, F28(Td)

decoration D(120-cell) 61600 F20, F26, F32(D3h)

∗ indicates that the construction creates a polytope;
otherwise, the obtained fullerene is a 3-sphere.
Ai: tube of 120-cells
B: coronas of any simple tiling of R2 or H2

C, D: any 4-fullerene decorations
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Construction A of polytopal 4-fullerene

Similarly, tubes of 120-cell’s are obtained in 4D
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Inflation method

Roughly: find out in simplicial d-polytope (a dual
d-fullerene F ∗) a suitable “large” (d− 1)-simplex,
containing an integer number t of “small” (fundamental)
simplices.

Constructions C, D: F ∗=600-cell; t = 20, 60, respectively.

The decoration of F ∗ comes by “barycentric homothety”
(suitable projection of the “large” simplex on the new
“small” one) as the orbit of new points under the
symmetry group
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All known 5-fullerenes

Exp 1: 5333 (regular tiling of H4 by 120-cell)

Exp 2 (with 6-gons also): glue two 5333’s on some
120-cells and delete their interiors. If it is done on only
one 120-cell, it is R× S3 (so, simply-connected)

Exp 3: (finite 5-fullerene): quotient of 5333 by its
symmetry group; it is a compact 4-manifold partitioned
into a finite number of 120-cells

Exp 3’: glue above

Pasini: no polytopal 5-fullerene exist.

All known d-fullerenes come from usual spheric fullerenes
or from the regular d-fullerenes: 5, 53=Dodecahedron,
533=120-cell, 5333, or 6, 63=graphite lattice, 633
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Quotient d-fullerenes

A. Selberg (1960), A. Borel (1963): if a discrete group of
motions of a symmetric space has a compact fund. domain,
then it has a torsion-free normal subgroup of finite index.
So, quotient of a d-fullerene by such symmetry group is a
finite d-fullerene.
Exp 1: Poincaré dodecahedral space

quotient of 120-cell (on S3) by the binary icosahedral
group Ih of order 120; so, f -vector
(5, 10, 6, 1) = 1

120
f(120− cell)

It comes also from F20 = Do by gluing of its opposite
faces with 1

10
right-handed rotation

Quot. of H3 tiling: by F20: (1, 6, 6, p5, 1) Seifert-Weber space
and by F24: (24, 72, 48 + 8 = p5 + p6, 8) Löbell space
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Polyhexes

Polyhexes on T 2, cylinder, its twist (Möbius surface) and K2

are quotients of graphite 63 by discontinuous and
fixed-point free group of isometries, generated by resp.:

2 translations,

a translation, a glide reflection

a translation and a glide reflection.

The smallest polyhex has p6 = 1: on T 2.
The “greatest” polyhex is 633 (the convex hull of vertices of
63, realized on a horosphere); it is not compact (i.e. with not
compact fundamental domain), but cofinite (i.e., of finite
volume) infinite 4-fullerene.
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VI. Some special

fullerenes (with Grishukhin)

– p. 78



All fullerenes with hexagons in1 ring

D5h; 30 D2; 32 D3d; 32

D2d; 36 D2; 40
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All fullerenes with pentagons in1 ring

D2d; 36 D3d; 44

D6d; 48 D2; 44
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All fullerenes with hexagons in> 1 ring

D3h; 32 C3v; 38 D5h; 40
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All fullerenes with pentagons in> 1 ring

C3v; 38

infinite family:
4 triples in F4t,
t ≥ 10, from

collapsed 34t+8

infinite family:
F24+12t(D6d),

t ≥ 1,
D6h if t odd

elongations of
hexagonal barrel
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Face-regular fullerenes

A fullerene called 5Ri if every 5-gon has i exactly 5-gonal
neighbors; it is called 6Ri if every 6-gon has exactly i
6-gonal neigbors.

i 0 1 2 3 4 5
# of 5Ri ∞ ∞ ∞ 2 1 1
# of 6Ri 4 2 8 5 7 1

28, D2 32, D3

All fullerenes, which are 6R1
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All fullerenes, which are 6R3

36, D2 44, T (also 5R2) 48, D3

52, T (also 5R1) 60, Ih (also 5R0)
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All fullerenes, which are 6R4

40, D5d

Bonjour
56, Td

(also 5R2)
68, D3d

Bonjour
68, Td

(also 5R1)

72, D2d 80, D5h (also 5R0) 80, Ih (also 5R0)
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Fullerenes as isom. subgraphs of half-cubes

All isometric embeddings of skeletons (with (5Ri, 6Rj) of
Fn), for Ih- or I-fullerenes or their duals, are:

F20(Ih)(5, 0) →
1

2
H10 F ∗

20(Ih)(5, 0) →
1

2
H6

F ∗
60(Ih)(0, 3) →

1

2
H10 F80(Ih)(0, 4) →

1

2
H22

Conjecture (checked for n ≤ 60): all such embeddings,
for fullerenes with other symmetry, are:

F26(D3h)(−, 0) → 1

2
H12

F ∗
28(Td)(3, 0) →

1

2
H7 F ∗

36(D6h)(2,−) → 1

2
H8

F40(Td)(2,−) → 1

2
H15 F44(T )(2, 3) →

1

2
H16

Also, for graphite lattice (infinite fullerene), it holds:
(63)=F∞(0, 6) → H∞, Z3 and (36)=F ∗

∞(0, 6) → 1

2
H∞, 1

2
Z3.
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Embeddable dual fullerenes in Biology

The five above embeddable dual fullerenes F ∗
n correspond

exactly to five special (Katsura’s "most uniform") partitions
(53, 52.6, 5.62, 63) of n vertices of Fn into 4 types by 3
gonalities (5- and 6-gonal) faces incident to each vertex.

F ∗
20(Ih) →

1

2
H6 corresponds to (20,−,−,−)

F ∗
28(Td) →

1

2
H7 corresponds to (4, 24,−,−)

F ∗
36(D6h) →

1

2
H8 corresponds to (−, 24, 4,−)

F ∗
60(Ih) →

1

2
H10 corresponds to (−,−, 60,−)

F ∗
∞ → 1

2
H∞ corresponds to (−,−,−,∞)

It turns out, that exactly above 5 fullerenes were identified
as clatrin coated vesicles of eukaryote cells (the vitrified cell
structures found during cryo-electronic microscopy).
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VII. Knots and zigzags

in fullerenes

(with Dutour and Fowler)
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Triply intersecting railroad in F172(C3v)

– p. 89



Tight Fn with only simple zigzags

n group z-vector orbit lengths int. vector

20 Ih 106 6 25

28 Td 127 3,4 26

48 D3 169 3,3,3 28

60 Ih 1810 10 29

60 D3 1810 1,3,6 29

76 D2d 224, 207 1,2,4,4 4, 29 and 210

88 T 2212 12 211

92 Th 226, 246 6,6 211 and 210, 4

140 I 2815 15 214

Conjecture: this list is complete (checked for n ≤ 200).
It gives 7 Grünbaum arrangements of plane curves.
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First IPR fullerene with self-int. railroad

F96(D6d); realizes projection of Conway knot (4× 6)∗
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Intersection of zigzags

For any n, there is a fullerene with two zigzags having
intersection 2n
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Parametrizing fullerenesFn

Idea: the hexagons are of zero curvature, it suffices to give
relative positions of faces of non-zero curvature.

Goldberg (1937) All Fn of symmetry (I, Ih) are given by
Goldberg-Coxeter construction GCk,l.

Fowler and al. (1988) All Fn of symmetry D5, D6 or T
are described in terms of 4 parameters.

Graver (1999) All Fn can be encoded by 20 integer
parameters.

Thurston (1998) All Fn are parametrized by 10 complex
parameters.

Sah (1994) Thurston’s result implies that the number of
fullerenes Fn is ∼ n9.

– p. 93
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