Elementary polycycles and their decompositions

Mathieu Dutour Sikirić

Institute Rudjer Bošković, Croatia and Universität Rostock

April 24, 2014

I. (R, q)-polycycles

Definition

Given $q \in \mathbb{N}$ and $R \subset \mathbb{N}$, a (R, q)-polycycle is a non-empty 2-connected plane, locally finite graph G with faces partitionned in two sets F_1 and F_2 (F_1 is non-empty), so that:

- ▶ all elements of F₁ (called proper faces) are combinatorial *i*-gons with *i* ∈ *R*;
- all elements of F₂ (called holes) are pair-wisely disjoint, i.e. have no common vertices;
- ► all vertices have degree within {2,..., q} and all interior vertices are q-valent.

Examples with one hole

Examples with two holes or more

$({3}, 3)$ -polycycles

Any ($\{3\},3$)-polycycle is one of the following

Tetrahedron (with no hole):

► 3 following polycycles (with one hole):

$({4}, 3)$ -polycycles

Any ($\{4\}, 3$)-polycycle is one of the following

Cube (with no hole):

3 following polycycles (with one hole)

Following infinite family (with one hole):

$({4}, 3)$ -polycycles

The infinite family Prism_n (with two holes)

► Following two infinite ({4},3)-polycycles:

($\{3\}, 4$)-polycycles

Octahedron (with no hole):

Following polycycles (with one hole)

$({3}, 4)$ -polycycles

Following infinite family (with one hole):

▶ The infinite family *APrism_n* (with two holes)

▶ Following two infinite ({3},4)-polycycles:

singly infinite polycycle

doubly infinite polycycle

Curvature conditions

- ► A (*R*, *q*)-polycycle is called elliptic, parabolic or hyperbolic if $\frac{1}{q} + \frac{1}{\max_{i \in R}{i}} \frac{1}{2}$ is positive, zero or negative, respectively.
- Elliptic cases:
 - q = 3 and R with $\max_{i \in R} i \le 5$
 - q = 4 and R with $\max_{i \in R} i \leq 3$
 - q = 5 and R with $\max_{i \in R} i \leq 3$
- Parabolic cases:
 - q = 3 and R with $\max_{i \in R} i = 6$
 - q = 4 and R with $\max_{i \in R} i = 4$
 - q = 6 and R with $\max_{i \in R} i = 3$
- All other cases are hyperbolic.

Limit case $F_2 = \emptyset$, $R = \{r\}$

Elliptic ({r}, q)-polycycles: 5 Platonic solids

Tetra-CubeOcta-Icosa-Dodeca-hedronhedronhedronhedronhedron

Parabolic ({r}, q)-polycycles: 3 regular plane tilings

► Hyperbolic ({*r*}, *q*)-polycycles: infinity

Generalization and (r, q)-polycycles

- ▶ A generalization of (*R*, *q*)-polycycle is (*R*, *Q*)-polycycles: the valency of interior vertices belong to a set *Q*. All the theory extends to this case.
- A (r, q)-polycycle is a ({r}, q)-polycycle with only one hole (the exterior one). Their theory has additional features:
 - ► There exist a canonical model of them in the form of (r^q) regular partition.
 - ► For any (r, q)-polycycle P, simple connectedness of P ensures the existence of a canonical map from P to (r^q).

Main examples of (r, q)-polycycles

	Elliptic	Parabolic	Hyperbolic
(r,q)	(3,3), (3,4), (4,3)	(4, 4)	all
	(5,3), (3,5)	(3,6),(6,3)	others
Exp.	α_3 , β_3 , γ_3 , Do, Ico	$(4^4), (6^3), (3^6)$	(<i>r</i> ^{<i>q</i>})
reg.part	of sphere S^2	of Euclidean	of hyperbolic
		plane \mathbb{R}^2	plane \mathbb{H}^2

Polyominoes: Conway, Penrose, Colomb (games, tilers of \mathbb{R}^2 , etc.), enumeration (in Physics, Statistical Mechanics). Polyhexes: application in Organic Chemistry. II. Decomposition into elementary polycycles

Elementary polycycles

- ► A bridge of a (R, q)-polycycle is an edge, which is not on a boundary and goes from a hole to a hole (possibly, the same).
- An elementary (R, q)-polycycle is one without bridges.
- Examples:

An elementary $({5}, 3)$ -polycycle

Open edges

► An open edge of an (*R*, *q*)-polycycle is an edge on a boundary such that each of its end-vertices have degree less than *q*.

Examples

Decomposition theorem

- Theorem: Any (R, q)-polycycle is uniquely decomposed into elementary (R, q)-polycycles along its bridges.
- In other words, any (R, q)-polycycle is obtained by gluing some elementary (R, q)-polycycles along open edges.

Summary

- Elementary (R, q)-polycycles provide a decomposition of (R, q)-polycycles.
- ► In order for this to be useful, we have to classify the elementary (R, q)-polycycles.
- For non-elliptic cases, there is no hope of classification (there is a continuum of elementary ones):

III. Classification
 of elementary
({2,3,4,5},3)-polycycles

With at least one 2-gon

All elementary $(\{2,3,4,5\},3)$ -polycycles, containing a 2-gon, are those eight ones:

Totally elementary polycycle

- Call an elementary (R, 3)-polycycle totally elementary if, after removing any face adjacent to a hole, one obtains a non-elementary (R, 3)-polycycle.
- Examples:

A totally elementary polycycle

A non-totally elementary polycycle

Classification result I

Classification result II

(iii) the following doubly infinite ({5},3)-polycycle, denoted by $Barrel_{\infty}$:

(iv) the infinite series of $Barrel_m$, $m \ge 2$:

Classification methodology

- If an elementary polycycle is not totally elementary, then it is obtained from another elementary one with one face less.
- So, from the list of elementary ({3,4,5},3)-polycycles with n faces, one gets the list of elementary ({3,4,5},3)-polycycles with n + 1 faces.

Full classification

Theorem: Any elementary $(\{2, 3, 4, 5\}, 3)$ -polycycle is one of: (i) 204 sporadic polycycles with 4 to 11 proper faces (ii) an element of the infinite series of $Barrel_m$, $2 \le m \le \infty$. (iii) six $(\{3, 4, 5\}, 3)$ -polycycles, infinite in one direction: δ α ε γ μ

(iv) $21 = \binom{6+1}{2}$ infinite series obtained by taking two endings of the above infinite polycycles and concatenating them.

See below three examples in the infinite series $\beta \varepsilon$

Subcase of $({5}, 3)$ -polycycles

 C_2

(i) Sporadic elementary ({5}, 3)-polycycles:

 A_1

 A_3

 C_3

(ii) The infinite series of elementary ($\{5\}, 3$)-polycycles $\alpha \alpha$:

(iii) The infinite series of elementary ($\{5\}, 3$)-polycycles $Barrel_q$, $q \ge 3$:

(iv) The only elementary infinite ({5},3)-polycycle are \textit{Barrel}_∞ and α

IV. Classification of elementary ({2,3},4)-polycycles

The classification

Any elementary $(\{2,3\},4)$ -polycycle is one of the following eight:

V. Classification of elementary ({2,3},5)-polycycles

The technique

- Take an elementary ({2,3},5)-polycycle. If v is a vertex on the boundary, then we can consider all possible ways to make this vertex an interior vertex in an elementary ({2,3},5)-polycycle.
- ▶ From the list of elementary ({2,3},5)-polycycles with n interior vertices, one can obtain the list of elementary ({2,3},5)-polycycles with n + 1 interior vertices.

The classification

Any elementary $(\{2, 3, 4, 5\}, 3)$ -polycycle is one of:

- (i) 57 sporadic $(\{2,3\},5)$ -polycycles.
- (ii) three following infinite $(\{2,3\},5)$ -polycycles:

(iii) the following 5-valent doubly infinite ({2,3},5)-polycycle, called snub ∞-antiprism:

(iv) the infinite series of snub *m*-antiprisms, $m \ge 2$ (two *m*-gonal holes):

(v) six infinite series of ({2,3},5)-polycycles with one hole (they are obtained by concatenating endings α , β , γ)

Subcase of ($\{3\}, 5$)-polycycles I

(i) Sporadic elementary ($\{3\}, 5$)-polycycles:

Subcase of $({3}, 5)$ -polycycles II

(ii) The infinite series of elementary ({3}, 5)-polycycles $\alpha\alpha$:

- (iii) The only elementary infinite ({3},5)-polycycles are α and snub ∞ -antiprism.
- (iv) The infinite series of elementary ({3},5)-polycycles snub m-antiprisms, $m \ge 2$:

VI. Application to extremal polycycles

Definition

- Given a finite (r, q)-polycycle P, denote by
 - *n_{int}(P)* the number of interior vertices
 - and $f_1(P)$ the number of faces in F_1 .
- Fix x ∈ N. An (r, q)-polycycle with f₁(P) = x is called extremal if it has maximal n_{int}(P) among all (r, q)-polycycles with f₁(P) = x.
- Problem: to find $N_{r,q}(x)$, the maximal number of vertices.
- ► Fact: For fixed r, q, f₁(P) = x extremal polycycle has also maximal n_{int}(P), e_{int}(P) (interior faces) and minimal n, l, Perim = n_{ext}
- ▶ For (r, q)=(3,3), (4,3), (3,4), the question is trivial.
 8 authors, 1997: found N_{5,3}(x) for x < 12 (unique, partial subgraph of Dodecahedron).

Use of elementary polycycles

If a (r, q)-polycycle P is decomposed into elementary (r, q)-polycycles (EP_i)_{i∈I} appearing x_i times, then one has:

$$\begin{cases} n_{int}(P) = \sum_{i \in I} x_i n_{int}(EP_i) \\ f_1(P) = \sum_{i \in I} x_i f_1(EP_i) \end{cases}$$

If one solves the Linear Programming problem

maximize
$$\sum_{i \in I} x_i n_{int}(EP_i)$$

with $x = \sum_{i \in I} x_i f_1(EP_i)$
and $x_i \in \mathbb{N}$

and if $(x_i)_{i \in I}$ realizing the maximum can be realized as (r, q)-polycycle, then $N_{r,q}(x)$ can be found.

Small extremal (5, 3)-polycycles

x	$N_{5,3}(x)$	extremal	components
1	0		D
2	0		D, D
3	1		E_1
4	2		E ₂
5	3		E ₃

x	$N_{5,3}(x)$	extremal	components
6	5		A_5
7	6		B ₃
8	8	KH	A_4
9	10		A ₃
10	12		<i>A</i> ₂

x	$N_{5,3}(x)$	extremal	components
11	15		A_1
12	10	AT AT	E_{1}, B_{2}
			D, C_1, D
		TET	<i>C</i> ₁ , <i>D</i> , <i>D</i>
			E ₁₀

Extremal (5, 3)-polycycles

• Theorem: For any $x \ge 12$, one has

$$N_{5,3}(x) = \begin{cases} x & \text{if } x \equiv 0, 8, 9 \pmod{10}, \\ x - 1 & \text{if } x \equiv 6, 7 \pmod{10}, \\ x - 2 & \text{if } x \equiv 1, 2, 3, 4, 5 \pmod{10}. \end{cases}$$

- Extremal polycycle realizing the extremum:
 - If $x \equiv 0 \pmod{10}$ (unique):

• If $x \equiv 9 \pmod{10}$ (unique):

• If $x \equiv 8 \pmod{10}$ (unique):

• If $x \equiv 7 \pmod{10}$ (non-unique):

• If $x \equiv 6 \pmod{10}$ (non-unique):

▶ Otherwise (non-unique): *E_n*

Extremal (3, 5)-polycycles

Theorem

- $N_{3,5}(x) = \lfloor \frac{x}{3} \rfloor + 1$ for $x \equiv 14, 16, 17 \pmod{18}$,
- ▶ $N_{3,5}(x) = \lfloor \frac{x}{3} \rfloor 1$ for $x \equiv 3, 4, 6, 7, 9, 11 \pmod{18}$, and

•
$$N_{3,5}(x) = \lfloor \frac{x}{3} \rfloor$$
, otherwise,

but with 5 exceptions: above value plus 1 for x = 11, 15, 17 and N_{3,5}(x) = x − 10 for 16 ≤ x ≤ 19.

Non-elliptic case

► For parabolic (r, q)-polycycles (i.e. (r, q)=(4, 4), (6, 3) or (3, 6)) the method of elementary polycycles fails (since there is no classification) but "extremal animals" of Harary-Harborth 1976 (proper ones, growing as a spiral) are extremal:

Hyperbolic cases are very difficult.

VII. Application to non-extendible polycycles

Definition

A (r, q)-polycycle is called non-extendible if it is no proper subgraph of another (r, q)-polycycle. Examples:

Extendible (3, 4)-polycycle

Classification

Theorem: All non-extendible (r, q)-polycycles are:

- Regular partitions (r^q)
- Four following examples:

Infinite non-extendible polycycles

• Take the two elementary (5,3)-polycycles and

form infinite word $\dots u_{-1}u_0u_1\dots$ with u_i being C_2 or C'_2 . This gives a continuum of non-extendible (5,3)-polycycles.

- ► Similarly, one has a continuum of (3,5)-polycycles.
- ► For non-elliptic (r, q), one takes the infinite tiling (r^q), removes an infinity of r-gonal faces sharing no edges and takes the universal cover of this (r, q)-polycycle.

Finite non-extendible polycycles

- ► Main lemma: all finite non-extendible (r, q)-polycycles are elliptic, i.e. ¹/_q + ¹/_r > ¹/₂
- ► So, we can use decomposition of non-extendible (r, q)-polycycles into elementary (r, q)-polycycles and the classification of them.
- Given an (r, q)-polycycle P, the graph of its elementary components is denoted by el(P); its vertices are its elementary (r, q)-polycycles with two elementary (r, q)-polycycles adjacent if they share an edge:

- ► A finite ({r}, q)-polycycle P is a (r, q)-polycycle if and only if el(P) is a tree.
- Every tree is either an isolated vertex, or contains at least one vertex of degree 1.
- One checks on this vertex that there is only two possibilities:

VIII. 2-embeddable (r, q)-polycycles

2-embedding

• The Hamming distance on $\{0,1\}^n$ is defined by

$$d(x,y) = \#\{1 \le i \le n \text{ s.t. } x_i \neq y_i\}$$

- ▶ Given a connected graph G, denote by d_G the shortest path distance between vertices of G
- ► A graph *G* is said to be 2-embeddable if, for some *n*, there exists a mapping

$$\psi: V(G) \rightarrow \{0,1\}^S$$

 $v \mapsto \psi(v)$

such that, for all vertices v, v' of G, one has $d(\psi(v), \psi(v')) = 2d_G(v, v')$

Alternating zones

- In a plane graph G, an alternating zone, is a sequence of edges e_i such that e_i and e_{i+1} belong to a same face F_i and it holds:
 - If $|F_i|$ is even, e_i and e_{i+1} in opposition
 - If |F_i| is odd, e_i and e_{i+1} are opposed. There are two possible choices for e_{i+1} given e_i and they are required to alternate.
- ► A subgraph H of G is called convex if, for any two vertices v, v' of H, all shortest paths between v and v' are included in H.
- ► If Z is a not self-intersecting alternating zone, then G Z consists of two graphs G_i. If both G_i are convex, then we say that Z defines convex cut.

Examples

Two (3,5)-polycycles with an non-convex alternating zone:

Two (5,3)-polycycles with an alternating zone, which is not convex:

Embedding of (r, q)-graph

- ► If the alternating zones of a plane graph G define convex cuts, then G is 2-embeddable.
- Above condition is not necessary.
- ► A (r, q)-graph is a plane graph such that all interior faces have at least r edges and all interior vertices have degree at least q.
- Chepoi et al.: (4,4)-, (3,6)- and (6,3)-graphs are 2-embeddable.
- ► So, all parabolic and hyperbolic (r, q)-polycycle are 2-embeddable.

Elliptic 2-embeddable (r, q)-polycycles

For elliptic (r, q) ≠ (5, 3), (3, 5) (i.e., (3, 3), (3, 4), (4, 3)), only three polycycles are non-embeddable:

- A (3,5)-polycycle different from Icosahedron {3,5} and {3,5} − v, is 2-embeddable if and only if it does not contain, as an induced subgraph, any of (3,5)-polycycles c₃ and d + e₂ + d.
- A (5,3)-polycycle different from Dodecahedron {5,3} is
 2-embeddable if and only if it does not contain, as an induced subgraph, any of (5,3)-polycycles E₄ and D + E₂ + D.

IX. Application to face-regular spheres

Euler formula

- Take a 3-valent plane map and denote by p_k the number of faces having k edges.
- Then one has the equality

$$12 = \sum_{k=3}^{\infty} (6-k) p_k$$

- So, every 3-valent plane map has at least one face of size less than 6.
- ▶ So, 3-valent plane graphs with faces of gonality at most 5
 - have at most 12 faces,
 - have at most 20 vertices.

Face-regular maps

- A (p, q)-sphere is a 3-valent plane graphs, whose faces are por q-gonal.
- Take G a (p, q)-sphere. Then:
 - G is called pR_i if every p-gonal face is adjacent to exactly i p-gonal faces.
 - ► G is called qR_j if every q-gonal face is adjacent to exactly j q-gonal faces.
- The subject of enumerating them is very large. We intend to show non-trivial results obtained by using decomposition into elementary polycycles.
- p ≤ 5. So, if one removes all q-gonal faces and all edges between any two q-gonal faces, then the result is a ({p}, 3)-polycycle.

Polycycles of (5, q)-sphere qR_0

- ► The set of 5-gonal faces of (5, q)-sphere qR₀ is decomposed into elementary ({5}, 3)-polycycles.
- Let us see in the classification the elementary polycycles that could be ok
 - They should be finite (this eliminate $Barrel_{\infty}$ and α)
 - They should have some vertices of degree 2 (this eliminates Dodecahedron and *Barrel_k*)
 - It should be possible to fill open edges so as to have no pending vertices of degree 2.

NO

NO

NO

The infinite series of elementary ({5},3)-polycycles $\alpha\alpha$:

(5, q)-sphere qR_0

► The set of 5-gonal faces of (5, q)-sphere qR₀ is decomposed into the following elementary ({5}, 3)-polycycles:

- ► The major skeleton Maj(G) of a (5, q)-sphere qR₀ is a 3-valent map, whose vertex-set consists of polycycles E₁ and C₃.
- ► It consists of *el*(*G*) with the vertices C₁ (of degree 2) being removed.

A (5, 14)-sphere $14R_0$

The decomposition into elementary polycycles.

Their names in the classification of $({5}, 3)$ -polycycles.

The graph el(G)

Maj(G): eliminate C_1 , so as to get a 3-valent map

Results

Theorem: For a (5, q)-sphere qR_0 , the gonality of faces of the 3-valent map Maj(G) is at most $\lfloor \frac{q}{2} \rfloor$.

- ▶ Proof: Take a q-gonal face F. Denote by x_{E1}, x_{C3} and x_{C1} the number of ({5}, 3)-polycycles E₁, C₃ and C₁ incident to F.
- Counting edges, one gets:

$$q = 2x_{E_1} + 3x_{C_3} + 5x_{C_3}$$

which implies $q \ge 2(x_{E_1} + x_{C_3})$.

▶ But x_{E1} + x_{C3} is the gonality of the face corresponding to F in Maj(G).
Results

Theorem: For q < 12, we have a finite number of (5, q)-spheres qR_0 .

- **Proof**: Take such a plane graph *G*.
- ► The associated map Maj(G) is 3-valent with faces of gonality at most 5.
- So, the number of $(\{5\}, 3)$ -polycycles E_1 and C_3 is at most 20.
- The number of polycycles *C*₁ is bounded as well.
- This implies that the number of vertices of G is bounded and so, we have a finite number of spheres.

For details and extensions, see:

 M. Deza, M. Dutour Sikirić, Geometry of Chemical Graphs: Polycycles and Two-faced Maps, Cambridge University Press, Series: Encyclopedia of Mathematics and its Applications (No. 119) 2008.