Elementary polycycles and their decompositions

Mathieu Dutour Sikirié

Institute Rudjer Boskovi¢, Croatia and
Universitat Rostock

April 24, 2014



l. (R, g)-polycycles



Definition

Given g € Nand R C N, a (R, g)-polycycle is a non-empty
2-connected plane, locally finite graph G with faces partitionned in
two sets F1 and F, (F1 is non-empty), so that:
» all elements of F; (called proper faces) are combinatorial
i-gons with j € R;
» all elements of F, (called holes) are pair-wisely disjoint, i.e.
have no common vertices;

» all vertices have degree within {2,..., g} and all interior
vertices are g-valent.



Examples with one hole

A ({4,5}, 3)-polycycle A ({3,4,5},4)-polycycle

A ({2,3},5)-polycycle A ({3}, 6)-polycycle



Examples with two holes or more

A ({3,4},4)-polycycle A ({5}, 3)-polycycle



({3}, 3)-polycycles

Any ({3}, 3)-polycycle is one of the following

» Tetrahedron (with no hole):

» 3 following polycycles (with one hole):
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({4}, 3)-polycycles

Any ({4}, 3)-polycycle is one of the following
» Cube (with no hole):

» 3 following polycycles (with one hole)
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» Following infinite family (with one hole):
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({4}, 3)-polycycles

» The infinite family Prism, (with two holes)
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» Following two infinite ( {4} 3)-polycycles:

singly infinite polycycle

doubly infinite polycycle



({3}, 4)-polycycles

» Octahedron (with no hole):
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» Following polycycles (with one hole)
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({3}, 4)-polycycles

» Following infinite family (with one hole):
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» The infinite family APrism, (with two holes)
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» Following two infinite ( {3} 4)-polycycles:

singly infinite polycycle

doubly infinite polycycle



Curvature conditions

» A (R, q)-polycycle is called elliptic, parabolic or hyperbolic if
% + et % is positive, zero or negative, respectively.
» Elliptic cases:
» g =3 and R with max;egi <5
» g =4 and R with max;jcgi <3
» g =>5 and R with max;jcgi <3
» Parabolic cases:
» g =3 and R with max;egi =06
» g =4 and R with maxjegri =4
» g =06 and R with maxjcgi =3
» All other cases are hyperbolic.



Limit case F, =0, R = {r}

» Elliptic ({r}, q)-polycycles: 5 Platonic solids

>0

Tetra- Cube Octa- lcosa- Dodeca-
hedron hedron hedron hedron

» Parabolic ({r}, g)-polycycles: 3 regular plane tilings

» Hyperbolic ({r}, g)-polycycles: infinity



Generalization and (r, g)-polycycles

» A generalization of (R, g)-polycycle is (R, Q)-polycycles: the
valency of interior vertices belong to a set Q. All the theory
extends to this case.

» A (r,q)-polycycle is a ({r}, g)-polycycle with only one hole
(the exterior one). Their theory has additional features:

» There exist a canonical model of them in the form of (r%)
regular partition.

» For any (r, g)-polycycle P, simple connectedness of P ensures
the existence of a canonical map from P to (r9).



Main examples of (r, g)-polycycles

Elliptic Parabolic Hyperbolic
(r,q) (3,3),(3,4),(4,3) (4,4) all
(5,3),(3,5) (3,6),(6,3) others
Exp. | a3, 83, 73, Do, Ico | (4*),(6°),(3°) (r9)
reg.part of sphere S? of Euclidean | of hyperbolic
plane R? plane H?

domino

<]> diamond

Q hexagon

Polyominoes: Conway, Penrose, Colomb (games, tilers of R?, etc.),

enumeration (in Physics, Statistical Mechanics).

Polyhexes: application in Organic Chemistry.



ll. Decomposition
into elementary
polycycles



Elementary polycycles

» A bridge of a (R, g)-polycycle is an edge, which is not on a
boundary and goes from a hole to a hole (possibly, the same).

» An elementary (R, g)-polycycle is one without bridges.
» Examples:

A non-elementary An elementary
({4,5},3)-polycycle ({5}, 3)-polycycle



Open edges

» An open edge of an (R, g)-polycycle is an edge on a boundary
such that each of its end-vertices have degree less than g.

» Examples




Decomposition theorem

» Theorem: Any (R, g)-polycycle is uniquely decomposed into
elementary (R, g)-polycycles along its bridges.

» In other words, any (R, g)-polycycle is obtained by gluing
some elementary (R, q)-polycycles along open edges.
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Summary

» Elementary (R, g)-polycycles provide a decomposition of
(R, q)-polycycles.

> In order for this to be useful, we have to classify the
elementary (R, g)-polycycles.

» For non-elliptic cases, there is no hope of classification (there
is a continuum of elementary ones):



[Il. Classification
of elementary

({2,3,4,5}, 3)-polycycles



With at least one 2-gon

All elementary ({2, 3,4,5}, 3)-polycycles, containing a 2-gon, are
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Totally elementary polycycle

» Call an elementary (R, 3)-polycycle totally elementary if, after
removing any face adjacent to a hole, one obtains a
non-elementary (R, 3)-polycycle.

» Examples:
CO A non-totally elementary
A totally elementary polycycle polycycle



Classification result |

Any totally elementary ({3,4,5}, 3)-polycycle is one of:
(i) three isolated i-gons, i € {3,4,5}:
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(i) all ten triples of i-gons, i € {3,4,5}:
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Classification result 1l

(iii) the following doubly infinite ({5}, 3)-polycycle, denoted by

Barrel:

(iv) the infinite series of Barrel,, m > 2:




Classification methodology

» If an elementary polycycle is not totally elementary, then it is
obtained from another elementary one with one face less.

» So, from the list of elementary ({3,4,5}, 3)-polycycles with n
faces, one gets the list of elementary ({3,4,5}, 3)-polycycles
with n 4 1 faces.
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Full classification

Theorem: Any elementary ({2, 3,4,5}, 3)-polycycle is one of:
(i) 204 sporadic polycycles with 4 to 11 proper faces
(i) an element of the infinite series of Barrely,, 2 < m < co.

(iii) six ({3,4,5}, 3)-polycycles, infinite in one direction:
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(iv) 21 = (°3") infinite series obtained by taking two endings of
the above infinite polycycles and concatenating them.

See below three examples in the infinite series e




Subcase of ({5}, 3)-polycycles
) Sporadic elementary ({5}, 3)-polycycles:
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(i) The infinite series of elementary ({5}, 3)-polycycles aa:

T GOy

(iii) The infinite series of elementary ({5}, 3)-polycycles Barrelg,
q>3:

(iv) The only elementary infinite ({5}, 3)-polycycle are Barrely,
and o



IV. Classification
of elementary

({2,3},4)-polycycles



The classification

Any elementary ({2, 3}, 4)-polycycle is one of the following eight:

> 0R e




V. Classification
of elementary

({2,3},5)-polycycles



The technique

> Take an elementary ({2, 3},5)-polycycle. If v is a vertex on
the boundary, then we can consider all possible ways to make
this vertex an interior vertex in an elementary
({2,3},5)-polycycle.

» From the list of elementary ({2, 3}, 5)-polycycles with n
interior vertices, one can obtain the list of elementary
({2,3},5)-polycycles with n+ 1 interior vertices.




The classification

Any elementary ({2,3,4,5}, 3)-polycycle is one of:
(i) 57 sporadic ({2, 3},5)-polycycles.
(i) three following infinite ({2, 3},5)-polycycles:




(i) the following 5-valent doubly infinite ({2, 3}, 5)-polycycle,
called snub oo-antiprism:

-~ DR -

(iv) the infinite series of snub m-antiprisms, m > 2 (two m-gonal
holes):

D A

(v) six infinite series of ({2, 3}, 5)-polycycles with one hole (they
are obtained by concatenating endings «, 3, 7)




Subcase of ({3}, 5)-polycycles |

(i) Sporadic elementary ({3}, 5)-polycycles:
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Subcase of ({3}, 5)-polycycles Il

QYo

(i) The infinite series of elementary ({3}, 5)-polycycles aa:

0 B ok

e

(iii) The only elementary infinite ({3}, 5)-polycycles are « and
snub oco-antiprism.

(iv) The infinite series of elementary ({3}, 5)-polycycles snub
m-antiprisms, m > 2:




VI. Application
to extremal
polycycles



Definition

v

Given a finite (r, q)-polycycle P, denote by
> nine(P) the number of interior vertices
» and f1(P) the number of faces in Fy.

» Fix x € N. An (r, g)-polycycle with f;(P) = x is called
extremal if it has maximal n;,:(P) among all (r, g)-polycycles
with f1(P) = x.

» Problem: to find N, 4(x), the maximal number of vertices.

» Fact: For fixed r, q, 1(P) = x extremal polycycle has also
maximal njnt(P), ent(P) (interior faces) and minimal n, /,
Perim = next

» For (r,q)=(3,3), (4,3), (3,4), the question is trivial.

8 authors, 1997: found Ns 3(x) for x < 12 (unique, partial
subgraph of Dodecahedron).



Use of elementary polycycles

» If a (r, g)-polycycle P is decomposed into elementary
(r, g)-polycycles (EP;);c; appearing x; times, then one has:

{n,-,,t(P) = Z,'G/Xi”int(EPi)
H(P) = Xie xifi(EP;)

> If one solves the Linear Programming problem

maximize Z,'G/Xinint(EPi)
with x = Z,-elXifl(EPi)
and x; € N

and if (xj)je/ realizing the maximum can be realized as
(r, q)-polycycle, then N, 4(x) can be found.



Small extremal (5, 3)-polycycles

x | Ns3(x) extremal components
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x | Ns3(x) | extremal | components
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x | Ns3(x) extremal components
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Extremal (5, 3)-polycycles

» Theorem: For any x > 12, one has

X if x=0,8,9 (mod 10),
Ns3(x)=4¢ x—1 if x=6,7 (mod 10),
x—2 if x=1,2,3,45 (mod 10).

» Extremal polycycle realizing the extremum:
» If x=0 (mod 10) (unique):

BT - - R

» If x=9 (mod 10) (unique):

BT - - EE



» Extremal polycycle realizing the extremum:
» If x =8 (mod 10) (unique):
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» If x=7 (mod 10) (non-unique):
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» If x=6 (mod 10) (non-unique):

RSDRLD- - - G

» Otherwise (non-unique): E,



Extremal (3, 5)-polycycles

Theorem
» N3s5(x) = [5] + 1 for x =14,16,17 (mod 18),
» N3s(x) =[3] —1for x=3,4,6,7,9,11 (mod 18), and
» N3s5(x) = [5], otherwise,
» but with 5 exceptions: above value plus 1 for x = 11, 15,17
and N35(x) = x — 10 for 16 < x < 19.



Non-elliptic case

» For parabolic (r, g)-polycycles (i.e. (r,q)=(4,4), (6,3) or
(3,6)) the method of elementary polycycles fails (since there is
no classification) but “extremal animals” of Harary-Harborth
1976 (proper ones, growing as a spiral) are extremal:

» Hyperbolic cases are very difficult.



VII. Application
to non-extendible
polycycles



Definition

» A (r, g)-polycycle is called non-extendible if it is no proper
subgraph of another (r, g)-polycycle. Examples:

—

Extendible (3,4)-polycycle

Non-extendible (3, 3)-polycycle



Classification

Theorem: All non-extendible (r, g)-polycycles are:
» Regular partitions (r9)

» Four following examples:

~ (3,4)-polycycle (3,5)-polycycle

(4,3)-polycycle (3,4)-polycycle
» For any (r,q) # (3,3), (3,4), (4,3) a continuum of infinite
ones.



Infinite non-extendible polycycles

» Take the two elementary (5, 3)-polycycles and

G G
form infinite word ... u_qupu; ... with u; being G or CJ.
This gives a continuum of non-extendible (5, 3)-polycycles.
» Similarly, one has a continuum of (3,5)-polycycles.
» For non-elliptic (r, g), one takes the infinite tiling (r9),
removes an infinity of r-gonal faces sharing no edges and
takes the universal cover of this (r, g)-polycycle.



Finite non-extendible polycycles

» Main lemma: all finite non-extendible (r, g)-polycycles are
elliptic, i.e. %—F % > %

» So, we can use decomposition of non-extendible
(r, g)-polycycles into elementary (r, g)-polycycles and the
classification of them.

» Given an (r, g)-polycycle P, the graph of its elementary
components is denoted by e/(P); its vertices are its
elementary (r, g)-polycycles with two elementary

(r, g)-polycycles adjacent if they share an edge:

T — G



» A finite ({r}, q)-polycycle P is a (r, g)-polycycle if and only if
el(P) is a tree.

> Every tree is either an isolated vertex, or contains at least one
vertex of degree 1.

» One checks on this vertex that there is only two possibilities:




VIII. 2-embeddable
(r, g)-polycycles



2-embedding

» The Hamming distance on {0,1}" is defined by
dx,y) =#{1<i<nst x #y}

» Given a connected graph G, denote by d¢ the shortest path
distance between vertices of G

» A graph G is said to be 2-embeddable if, for some n, there
exists a mapping
Y V(G) — {01}
v 1h(v)

such that, for all vertices v, v/ of G, one has

d(¥(v), ¥(v)) = 2dg(v, ')



Alternating zones

» In a plane graph G, an alternating zone, is a sequence of
edges e; such that e; and ej;1 belong to a same face F; and it
holds:

» If |F;| is even, € and e;;1 in opposition
» If |F;| is odd, e and e} are opposed. There are two possible
choices for e;11 given e; and they are required to alternate.

» A subgraph H of G is called convex if, for any two vertices v,
v/ of H, all shortest paths between v and v’ are included in H.

» If Z is a not self-intersecting alternating zone, then G — Z

consists of two graphs G;. If both G; are convex, then we say
that Z defines convex cut.



Examples

Two (3,5)-polycycles with an non-convex alternating zone:

St

d+e+d

Two (5, 3)-polycycles with an alternating zone, which is not

convex:

%@C

>

D+ E,+ D



Embedding of (r, g)-graph

> If the alternating zones of a plane graph G define convex cuts,
then G is 2-embeddable.

» Above condition is not necessary.

» A (r,q)-graph is a plane graph such that all interior faces have
at least r edges and all interior vertices have degree at least gq.

» Chepoi et al.: (4,4)-, (3,6)- and (6, 3)-graphs are
2-embeddable.

» So, all parabolic and hyperbolic (r, g)-polycycle are
2-embeddable.



Elliptic 2-embeddable (r, g)-polycycles

> For elliptic (r, q) # (5,3), (3,5) (ie.. (3,3),(3.4), (4,3)), only
three polycycles are non-embeddable:

o <>

» A (3,5)-polycycle different from Icosahedron {3,5} and
{3,5} — v, is 2-embeddable if and only if it does not contain,
as an induced subgraph, any of (3,5)-polycycles c3 and
d+e +d.

» A (5, 3)-polycycle different from Dodecahedron {5, 3} is
2-embeddable if and only if it does not contain, as an induced
subgraph, any of (5,3)-polycycles E4 and D + E; + D.




|X. Application
to
face-regular spheres



Euler formula

v

Take a 3-valent plane map and denote by p, the number of
faces having k edges.

» Then one has the equality
o
2= 36~ ko,
k=3

v

So, every 3-valent plane map has at least one face of size less
than 6.
So, 3-valent plane graphs with faces of gonality at most 5

» have at most 12 faces,
» have at most 20 vertices.

v



Face-regular maps

» A (p, q)-sphere is a 3-valent plane graphs, whose faces are p-
or g-gonal.
» Take G a (p, q)-sphere. Then:
» G is called pR; if every p-gonal face is adjacent to exactly /
p-gonal faces.
» G is called gR; if every g-gonal face is adjacent to exactly j
g-gonal faces.
> The subject of enumerating them is very large. We intend to
show non-trivial results obtained by using decomposition into
elementary polycycles.
» p <5. So, if one removes all g-gonal faces and all edges

between any two g-gonal faces, then the result is a
({p},3)-polycycle.



Polycycles of (5, g)-sphere gRy

» The set of 5-gonal faces of (5, q)-sphere gRy is decomposed
into elementary ({5}, 3)-polycycles.
> Let us see in the classification the elementary polycycles that
could be ok
» They should be finite (this eliminate Barrel,, and «)

» They should have some vertices of degree 2 (this eliminates
Dodecahedron and Barrely)

» It should be possible to fill open edges so as to have no
pending vertices of degree 2.
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The infinite series of elementary ({5}, 3)-polycycles aa:
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(5, q)-sphere gRy

» The set of 5-gonal faces of (5, g)-sphere gRy is decomposed
into the following elementary ({5}, 3)-polycycles:

&

G
» The major skeleton Maj(G) of a (5, q)-sphere gRp is a
3-valent map, whose vertex-set consists of polycycles E; and
Gs.

» It consists of e/(G) with the vertices C; (of degree 2) being
removed.



5,14)-sphere 14Ry
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The decomposition into



Their names in the classification of
({5}, 3)-polycycles.



The graph el(G)



Maj(G): eliminate Ci, so as to get a 3-valent map



Results

Theorem: For a (5, q)-sphere gRy, the gonality of faces of the
3-valent map Maj(G) is at most |2 ].

» Proof: Take a g-gonal face F. Denote by xg,, xc, and xc, the
number of ({5}, 3)-polycycles E;, C3 and C; incident to F.

» Counting edges, one gets:
q = 2xg, + 3xc; + 5xc,

which implies ¢ > 2(xg, + x¢,).

» But xg, + Xxc;, is the gonality of the face corresponding to F in
Maj(G).



Results

Theorem: For g < 12, we have a finite number of (5, g)-spheres
qRo.
» Proof: Take such a plane graph G.
» The associated map Maj(G) is 3-valent with faces of gonality
at most 5.
» So, the number of ({5}, 3)-polycycles E; and Cs is at most 20.
» The number of polycycles C; is bounded as well.
» This implies that the number of vertices of G is bounded and
so, we have a finite number of spheres.
For details and extensions, see:

» M. Deza, M. Dutour Sikiri¢, Geometry of Chemical Graphs:
Polycycles and Two-faced Maps, Cambridge University Press,
Series: Encyclopedia of Mathematics and its Applications
(No. 119) 2008.



