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I. (R , q)-polycycles



Definition

Given q ∈ N and R ⊂ N, a (R, q)-polycycle is a non-empty
2-connected plane, locally finite graph G with faces partitionned in
two sets F1 and F2 (F1 is non-empty), so that:

I all elements of F1 (called proper faces) are combinatorial
i-gons with i ∈ R;

I all elements of F2 (called holes) are pair-wisely disjoint, i.e.
have no common vertices;

I all vertices have degree within {2, . . . , q} and all interior
vertices are q-valent.



Examples with one hole

A ({4, 5}, 3)-polycycle A ({3, 4, 5}, 4)-polycycle

A ({2, 3}, 5)-polycycle A ({3}, 6)-polycycle



Examples with two holes or more

A ({3, 4}, 4)-polycycle A ({5}, 3)-polycycle



({3}, 3)-polycycles

Any ({3}, 3)-polycycle is one of the following

I Tetrahedron (with no hole):

I 3 following polycycles (with one hole):



({4}, 3)-polycycles

Any ({4}, 3)-polycycle is one of the following

I Cube (with no hole):

I 3 following polycycles (with one hole)

I Following infinite family (with one hole):



({4}, 3)-polycycles

I The infinite family Prismn (with two holes)

I Following two infinite ({4}, 3)-polycycles:

singly infinite polycycle

doubly infinite polycycle



({3}, 4)-polycycles

I Octahedron (with no hole):

I Following polycycles (with one hole)



({3}, 4)-polycycles

I Following infinite family (with one hole):

I The infinite family APrismn (with two holes)

I Following two infinite ({3}, 4)-polycycles:

singly infinite polycycle

doubly infinite polycycle



Curvature conditions

I A (R, q)-polycycle is called elliptic, parabolic or hyperbolic if
1
q + 1

maxi∈R i
− 1

2 is positive, zero or negative, respectively.

I Elliptic cases:
I q = 3 and R with maxi∈R i ≤ 5
I q = 4 and R with maxi∈R i ≤ 3
I q = 5 and R with maxi∈R i ≤ 3

I Parabolic cases:
I q = 3 and R with maxi∈R i = 6
I q = 4 and R with maxi∈R i = 4
I q = 6 and R with maxi∈R i = 3

I All other cases are hyperbolic.



Limit case F2 = ∅, R = {r}

I Elliptic ({r}, q)-polycycles: 5 Platonic solids

Tetra-
hedron

Cube
Bonjour

Octa-
hedron

Icosa-
hedron

Dodeca-
hedron

I Parabolic ({r}, q)-polycycles: 3 regular plane tilings

I Hyperbolic ({r}, q)-polycycles: infinity



Generalization and (r , q)-polycycles

I A generalization of (R, q)-polycycle is (R,Q)-polycycles: the
valency of interior vertices belong to a set Q. All the theory
extends to this case.

I A (r , q)-polycycle is a ({r}, q)-polycycle with only one hole
(the exterior one). Their theory has additional features:

I There exist a canonical model of them in the form of (rq)
regular partition.

I For any (r , q)-polycycle P, simple connectedness of P ensures
the existence of a canonical map from P to (rq).



Main examples of (r , q)-polycycles

Elliptic Parabolic Hyperbolic

(r , q) (3, 3), (3, 4), (4, 3) (4, 4) all
(5, 3), (3, 5) (3, 6), (6, 3) others

Exp. α3, β3, γ3, Do, Ico (44), (63), (36) (rq)
reg.part of sphere S2 of Euclidean of hyperbolic

plane R2 plane H2

Bonjour

domino diamond hexagon

Polyominoes: Conway, Penrose, Colomb (games, tilers of R2, etc.),
enumeration (in Physics, Statistical Mechanics).
Polyhexes: application in Organic Chemistry.



II. Decomposition
into elementary

polycycles



Elementary polycycles

I A bridge of a (R, q)-polycycle is an edge, which is not on a
boundary and goes from a hole to a hole (possibly, the same).

I An elementary (R, q)-polycycle is one without bridges.

I Examples:

A non-elementary
({4, 5}, 3)-polycycle

An elementary
({5}, 3)-polycycle



Open edges

I An open edge of an (R, q)-polycycle is an edge on a boundary
such that each of its end-vertices have degree less than q.

I Examples



Decomposition theorem

I Theorem: Any (R, q)-polycycle is uniquely decomposed into
elementary (R, q)-polycycles along its bridges.

I In other words, any (R, q)-polycycle is obtained by gluing
some elementary (R, q)-polycycles along open edges.



Summary

I Elementary (R, q)-polycycles provide a decomposition of
(R, q)-polycycles.

I In order for this to be useful, we have to classify the
elementary (R, q)-polycycles.

I For non-elliptic cases, there is no hope of classification (there
is a continuum of elementary ones):



III. Classification
of elementary

({2, 3, 4, 5}, 3)-polycycles



With at least one 2-gon

All elementary ({2, 3, 4, 5}, 3)-polycycles, containing a 2-gon, are
those eight ones:

bonjour bonjour bonjour bonjour

bonjour bonjour bonjour bonjour



Totally elementary polycycle

I Call an elementary (R, 3)-polycycle totally elementary if, after
removing any face adjacent to a hole, one obtains a
non-elementary (R, 3)-polycycle.

I Examples:

A totally elementary polycycle
A non-totally elementary

polycycle



Classification result I
Any totally elementary ({3, 4, 5}, 3)-polycycle is one of:

(i) three isolated i-gons, i ∈ {3, 4, 5}:

(ii) all ten triples of i-gons, i ∈ {3, 4, 5}:



Classification result II

(iii) the following doubly infinite ({5}, 3)-polycycle, denoted by
Barrel∞:

(iv) the infinite series of Barrelm, m ≥ 2:



Classification methodology

I If an elementary polycycle is not totally elementary, then it is
obtained from another elementary one with one face less.

I So, from the list of elementary ({3, 4, 5}, 3)-polycycles with n
faces, one gets the list of elementary ({3, 4, 5}, 3)-polycycles
with n + 1 faces.



Full classification

Theorem: Any elementary ({2, 3, 4, 5}, 3)-polycycle is one of:

(i) 204 sporadic polycycles with 4 to 11 proper faces

(ii) an element of the infinite series of Barrelm, 2 ≤ m ≤ ∞.

(iii) six ({3, 4, 5}, 3)-polycycles, infinite in one direction:

α δ

β ε

γ µ



(iv) 21 =
(6+1

2

)
infinite series obtained by taking two endings of

the above infinite polycycles and concatenating them.

See below three examples in the infinite series βε

I

I

I



Subcase of ({5}, 3)-polycycles
(i) Sporadic elementary ({5}, 3)-polycycles:

A1 A2 A3 A4

B3 A5 C1 B2

C2 C3 D



(ii) The infinite series of elementary ({5}, 3)-polycycles αα:

E1 E2 E3

(iii) The infinite series of elementary ({5}, 3)-polycycles Barrelq,
q ≥ 3:

(iv) The only elementary infinite ({5}, 3)-polycycle are Barrel∞
and α



IV. Classification
of elementary

({2, 3}, 4)-polycycles



The classification

Any elementary ({2, 3}, 4)-polycycle is one of the following eight:



V. Classification
of elementary

({2, 3}, 5)-polycycles



The technique

I Take an elementary ({2, 3}, 5)-polycycle. If v is a vertex on
the boundary, then we can consider all possible ways to make
this vertex an interior vertex in an elementary
({2, 3}, 5)-polycycle.

I From the list of elementary ({2, 3}, 5)-polycycles with n
interior vertices, one can obtain the list of elementary
({2, 3}, 5)-polycycles with n + 1 interior vertices.



The classification

Any elementary ({2, 3, 4, 5}, 3)-polycycle is one of:

(i) 57 sporadic ({2, 3}, 5)-polycycles.

(ii) three following infinite ({2, 3}, 5)-polycycles:

α:

Bonjour, ici la terre

β:

Bonjour, ici la terre

γ:



(iii) the following 5-valent doubly infinite ({2, 3}, 5)-polycycle,
called snub ∞-antiprism:

(iv) the infinite series of snub m-antiprisms, m ≥ 2 (two m-gonal
holes):

(v) six infinite series of ({2, 3}, 5)-polycycles with one hole (they
are obtained by concatenating endings α, β, γ)



Subcase of ({3}, 5)-polycycles I

(i) Sporadic elementary ({3}, 5)-polycycles:



Subcase of ({3}, 5)-polycycles II

(ii) The infinite series of elementary ({3}, 5)-polycycles αα:

(iii) The only elementary infinite ({3}, 5)-polycycles are α and
snub ∞-antiprism.

(iv) The infinite series of elementary ({3}, 5)-polycycles snub
m-antiprisms, m ≥ 2:



VI. Application
to extremal
polycycles



Definition

I Given a finite (r , q)-polycycle P, denote by
I nint(P) the number of interior vertices
I and f1(P) the number of faces in F1.

I Fix x ∈ N. An (r , q)-polycycle with f1(P) = x is called
extremal if it has maximal nint(P) among all (r , q)-polycycles
with f1(P) = x .

I Problem: to find Nr ,q(x), the maximal number of vertices.

I Fact: For fixed r , q, f1(P) = x extremal polycycle has also
maximal nint(P), eint(P) (interior faces) and minimal n, l ,
Perim = next

I For (r , q)=(3, 3), (4, 3), (3, 4), the question is trivial.
8 authors, 1997: found N5,3(x) for x < 12 (unique, partial
subgraph of Dodecahedron).



Use of elementary polycycles

I If a (r , q)-polycycle P is decomposed into elementary
(r , q)-polycycles (EPi )i∈I appearing xi times, then one has:{

nint(P) =
∑

i∈I xinint(EPi )
f1(P) =

∑
i∈I xi f1(EPi )

I If one solves the Linear Programming problem

maximize
∑

i∈I xinint(EPi )
with x =

∑
i∈I xi f1(EPi )

and xi ∈ N

and if (xi )i∈I realizing the maximum can be realized as
(r , q)-polycycle, then Nr ,q(x) can be found.



Small extremal (5, 3)-polycycles

x N5,3(x) extremal components

1 0 D

2 0 D,D

3 1 E1

4 2 E2

5 3 E3



x N5,3(x) extremal components

6 5 A5

7 6 B3

8 8 A4

9 10 A3

10 12 A2



x N5,3(x) extremal components

11 15 A1

12 10 E1,B2

D,C1,D

C1,D,D

E10



Extremal (5, 3)-polycycles

I Theorem: For any x ≥ 12, one has

N5,3(x) =


x if x ≡ 0, 8, 9 (mod 10),
x − 1 if x ≡ 6, 7 (mod 10),
x − 2 if x ≡ 1, 2, 3, 4, 5 (mod 10).

I Extremal polycycle realizing the extremum:
I If x ≡ 0 (mod 10) (unique):

I If x ≡ 9 (mod 10) (unique):



I Extremal polycycle realizing the extremum:
I If x ≡ 8 (mod 10) (unique):

I If x ≡ 7 (mod 10) (non-unique):

I If x ≡ 6 (mod 10) (non-unique):

I Otherwise (non-unique): En



Extremal (3, 5)-polycycles

Theorem

I N3,5(x) = b x3c+ 1 for x ≡ 14, 16, 17 (mod 18),

I N3,5(x) = b x3c − 1 for x ≡ 3, 4, 6, 7, 9, 11 (mod 18), and

I N3,5(x) = b x3c, otherwise,

I but with 5 exceptions: above value plus 1 for x = 11, 15, 17
and N3,5(x) = x − 10 for 16 ≤ x ≤ 19.



Non-elliptic case

I For parabolic (r , q)-polycycles (i.e. (r , q)=(4, 4), (6, 3) or
(3, 6)) the method of elementary polycycles fails (since there is
no classification) but “extremal animals” of Harary-Harborth
1976 (proper ones, growing as a spiral) are extremal:

I Hyperbolic cases are very difficult.



VII. Application
to non-extendible

polycycles



Definition

I A (r , q)-polycycle is called non-extendible if it is no proper
subgraph of another (r , q)-polycycle. Examples:

Extendible (3, 4)-polycycle

Non-extendible (3, 3)-polycycle



Classification

Theorem: All non-extendible (r , q)-polycycles are:

I Regular partitions (rq)

I Four following examples:

(3, 4)-polycycle (3, 5)-polycycle

(4, 3)-polycycle (3, 4)-polycycle
I For any (r , q) 6= (3, 3), (3, 4), (4, 3) a continuum of infinite

ones.



Infinite non-extendible polycycles

I Take the two elementary (5, 3)-polycycles and

C2
C ′2

form infinite word . . . u−1u0u1 . . . with ui being C2 or C ′2.
This gives a continuum of non-extendible (5, 3)-polycycles.

I Similarly, one has a continuum of (3, 5)-polycycles.

I For non-elliptic (r , q), one takes the infinite tiling (rq),
removes an infinity of r -gonal faces sharing no edges and
takes the universal cover of this (r , q)-polycycle.



Finite non-extendible polycycles

I Main lemma: all finite non-extendible (r , q)-polycycles are
elliptic, i.e. 1

q + 1
r >

1
2

I So, we can use decomposition of non-extendible
(r , q)-polycycles into elementary (r , q)-polycycles and the
classification of them.

I Given an (r , q)-polycycle P, the graph of its elementary
components is denoted by el(P); its vertices are its
elementary (r , q)-polycycles with two elementary
(r , q)-polycycles adjacent if they share an edge:

E
1 B

2



I A finite ({r}, q)-polycycle P is a (r , q)-polycycle if and only if
el(P) is a tree.

I Every tree is either an isolated vertex, or contains at least one
vertex of degree 1.

I One checks on this vertex that there is only two possibilities:



VIII. 2-embeddable
(r , q)-polycycles



2-embedding

I The Hamming distance on {0, 1}n is defined by

d(x , y) = #{1 ≤ i ≤ n s.t. xi 6= yi}

I Given a connected graph G , denote by dG the shortest path
distance between vertices of G

I A graph G is said to be 2-embeddable if, for some n, there
exists a mapping

ψ : V (G ) → {0, 1}S
v 7→ ψ(v)

such that, for all vertices v , v ′ of G , one has
d(ψ(v), ψ(v ′)) = 2dG (v , v ′)



Alternating zones

I In a plane graph G , an alternating zone, is a sequence of
edges ei such that ei and ei+1 belong to a same face Fi and it
holds:

I If |Fi | is even, ei and ei+1 in opposition
I If |Fi | is odd, ei and ei+1 are opposed. There are two possible

choices for ei+1 given ei and they are required to alternate.

I A subgraph H of G is called convex if, for any two vertices v ,
v ′ of H, all shortest paths between v and v ′ are included in H.

I If Z is a not self-intersecting alternating zone, then G − Z
consists of two graphs Gi . If both Gi are convex, then we say
that Z defines convex cut.



Examples

Two (3, 5)-polycycles with an non-convex alternating zone:

c3 d + e2 + d

Two (5, 3)-polycycles with an alternating zone, which is not
convex:

E4 D + E2 + D



Embedding of (r , q)-graph

I If the alternating zones of a plane graph G define convex cuts,
then G is 2-embeddable.

I Above condition is not necessary.

I A (r , q)-graph is a plane graph such that all interior faces have
at least r edges and all interior vertices have degree at least q.

I Chepoi et al.: (4, 4)-, (3, 6)- and (6, 3)-graphs are
2-embeddable.

I So, all parabolic and hyperbolic (r , q)-polycycle are
2-embeddable.



Elliptic 2-embeddable (r , q)-polycycles

I For elliptic (r , q) 6= (5, 3), (3, 5) (i.e., (3, 3), (3, 4), (4, 3)), only
three polycycles are non-embeddable:

I A (3, 5)-polycycle different from Icosahedron {3, 5} and
{3, 5} − v , is 2-embeddable if and only if it does not contain,
as an induced subgraph, any of (3, 5)-polycycles c3 and
d + e2 + d .

I A (5, 3)-polycycle different from Dodecahedron {5, 3} is
2-embeddable if and only if it does not contain, as an induced
subgraph, any of (5, 3)-polycycles E4 and D + E2 + D.



IX. Application
to

face-regular spheres



Euler formula

I Take a 3-valent plane map and denote by pk the number of
faces having k edges.

I Then one has the equality

12 =
∞∑
k=3

(6− k)pk

I So, every 3-valent plane map has at least one face of size less
than 6.

I So, 3-valent plane graphs with faces of gonality at most 5
I have at most 12 faces,
I have at most 20 vertices.



Face-regular maps

I A (p, q)-sphere is a 3-valent plane graphs, whose faces are p-
or q-gonal.

I Take G a (p, q)-sphere. Then:
I G is called pRi if every p-gonal face is adjacent to exactly i

p-gonal faces.
I G is called qRj if every q-gonal face is adjacent to exactly j

q-gonal faces.

I The subject of enumerating them is very large. We intend to
show non-trivial results obtained by using decomposition into
elementary polycycles.

I p ≤ 5. So, if one removes all q-gonal faces and all edges
between any two q-gonal faces, then the result is a
({p}, 3)-polycycle.



Polycycles of (5, q)-sphere qR0

I The set of 5-gonal faces of (5, q)-sphere qR0 is decomposed
into elementary ({5}, 3)-polycycles.

I Let us see in the classification the elementary polycycles that
could be ok

I They should be finite (this eliminate Barrel∞ and α)
I They should have some vertices of degree 2 (this eliminates

Dodecahedron and Barrelk)
I It should be possible to fill open edges so as to have no

pending vertices of degree 2.



NO NO NO NO

NO YES NO NO

YES NO



The infinite series of elementary ({5}, 3)-polycycles αα:

YES NO

NO



(5, q)-sphere qR0

I The set of 5-gonal faces of (5, q)-sphere qR0 is decomposed
into the following elementary ({5}, 3)-polycycles:

E1 C3

C1

I The major skeleton Maj(G ) of a (5, q)-sphere qR0 is a
3-valent map, whose vertex-set consists of polycycles E1 and
C3.

I It consists of el(G ) with the vertices C1 (of degree 2) being
removed.



A (5, 14)-sphere 14R0



The decomposition into elementary polycycles.



E
1

C
1

C
3

E
1

C
3

C
1

C
1

E
1

E
1

E
1

E
1

Their names in the classification of
({5}, 3)-polycycles.



E
1

C
3

E
1

E
1

E
1

E
1

E
1

C
1

C
1

C
1

The graph el(G )



E
1

C
3

E
1

E
1

E
1

E
1

E
1

Maj(G ): eliminate C1, so as to get a 3-valent map



Results

Theorem: For a (5, q)-sphere qR0, the gonality of faces of the
3-valent map Maj(G ) is at most bq2c.

I Proof: Take a q-gonal face F . Denote by xE1 , xC3 and xC1 the
number of ({5}, 3)-polycycles E1, C3 and C1 incident to F .

I Counting edges, one gets:

q = 2xE1 + 3xC3 + 5xC3

which implies q ≥ 2(xE1 + xC3).

I But xE1 + xC3 is the gonality of the face corresponding to F in
Maj(G ).



Results

Theorem: For q < 12, we have a finite number of (5, q)-spheres
qR0.

I Proof: Take such a plane graph G .

I The associated map Maj(G ) is 3-valent with faces of gonality
at most 5.

I So, the number of ({5}, 3)-polycycles E1 and C3 is at most 20.

I The number of polycycles C1 is bounded as well.

I This implies that the number of vertices of G is bounded and
so, we have a finite number of spheres.

For details and extensions, see:

I M. Deza, M. Dutour Sikirić, Geometry of Chemical Graphs:
Polycycles and Two-faced Maps, Cambridge University Press,
Series: Encyclopedia of Mathematics and its Applications
(No. 119) 2008.


