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I. Previous

Scientific Activities



Thesis

I A metal is supraconductor if when put at a very low
temperature the electrical resistance vanish and the magnetic
field is expelled.

I There are two types of supraconductors:
I Type I: Pure and Normal state
I Type II: Pure, Normal and Mixed states.

I The Ginzburg Landau model uses a quantum phase function

φ, a vector potential
−→
A and a parameter κ.
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à M. Dutour, Phase diagram for Abrikosov lattice, Journal of
Mathematical Physics 42-10 (2001) 4915–4926.



Simplicial complexes with short links

I A simplicial complex is a family of simplices (generalized
triangles).

I It has short links if every n − 2 dimensional face is contained
in 3 or 4 faces.

I They are classified in term of partitions of {1, . . . , n + 1}:

{1, 2, 3} {1, 2}, {3} {1}, {2}, {3}
à M. Deza, M. Dutour and M. Shtogrin, On simplicial and

cubical complexes with short links, Israel Journal of
Mathematics 144 (2004) 109–124.



Face-regular maps

I A plane graph is one, whose edges do not self-intersect.

I A ({a, b}, 3)-plane graph is one, whose vertices have degree 3
and whose faces have size a or b.

I A ({a, b}, 3)-plane graph is called bRj if every face of size b is
adjacent to j faces of size b:

({5, 8}, 3)-plane graph 8R2 ({5, 9}, 3)-plane graph 9R0

à M. Deza and M. Dutour Sikirić, Polycycles and two-faced
maps, book in preparation for Cambridge University Press.



Lattice Delaunay polytopes

I If L = Zv1 + · · ·+ Zvn is a n-dimensional lattice, then a
Delaunay polytope is the convex hull of vertices on an empty
sphere:
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A 2-dimensional Delaunay
polytope

Their classification in
dimension 3

I Classification results
dim. # types Authors
2 2 Dirichlet (1860)
3 5 Fedorov (1885)
4 19 Erdahl, Ryshkov (1987)
5 138 Kononenko (1997)
6 6241 Dutour (2002)

à M. Dutour, The six-dimensional Delaunay polytopes,
European Journal of Combinatorics 24-4 (2004) 535–548.



Extreme Delaunay polytopes

I A Delaunay polytope is called extreme if the only affine
transformations preserving its property of being Delaunay are
the isometries.

dim. # polytopes names
1 1 interval [0, 1]

2,3,4,5 0
6 1 Schlafli polytope
7 ≥ 2 Gosset polytope, Rybnikov polytope
8 ≥ 27
9 ≥ 1000

à M. Deza and M. Dutour, The hypermetric cone on seven
vertices, Experimental Mathematics 12-4 (2004) 433–440.

à M. Dutour, Adjacency method for extreme Delaunay
polytopes, Proceedings of “Third Voronöı Conference of the
Number Theory and Spatial Tesselations”, 94–101.

à M. Dutour, R. Erdahl and K. Rybnikov, Perfect Delaunay
Polytopes in Low Dimension, submitted.



Cube packings

I We consider 2-periodic packings by cubes z + [0, 1]d into Rd .

I All 2-dimensional cube packings are extendible to cube tilings:

I In dimension 3, there exist a non-extendible cube packing

I We find new non-extendible cube packings in dimension 4, 5,
6.

à M. Dutour, Y. Itoh and A. Poyarkov, Cube packings, second
moment and holes, European Journal of Combinatorics 28-3
(2007) 715–725.



II. The Adriatic

Sea



Describing the state

I We want to determine currents, temperature, salinity of the
Adriatic sea.

I The Adriatic sea has many specific features:
I The bathymetry varies a lot from 1200m to 50m.
I The island structure on the Croatian side is quite complex.
I The tides are the highest in the Mediteranean sea.
I Violent events of Bura, cools it and create a complex eddy

structure.
I Po river has a large volume and influence.
I Dense water is formed in its northern part.

I The knowledge of the physical processes allow for further
analysis: Oxygen levels, biological processes, etc.



A grid and the bathymetry
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Available measurements

I Satelite sea surface temperature are available every few hours
provided that no cloud is present.

I In situ measurements are available (sparsely in time and
space).

I Sea level gauges are available.

I ADCP (Acoustic Doppler Current Profiler) measures of
currents.

I Output of meteorological models are available to get forcing
data.



III. Possible

Modelizations



Computational limits

I Fluid mechanics processes is usually discretized in boxes or
triangles.

I Suppose one divides lengthes by 2. What happens to the time
run?

I We get a factor 4 from horizontal discretization.
I We get a factor 2 for vertical discretization.
I We get a factor 2 for time discretization.

I Computer speed multiplies by 2 every year at best.

I So, at best 4 years to divide cell sizes by 2 with identical
programs and physics.

I Actually smaller sizes imply different physical processes.

I At present we deal with a grid length of 2km.



The models used

I ROMS from Rutgers university (mainly authored by H.
Arango):

I finite difference model,
I high order advection schemes,
I biology, ability to couple with other models.

I SWAN from Delft university:
I finite difference model,
I it is a spectral model for forecasting waves.

I TRUXTON is a finite element model for tide analysis.



Comparison between finite element, finite difference models

Advantages of finite element models:

I We can adapt the grid with respect to the problem, i.e., we
can put larger grid-spacing in places of higher depth.

I We don’t need to put land points contrary to finite difference
models.

Advantages of finite difference models

I Programming is simpler, for example for parallel processing
the block decomposition is straighforward.

I We have higher order advection schemes.



Model stability 1

I If wave propagate at speed c then the space discretization ∆x
and the time discretization ∆t should satisfy the CFL
criterion:

∆x

∆t
> c

This is an approximate condition, true for a specific setting
(uniform depth, linear equations, etc.).

I The characteristic wave speed is the wave speed and it is
√

gh
with h the bathymetry. With a maximum bathymetry of
1200m this puts strong requirement.

I If the T/S balance of the initial state is wrong, then the
stability is compromised.

I The vertical levels have to be spaced reasonably equally. A
common error is to concentrate them on the surface.

I Storm surge are also a possible source of instabilities.



Model stability 2

I Wrong open boundary condition:
I Radiation boundary condition creates blowups.
I Flather boundary condition seems not to.

I Compiler problem: Intel Fortran Compiler with “-O3” was
blowing up after some time, while “-O2” was not.

I The steepness factor is r = max |h1−h2|
h1+h2

, where the maximum
is taken over adjacent cells. In order to be stable, we need to
have r < 0.4. Two solutions:

I increase the horizontal
resolution,

I modify the bathymetry.

h1
h2



Linear programming for the bathymetry

I Linear programming: (fi )1≤i≤m is a set of linear functions on
Rn, (bi )1≤i≤m a set of m reals, g is linear on Rn, then the
linear programming problem is:

maximize g(x)
subject to fi (x) ≤ bi .

There exist programs for solving those for very large n and m
(10000 variables is not a problem).

I We write the bathymetry as h = hreal + δ. We want to have

|h1 − h2|
h1 + h2

≤ r and minimize
∑

i

|δi |.

For a fixed r we have a linear program.

I This method does perturbation to the bathymetry only when
it is needed.

I The sum of total perturbation is typically 4 times less than
what would come from an averaging operation.



Optimal analysis of initial state

I We have various climatological observations on the state of
the Adriatic and we want to find the best initial state.

I In order to do this, we used the OAFE computer program.

I The solution to the OAFE problem is mathematically:

x = CuuE
∗{ECuuE

∗ + Cnn}−1d

with Cnn the matrix of observation noise (diagonal), Cuu the
matrix of state noise and E the observation operator.

I If we have D measurements, then we have a D × D matrix to
invert in order to get the best state x from the observations d .

I Even storing this matrix in memory is problematic if D is large.

I Actually, what we really need is to solve

{ECuuE
∗ + Cnn}y = d .



The conjugate gradient algorithm

I The method solves the equation Ay = d for A a symmetric
positive definite matrix.

I It iteratively finds better and better solutions.

I The solution at step n belong to the Krylov space:

Vect(d ,Ad , . . . ,An−1d).

I We no longer need to store the matrix A, what we need is to
be able to compute Ad from d .

I In practice we have a 100-fold improvement in memory and
similarly in speed.

170 meas. 13 iter. 1000 meas. 32 iter.
2100 meas. 50 iter. 7200 meas. 130 iter.

To get solutions y with ||d − Ay || ≤ 1.10−5||d ||.



Model coupling

I It is impossible to have single model doing everything.
I A paradigm is to split the computation between different

models, which exchange their data after a number of specified
time steps with the Model Coupling Toolkit. For example:

I SWAN requires to know the sea level and the currents to make
its computations,

I ROMS requires wave spectral information for the bottom
boundary layer friction.

I Based on Arango and Warner version, work has been done on
having those two models coupled.



IV. Tide

assimilation



Adriatic tides

I The Adriatic has the highest tides of the Mediteranean sea
(50cm). They are induced by the open boundary at the
Ottranto strait.

I We want to find those boundary conditions from the sea level
data for ROMS.

I We use an iteration scheme using ROMS (finite difference)
forward iteration and TRUXTON (finite element) backward
iteration. The transformation:

wet point

dry point

psi point

rho point

à I. Janeković and M. Dutour Sikirić, Improving tidal open
boundary conditions for the Adriatic Sea numerical model,
European Geosciences Union conference



Details

I Measurement is obtained from 20 ADCP moorings.

I ROMS is run for periods of 200 days.

I Another way to get the tidal information is to run a finite
element model like QUODDY as a forward model and then to
do interpolation.

I Numerical results:

Tide interpolation Direct Gain

O1 0.96 0.37 157%
K1 2.65 0.90 194%
M2 1.00 0.87 15%
S2 1.15 0.47 146%

RMS amplitude in cm with respect to the 20 stations.

I The open boundary causes instability and we needed to
extend the grid by adding a spunge layer.



V. Assimilation

Methods



The idea of filtering and assimilation

I In the limit of the models, we are limited by:
I our limited knowledge of the initial state,
I the limited precision on the forcing data.

I So even if we could solve exactly the Initial Value Problem
posed, it would not correspond to the reality.

I On the other hand measurement on the state of the model are
continuously available.

I Sequential filtering is to use them to improve the state of the
model:

t

x



Probabilistic model

I We define S to be the set of possible states of the model.

I At at time t0 we know the state of the model with some
imprecision, i.e., we have a probability density:

pt0(s) on S.

I Every measurement m has some imprecision, and give a
probability density:

pm(s) on S.

I According to the Bayesian theorem, the right probability
density after the measurement is proportional to:

αpt0(s)pm(s) on S with α constant.

I We cannot store probability distribution, at best we can store
clouds of points.



Gaussian probabilities

I If we assume Gaussian probabilities, then we simply need to
store the average X (t0) of the model and the Covariance
matrix Pa(t0). Forecast state at step t1:

P f (t1) = AkPa(t0)A
T
k + Q and X f (t1) = AkX a(t0)

with Ak the matrix of the (linear) model and Q its covariance.

I If we assume Gaussian hypothesis for the measurement, then
we have an average and a covariance matrix for it.

I The analysis step of Kalman filtering is then:

Pa(t1) = (1−KH)P f (t1) and X a(t1) = X f (t1)+K (Y (t1)−HX f (t1))

with K the Kalman factor, H the measurement operator and
Y (t1) the measurement at t1.

I If we have n = 1.106 variables for the state, then we have n2

variables for the covariance matrix. So, we cannot store this
matrix.



Subspace methods

I Since we cannot store the full covariance matrix, we consider
a subspace Sm ⊂ S of dimension m.

I We take a basis X1, . . . , Xm of Sm.
I The memory requirements are now:

I storing the m states,
I storing the m ×m matrix of the covariance matrix.

I The difficulties are:
I choosing the right space Sm (one possible way is by Empirical

Orthogonal Functions),
I ensuring the stability of the model,
I being able to improve the solution.



Projects

I SUNTANS it is a finite element model with a non-hydrostatic
pressure gradient. It might be needed for a description of the
dense water formation in the Adriatic.

I WRF is a finite difference atmospheric model and it would be
good to be able to run it concurently with ROMS so as to get
good forecasts.
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I Ivica Janeković
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