Computing Delaunay polytopes of lattices

Mathieu Dutour Sikirić

Institute Rudjer Bošković

Achill Schuermann

Magdeburg University

Frank Vallentin

CWI Amsterdam

April 27, 2012

A finite set of points

Some perpendicular bisectors

The edges of Voronoi polyhedron

Voronoi polytope

Empty sphere

Delaunay polytopes

I. Delaunay polytopes in lattices

The Voronoi polytope of a lattice

• A lattice *L* is a rank *n* subgroup of \mathbb{R}^n , i.e. of the form

$$L = v_1 \mathbb{Z} + \cdots + v_n \mathbb{Z}$$

- The Voronoi cell DV(L) of L is defined by ⟨x, v⟩ ≤ ¹/₂||v||² for v ∈ L − {0}.
- ► DV(L) is a polytope, i.e. it has a finite number of vertices (of dimension 0), faces and facets (of dimension n − 1)

• The translates v + DV(L) with $v \in L$ tiles \mathbb{R}^n .

Shortest vector in *L* define facets of the Voronoi polytope.

Empty sphere and Delaunay polytopes

A sphere S(c, r) of radius r and center c in an n-dimensional lattice L is said to be an empty sphere if:

(i)
$$||v - c|| \ge r$$
 for all $v \in L$,

(ii) the set $S(c, r) \cap L$ contains n + 1 affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

Voronoi and Delaunay in lattices

- Vertices of Voronoi polytope are center of empty spheres which defines Delaunay polytopes.
- ► Voronoi and Delaunay polytopes define dual tessellations of the space ℝⁿ by polytopes.
- ► Every k-dimensional face of a Delaunay polytope is orthogonal to a (n - k)-dimensional face of a Voronoi polytope.

 Given a lattice L, it has a finite number of orbits of Delaunay polytopes under translation.

Volume of Delaunay

Take L an *n*-dimensional lattice.

- ► The number of vertices of a Delaunay polytope is at most 2ⁿ and at least n + 1.
- ► Given a Delaunay polytope P of a lattice L, define L(P) the lattice generated by P. Denote by α(P) the index of L(P) in L.
 - Voronoi: if $n \leq 4$, then $\alpha(P) = 1$.
 - Baranovski: if n = 5, then $\alpha(P) = 1$ or 2.
 - Ryshkov: if n = 6, then $\alpha(P) = 1$, 2 or 3.
 - Santos, Schürmann & Vallentin: max α(P) grows exponentially with n.
 - Lovasz $\alpha(P) \leq \frac{2^n}{\binom{2n}{n}} n!$.
- The volume of a simplex is α(P)/(n+1)! so a lattice has at most (n + 1)! translation classes of Delaunay.
- Given a polytope P, is there an efficient method for finding all lattices containing P as a Delaunay?

II. Applications

Covering density of a lattice

► We consider covering of ℝⁿ by *n*-dimensional balls of the same radius, whose center belong to a lattice *L*.

The covering density has the expression

$$\Theta(L) = \frac{\mu(L)^n \kappa_n}{\det(L)} \ge 1$$

with $\mu(L)$ being the largest radius of Delaunay polytopes and κ_n the volume of the unit ball B^n .

The fact that the covering radius of the Leech lattice is \sqrt{2} has led to striking progress in hyperbolic Coxeter group theory.

Other applications

The quantizing constant (in coding theory) of a lattice L is defined as

$$Q(L) = \int_{DV(L)} \|x\|^2 \mathrm{d}x$$
 and $quant(L) = rac{Q(L)}{\det(L)^{1+rac{2}{n}}}$

- Delaunay/Voronoi polytopes gives an Aut(L)-invariant cellular decomposition of the space Rⁿ space.
 - ► This gives a method for computing the homology of ℝⁿ/Aut(L).
 - This gives a method for computing the homology of Aut(L).

II. Examples

Root lattices

• Take
$$L = \mathbb{Z}^n$$
; Delaunay:

Name	Center	Nr. vertices	Radius
Cube	$(\frac{1}{2})^{n}$	2 ⁿ	$\frac{1}{2}\sqrt{n}$

• Take $D_n = \{x \in \mathbb{Z}^n | \sum_{i=1}^n x_i \text{ is even} \}$; Delaunay:

Name	Center	Nr. vertices	Radius
Half-Cube	$(\frac{1}{2})^{n}$	$\frac{1}{2}2^n$	$\frac{1}{2}\sqrt{n}$
Cross-polytope	$(1, 0^{n-1})$	2 <i>n</i>	1

• Take
$$E_8 = D_8 \cup (\frac{1}{2}^8) + D_8$$
; Delaunay:

Name	Center	Nr. vertices	Radius
Simplex	$\left(\frac{5}{6}, \frac{1}{6}^7\right)$	9	$\sqrt{\frac{8}{9}}$
Cross-polytope	$(1,0^7)$	16	1

 Take A_n = {x ∈ Zⁿ⁺¹ such that ∑_{i=1}ⁿ⁺¹ x_i = 0}. The Delaunay of A_n are obtained by section of the cube [0, 1]ⁿ⁺¹ by the hyperplanes ∑_i x_i = k. They are named J(n + 1, k), the number of vertices is (ⁿ⁺¹_k).

Root lattice E₆

- ► The Schlafli polytope Sch:
 - Sch has 27 vertices.
 - skel(Sch) is a strongly regular graph.
 - Only 2 distances between distinct vertices of Sch.
 - $|\operatorname{Aut}(Sch)| = 51840$, the rotation subgroup is simple.
 - 2 orbits of facets, 3 orbits of flags.
 - Two interesting laminations:

levels	polytopes	polytopes
1	vertex	J(6,1)
0	$\frac{1}{2}H_{5}$	J(6,2)
-1	β_5	J(6,1) (parallel)
	D_5 lamination	A_5 lamination

- ► The root lattice E₆:
 - Has $|Aut(E_6)| = 2 \times 51840$
 - ▶ Has Delaunay polytopes *Sch*, −*Sch* up to translation

Root lattice E₇

- ► The Gosset polytope Gos:
 - Gos has 56 vertices (centrally symmetric).
 - skel(Gos) is a distance regular graph.
 - Only 3 distances between distinct vertices of *Sch*.
 - |Aut(Gos)| = 2903040, the rotation subgroup is simple.
 - 2 orbits of facets, 3 orbits of flags.
 - Three interesting laminations:

levels	polytopes	polytopes	polytopes
2	vertex	J(7,1)	
1	Sch	J(7,2)	β_6
0	-Sch	-J(7,2)	$\frac{1}{2}H_{6}$
-1	vertex	-J(7,1)	$-\beta_6$
	E_6 lamination	A ₆ lamination	D ₆ lamination

- ► The root lattice E₇:
 - Has $|\operatorname{Aut}(\mathsf{E}_7)| = |\operatorname{Aut}(\operatorname{Gos})|$.
 - Has two orbits of Delaunay: Gosset (1 translation class) and regular simplex (72 translation classes).

3-dimensional lattices

► The 3-dimensional Voronoi polytopes:

▶ The 3-dimensional Delaunay polytopes:

II. Computational techniques

Closest Vector Problem

• Given a lattice L, a vector c, find all vectors $v \in L$ such that

||v - c|| is minimal

or in other term, if $M \in S_{>0}^n$ and $c \in \mathbb{R}^n$, find all $v \in \mathbb{Z}^n$ such that

$$^t(v-c)M(v-c)$$
 is minimal

- CVP is conjecturally a NP problem.
- Only way is to do an exhaustive search in a set of possible solutions, two programs:
 - Lattice-CVP (Dutour) use a hypercube, performing well up to dimension 10.
 - Voro (Vallentin) use an ellipsoid, performing well up to dimension, say 40.

Finding an initial Delaunay polytope

- Finding a Delaunay is equivalent to finding a vertex of the Voronoi polytope.
- The problem is that the Voronoi polytope is defined by an infinity of inequalities.
 - $g \leftarrow$ a random linear function.
 - $\mathcal{V} \leftarrow$ an initial set of non-zero elements of *L*.
 - Maximize g(x) over the polytope defined by ⟨v, x⟩ ≤ ¹/₂ ||v||² for v ∈ V.

Denote by x_0 the vertex realizing the maximum.

- Find C the closest elements to x_0 .
 - If $0 \in C$ then return C as vertex-set of a Delaunay polytope.
 - Otherwise do $\mathcal{V} \leftarrow \mathcal{V} \cup \mathcal{C}$.

This algorithm is implemented in the program finddel by Vallentin.

Finding adjacent Delaunays

- Given a Delaunay polytope and a facet of it, there exist a unique adjacent Delaunay polytope.
- We use an iterative procedure:
 - Select a point outside the facet.
 - Create the sphere around it.
 - If there is no interior point finish, otherwise rerun with this point.

Finding Delaunay decomposition

- Find the isometry group of the lattice (program autom by Plesken & Souvignier).
- Find an initial Delaunay polytope and insert into list of orbits as undone.
- Iterate
 - Find the orbit of facets of undone Delaunay polytopes with the Recursive Adjacency Decomposition method.
 - ► For every facet, find the adjacent Delaunay polytope.
 - For every Delaunay test if they are isomorphic to existing ones. If not insert them to the list as undone.
 - Finish when every orbit is done.

Lifted Delaunay decomposition

The Delaunay polytopes of a lattice L correspond to the facets of the convex cone C(L) with vertex-set:

$$\{(x, ||x||^2) \text{ with } x \in L\} \subset \mathbb{R}^{d+1}$$

II. The Isomorphism and automorphism problems (book of tricks)

Automorphism groups

- ► A Delaunay polytope *P* has two automorphism groups
 - ▶ The group *lsom*(*P*) of isometries preserving the Delaunay.
 - The group Aut(P) of lattice automorphism preserving the Delaunay.
- $\operatorname{Aut}(P) \subset \operatorname{Isom}(P)$.
- If $L(P) \neq L$ then a priori $Isom(P) \neq Aut(P)$.
- Method 1 We consider centers $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$ with $c_i \in [0, 1[$.

$$Aut(P) = Stabilizer(GRP, c, ActionMod1)$$

The trouble is that matrix actions are not easy: the above operation generates the full orbit.

Isom(P) is easy to get, consider the edge colored graph on the vertex-set of P with edge colors ||v_i − v_j|| and use nauty.

Method 2 Iterated stabilizer method

- Compute the center c = (c₁,..., c_n) and denote D the smallest integer such that Dc ∈ Zⁿ.
- For every divisor D' of D, we can reduce the center modulo ¹/_{D'}, the action is now modulo ¹/_{D'}. Denote the stabilizer Stab_{D'} of this action. Then Stab(c) is a subgroup of Stab_{D'}(c).
- The strategy is now to consider a series of divisors

$$D=D_1>D_2>\cdots>D_p=1$$

and an associated series of stabilizers

$$\mathit{Stab}_{D_1}(c) \supseteq \mathit{Stab}_{D_2}(c) \supseteq \cdots \supseteq \mathit{Stab}_{D_p}(c)$$

 $Stab_{D_i}$ is computed from $Stab_{D_{i-1}}$; orbit size is $|Stab_{D_{i-1}}|/|Stab_{D_i}|$.

Some strategies

The computation of Isom(P) is almost always relatively easy, then we can:

Method 3 Compute the intersection

$$\operatorname{Aut}(P) = \operatorname{\mathit{Isom}}(P) \cap \operatorname{Aut}(L)$$

Well suited if Aut(P) is a group of small index in Isom(P).

Method 4 Iterate over all elements of Isom(P), and select the ones which correspond to a matrix with integral coefficients. This yields Aut(P).
 This strategy is well suited if Isom(P) is small (say, 10000 elements)

Method 6 Autom/Isom method

The program autom by Plesken & Souvignier can compute the group of matrices P ∈ GL_n(ℤ) satisfying

$$PM_i^t P = M_i$$

with M_i some symmetric positive definite matrices.

▶ Given a Gram matrix M ∈ Sⁿ_{>0} of the lattice and a center c of a Delaunay, form the matrix

$$A(c) = \left(egin{array}{cc} cMc^t+1 & -cM\ -Mc^t & M \end{array}
ight)$$
 and $B = \left(egin{array}{cc} 1 & 0\ 0 & 0 \end{array}
ight)$

▶ The group Aut(*P*) is the automorphism group of the family (A(c), B) with $A(c) \in S_{>0}^{n+1}$ and $B \in S^{n+1}$.

The Λ_{23}^* method

- The shells of Λ^{*}₂₃ are:
 - ▶ 4600 vectors of norm 3 (1 orbit) defining a sublattice O₂₃ of index 2
 - 94208 vectors of norm 15/4 (1 orbit) spanning Λ_{23}^*
 - 93150 vectors of norm 4 (1 orbit) spanning Λ_{23}^*

So Method 6 cannot be used due to the too large size of invariant base.

► O₂₃ has a manageable invariant base; the automorphism/isomorphism problem is manageable for it. Also it has the property

$$\operatorname{Aut}(O_{23}) = \operatorname{Aut}(\Lambda_{23}^*)$$

- Strategy for computing stabilizer of a Delaunay D under Aut(Λ^{*}₂₃) is:
 - Compute the stabilizer under Aut(O₂₃)
 - If $t \in \Lambda_{23}^* O_{23}$ then test isomorphism of D and D + t.

Crystallographic group case

Suppose now that the point set is no longer a lattice and that the symmetry group is crystallographic.

- All the polyhedral methods explained above applies unchanged.
- The problem is with the isomorphism tests
 - Method 1 is no longer usable.
 - Method 2 goes just as well
 - Method 3 is still usable but less powerful because less control over the occurring fractions.
 - Method 4 is just as well usable.
 - Method 6 does not work now.

II. Large scale examples

The O_{23}/Λ_{23}^* lattices

- We use Method 6 for isomorphism/Automorphism in O_{23}
- We respawn Delaunay computation every time we have more than 80 vertices.

Nr.	V	Aut
1	94208	84610842624000
2	24	1320
3	24	1320
4	32	1344
5	24	10200960

- (work in progress) Λ_{23}^* has the following features:
 - An incredible variety of Delaunay polytopes, 485000 in earliest account with 19000 orbits treated.
 - Most Delaunays have low number of vertices, their dual description is easy.
 - ▶ Most Delaunay have trivial or small stabilizer, Method 4 is perfect. Otherwise, use *O*₂₃ for such decisions.
 - Only the MD5 invariants are stored in memory, all the rest is on disk.

Cut lattices

- The cut polytope CUT_n is a famous polytope appearing in combinatorial optimization.
- ► It has 2^{n-1} vertices, dimension $\frac{n(n-1)}{2}$ and $|\operatorname{Aut}(\operatorname{CUT}_n)| = 2^{n-1}n!$.
- ► The Z-span of CUT_n is a lattice L(CUT_n) for which CUT_n is one of its Delone polytopes.
- Delaunay of CUT_n:

lattice	dimension	# orbit	covering density
$L(CUT_3)$	3	2	2.09439
$L(CUT_4)$	6	4	5.16771
$L(CUT_5)$	10	12	40.80262
$L(CUT_6)$	15	112	255.4255

Laminated lattices

- ► A *n*-dimensional lamination over a (*n* − 1)-dimensional lattice *L* is one obtained by staking layers of lattice *L*.
- A laminated lattice is the one of highest density stacked over lower dimensional laminated lattices.

lattice	# orbits		# orbits
Λ ₉	5	Λ_{q}^{*}	9
Λ ₁₀	7	Λ_{10}^*	21
Λ_{11}^{max}	11	Λ_{11}^{max*}	18
$\Lambda_{11}^{\overline{min}}$	18	Λ_{11}^{min*}	153
Λ_{12}^{max}	5	Λ_{12}^{max*}	8
Λ_{12}^{mid}	23	Λ_{12}^{mid*}	52
Λ_{12}^{min}	13	Λ_{12}^{min*}	78
Λ_{13}^{max}	18	Λ_{13}^{max*}	57
Λ_{13}^{mid}	46	Λ ^{mid} ∗	125
Λ_{13}^{min}	129	Λ_{13}^{min*}	5683
Λ ₁₄	65	Λ ₁₄	1392
Λ ₁₅	27	$\Lambda_{15}^{\frac{1}{4}}$	108
Λ ₁₆	4	Λ_{16}^{*}	
Λ ₁₇	28	Λ [*] ₁₇	720

The Coxeter lattices $A_{n,r}$

- Context: The best way to determine the covering density of a lattice is to compute its Delaunay polytopes. The Coxeter lattices are good candidates.
- The lattice A_n is defined as

$$\mathsf{A}_n=\{x\in\mathbb{Z}^{n+1} ext{ such that } \sum x_i=0\}$$

▶ If *r* divides n + 1, then writes $q = \frac{n+1}{r}$ and define the lattice A_n^r by

$$\mathsf{A}_n^r = \mathsf{A}_n \cup v_{n,r} + \mathsf{A}_n \cup \ldots \cup (r-1)v_{n,r} + \mathsf{A}_n$$

with

$$v_{n,r} = \frac{1}{r} \sum_{i=1}^{n+1} e_i - \sum_{i=1}^{q} e_i$$

• The dual of A_n^r is A_n^q . Also $A_8^3 = E_8$, $A_7^2 = E_7$.

Specificity of Coxeter lattices

- If n ≥ 9, then the automorphism of A^r_n is Z₂ × Sym(n + 1) encoded on n + 3 points.
- The lattice A²₂₁ has 21 orbits of Delaunay polytopes, one orbit is formed of Delaunay polytopes with 40698 vertices.
- Every face of a Delaunay is encoded by its barycenter, thus we do not need permutation representations on huge number of vertices.
- The heuristic is to respawn the ADM whenever the number of vertices is greater than 70. This makes sometimes 16 levels of recursion.

lattice	# orbits		
A ² ₁₃	10	A ³ ₁₄	17
A_{15}^2	10	A_{17}^3	26
A_{17}^2	15	A_{20}^{3}	40
A_{19}^2	15	A_{23}^{3}	55
$A_{21}^{\bar{2}}$	21	$A_{26}^{\overline{3}}$	75

VI. Second moment

Second moment of a lattice

We want to compute

$$Q(L) = \int_{DV(L)} \|x\|^2 dx$$

This is called quantization error and is used in information theory.

In fact the true integral we need is the symmetric (n+1) × (n+1) matrix

$$I_2(DV(L)) = \int_{DV(L)} (1,x)(1,x)^T dx$$

 If one is satisfied with approximate results, then Monte Carlo methods are to be preferred.

Decomposition method

- All methods for computing integrals over a polytope P rely on decomposing it into an union (signed or not) of simplices.
 - B. Büeler B., A. Enge and K. Fukuda, *Exact Volume Computation for Polytopes: a Practical Study*, Polytopes—combinatorics and computation (Oberwolfach, 1997), 131–154, DMV Sem., **29**, Birkhäuser, Basel, 2000.
- Two methods are used by us:
 - Irs can return a simplicial decomposition if one computes the facets from the vertices.
 - If one takes a random quadratic form and computes a Delaunay decomposition for it then "most" Delaunays are simplices. The remaining can be decomposed by further application of the method.

Lassere decomposition method

Suppose we have a n-dimensional polytope P and a group G acting on it by isometries.

- Compute the orbits of facets F_1, \ldots, F_s of size n_1, \ldots, n_s
- ► Compute the isobarycenter *Iso*(*P*) of the vertices of *P*.
- One has the formulas.

$$vol(conv(F_i, Iso(P))) = \frac{1}{n}vol(F_i) \times d(F_i, Iso(P))$$

$$vol(P) = \sum_{i=1}^{s} n_i vol(conv(F_i, Iso(P)))$$

- ► We can express the integral I₂(conv(F_i, Iso(P))) in terms of I₂(F_i) the isobarycenter of F_i and its volume.
- ▶ The formula *I*₂(*P*) is then

$$I_2(P) = \sum_{i=1}^{s} n_i \frac{1}{|G|} \sum_{g \in G} gI_2(conv(F_i, Iso(P)))g^T$$

Averaging operation

If G is a group generated by g₁,..., g_s acting on ℝⁿ, x a vector, we want to compute the barycenter of the orbit Gx:

$$lso(x) = \frac{1}{|G|} \sum_{g \in G} gx$$

but we don't want to compute the orbit itself.

- Denote by Mov(G) the smallest subspace of ℝⁿ invariant under G containing the vectors g_ix − x for 1 ≤ i ≤ s.
- ► Take a basis v₁,..., v_m of Mov(G) and write g(x) as

$$g(x) = x + \sum_{i=1}^{m} \alpha_i v_i$$

The system

$$g_i(Iso(x)) = Iso(x)$$
 for $1 \le i \le s$

has a unique solution.

The recursive decomposition method for $I_2(DV(L))$

- We use Lassere's method recursively until the number of vertices is low enough.
- ► Faces of DV(L) are encoded by their dual Delaunay and vertices generated only when needed.
- ▶ We have a banking system to keep computed integral.
- Some results:

Lattice L	Q(L)
Λ ₉	$rac{151301}{2099520}\simeq 0.07206$
Λ ₉ *	$rac{1371514291}{19110297600}\simeq 0.07176$
A ₉ ²	$\frac{2120743}{\sqrt[9]{5.2^8}13271040} \simeq 0.072166$
A ₉ ⁵	$\frac{8651427563}{\sqrt[9]{2.5^8}26578125000}} \simeq 0.072079$
D ₁₀ ⁺	$rac{4568341}{64512000}\simeq 0.07081$
D ₁₂ ⁺	$rac{29183629}{412776000} \simeq 0.070700$
K ₁₂	$rac{797361941}{\sqrt{3}6567561000} \simeq 0.070095$

THANK YOU