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I. Delaunay polytopes
in

lattices



The Voronoi polytope of a lattice

I A lattice L is a rank n subgroup of Rn, i.e. of the form

L = v1Z + · · ·+ vnZ

I The Voronoi cell DV (L) of L is defined by 〈x , v〉 ≤ 1
2 ||v ||

2 for
v ∈ L− {0}.

I DV (L) is a polytope, i.e. it has a finite number of vertices (of
dimension 0), faces and facets (of dimension n − 1)

I The translates v + DV (L) with v ∈ L tiles Rn.

I Shortest vector in L define facets of the Voronoi polytope.



Empty sphere and Delaunay polytopes

A sphere S(c , r) of radius r and center c in an n-dimensional
lattice L is said to be an empty sphere if:

(i) ‖v − c‖ ≥ r for all v ∈ L,

(ii) the set S(c, r) ∩ L contains n + 1 affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose
vertex-set is L ∩ S(c , r).

c
r



Voronoi and Delaunay in lattices

I Vertices of Voronoi polytope are center of empty spheres
which defines Delaunay polytopes.

I Voronoi and Delaunay polytopes define dual tessellations of
the space Rn by polytopes.

I Every k-dimensional face of a Delaunay polytope is orthogonal
to a (n − k)-dimensional face of a Voronoi polytope.

I Given a lattice L, it has a finite number of orbits of Delaunay
polytopes under translation.



Volume of Delaunay

Take L an n-dimensional lattice.

I The number of vertices of a Delaunay polytope is at most 2n

and at least n + 1.
I Given a Delaunay polytope P of a lattice L, define L(P) the

lattice generated by P. Denote by α(P) the index of L(P) in
L.

I Voronoi: if n ≤ 4, then α(P) = 1.
I Baranovski: if n = 5, then α(P) = 1 or 2.
I Ryshkov: if n = 6, then α(P) = 1, 2 or 3.
I Santos, Schürmann & Vallentin: maxα(P) grows

exponentially with n.
I Lovasz α(P) ≤ 2n

(2n
n )
n!.

I The volume of a simplex is α(P)
(n+1)! so a lattice has at most

(n + 1)! translation classes of Delaunay.

I Given a polytope P, is there an efficient method for finding all
lattices containing P as a Delaunay?



II. Applications



Covering density of a lattice

I We consider covering of Rn by n-dimensional balls of the
same radius, whose center belong to a lattice L.

I The covering density has the expression

Θ(L) =
µ(L)nκn
det(L)

≥ 1

with µ(L) being the largest radius of Delaunay polytopes and
κn the volume of the unit ball Bn.

I The fact that the covering radius of the Leech lattice is
√

2
has led to striking progress in hyperbolic Coxeter group theory.



Other applications

I The quantizing constant (in coding theory) of a lattice L is
defined as

Q(L) =

∫
DV (L)

‖x‖2dx and quant(L) =
Q(L)

det(L)1+ 2
n

I Delaunay/Voronoi polytopes gives an Aut(L)-invariant cellular
decomposition of the space Rn space.

I This gives a method for computing the homology of
Rn/Aut(L).

I This gives a method for computing the homology of Aut(L).



II. Examples



Root lattices

I Take L = Zn; Delaunay:

Name Center Nr. vertices Radius

Cube ( 1
2 )n 2n 1

2

√
n

I Take Dn = {x ∈ Zn|
∑n

i=1 xi is even}; Delaunay:

Name Center Nr. vertices Radius

Half-Cube ( 1
2 )n 1

2 2n 1
2

√
n

Cross-polytope (1, 0n−1) 2n 1

I Take E8 = D8 ∪ ( 1
2

8
) + D8; Delaunay:

Name Center Nr. vertices Radius

Simplex ( 5
6 ,

1
6

7
) 9

√
8
9

Cross-polytope (1, 07) 16 1

I Take An = {x ∈ Zn+1 such that
∑n+1

i=1 xi = 0}.
The Delaunay of An are obtained by section of the cube
[0, 1]n+1 by the hyperplanes

∑
i xi = k.

They are named J(n + 1, k), the number of vertices is
(n+1

k

)
.



Root lattice E6

I The Schlafli polytope Sch:
I Sch has 27 vertices.
I skel(Sch) is a strongly regular graph.
I Only 2 distances between distinct vertices of Sch.
I |Aut(Sch)| = 51840, the rotation subgroup is simple.
I 2 orbits of facets, 3 orbits of flags.
I Two interesting laminations:

levels polytopes polytopes
1 vertex J(6, 1)
0 1

2H5 J(6, 2)
−1 β5 J(6, 1) (parallel)

D5 lamination A5 lamination

I The root lattice E6:
I Has |Aut(E6)| = 2× 51840
I Has Delaunay polytopes Sch, −Sch up to translation



Root lattice E7

I The Gosset polytope Gos:
I Gos has 56 vertices (centrally symmetric).
I skel(Gos) is a distance regular graph.
I Only 3 distances between distinct vertices of Sch.
I |Aut(Gos)| = 2903040, the rotation subgroup is simple.
I 2 orbits of facets, 3 orbits of flags.
I Three interesting laminations:

levels polytopes polytopes polytopes
2 vertex J(7, 1)
1 Sch J(7, 2) β6

0 −Sch −J(7, 2) 1
2H6

−1 vertex −J(7, 1) −β6

E6 lamination A6 lamination D6 lamination

I The root lattice E7:
I Has |Aut(E7)| = |Aut(Gos)|.
I Has two orbits of Delaunay: Gosset (1 translation class) and

regular simplex (72 translation classes).



3-dimensional lattices

I The 3-dimensional Voronoi polytopes:

Truncated octahedron Hexarhombic dodecahedron

Hexagonal prism

Rhombic dodecahedron

Cube

I The 3-dimensional Delaunay polytopes:



II. Computational
techniques



Closest Vector Problem

I Given a lattice L, a vector c , find all vectors v ∈ L such that

||v − c|| is minimal

or in other term, if M ∈ Sn
>0 and c ∈ Rn, find all v ∈ Zn such

that
t(v − c)M(v − c) is minimal

I CVP is conjecturally a NP problem.
I Only way is to do an exhaustive search in a set of possible

solutions, two programs:
I Lattice-CVP (Dutour) use a hypercube, performing well up to

dimension 10.
I Voro (Vallentin) use an ellipsoid, performing well up to

dimension, say 40.



Finding an initial Delaunay polytope

I Finding a Delaunay is equivalent to finding a vertex of the
Voronoi polytope.

I The problem is that the Voronoi polytope is defined by an
infinity of inequalities.

I g ← a random linear function.
I V ← an initial set of non-zero elements of L.
I Maximize g(x) over the polytope defined by 〈v , x〉 ≤ 1

2‖v‖
2

for v ∈ V.
Denote by x0 the vertex realizing the maximum.

I Find C the closest elements to x0.
I If 0 ∈ C then return C as vertex-set of a Delaunay polytope.
I Otherwise do V ← V ∪ C.

This algorithm is implemented in the program finddel by
Vallentin.



Finding adjacent Delaunays

I Given a Delaunay polytope and a facet of it, there exist a
unique adjacent Delaunay polytope.

I We use an iterative procedure:
I Select a point outside the facet.
I Create the sphere around it.
I If there is no interior point finish, otherwise rerun with this

point.



Finding Delaunay decomposition

I Find the isometry group of the lattice (program autom by
Plesken & Souvignier).

I Find an initial Delaunay polytope and insert into list of orbits
as undone.

I Iterate
I Find the orbit of facets of undone Delaunay polytopes with the

Recursive Adjacency Decomposition method.
I For every facet, find the adjacent Delaunay polytope.
I For every Delaunay test if they are isomorphic to existing ones.

If not insert them to the list as undone.
I Finish when every orbit is done.



Lifted Delaunay decomposition

I The Delaunay polytopes of a lattice L correspond to the
facets of the convex cone C(L) with vertex-set:

{(x , ||x ||2) with x ∈ L} ⊂ Rd+1 .



II. The Isomorphism
and automorphism

problems
(book of tricks)



Automorphism groups

I A Delaunay polytope P has two automorphism groups
I The group Isom(P) of isometries preserving the Delaunay.
I The group Aut(P) of lattice automorphism preserving the

Delaunay.

I Aut(P) ⊂ Isom(P).

I If L(P) 6= L then a priori Isom(P) 6= Aut(P).

I Method 1 We consider centers c = (c1, . . . , cn) ∈ Rn with
ci ∈ [0, 1[.

Aut(P) = Stabilizer(GRP, c ,ActionMod1)

The trouble is that matrix actions are not easy: the above
operation generates the full orbit.

I Isom(P) is easy to get, consider the edge colored graph on the
vertex-set of P with edge colors ‖vi − vj‖ and use nauty.



Method 2 Iterated stabilizer method

I Compute the center c = (c1, . . . , cn) and denote D the
smallest integer such that Dc ∈ Zn.

I For every divisor D ′ of D, we can reduce the center modulo
1
D′ , the action is now modulo 1

D′ .
Denote the stabilizer StabD′ of this action. Then Stab(c) is a
subgroup of StabD′(c).

I The strategy is now to consider a series of divisors

D = D1 > D2 > · · · > Dp = 1

and an associated series of stabilizers

StabD1(c) ⊇ StabD2(c) ⊇ · · · ⊇ StabDp(c)

StabDi
is computed from StabDi−1

; orbit size is
|StabDi−1

|/|StabDi
|.



Some strategies

The computation of Isom(P) is almost always relatively easy, then
we can:

I Method 3 Compute the intersection

Aut(P) = Isom(P) ∩ Aut(L)

Well suited if Aut(P) is a group of small index in Isom(P).

I Method 4 Iterate over all elements of Isom(P), and select the
ones which correspond to a matrix with integral coefficients.
This yields Aut(P).
This strategy is well suited if Isom(P) is small (say, 10000
elements)



Method 6 Autom/Isom method

I The program autom by Plesken & Souvignier can compute the
group of matrices P ∈ GLn(Z) satisfying

PMi
tP = Mi

with Mi some symmetric positive definite matrices.

I Given a Gram matrix M ∈ Sn
>0 of the lattice and a center c of

a Delaunay, form the matrix

A(c) =

(
cMct + 1 −cM
−Mct M

)
and B =

(
1 0
0 0

)
I The group Aut(P) is the automorphism group of the family

(A(c),B) with A(c) ∈ Sn+1
>0 and B ∈ Sn+1.



The Λ∗23 method

I The shells of Λ∗23 are:
I 4600 vectors of norm 3 (1 orbit) defining a sublattice O23 of

index 2
I 94208 vectors of norm 15/4 (1 orbit) spanning Λ∗

23
I 93150 vectors of norm 4 (1 orbit) spanning Λ∗

23

So Method 6 cannot be used due to the too large size of
invariant base.

I O23 has a manageable invariant base; the
automorphism/isomorphism problem is manageable for it.
Also it has the property

Aut(O23) = Aut(Λ∗23)

I Strategy for computing stabilizer of a Delaunay D under
Aut(Λ∗23) is:

I Compute the stabilizer under Aut(O23)
I If t ∈ Λ∗

23 − O23 then test isomorphism of D and D + t.



Crystallographic group case

Suppose now that the point set is no longer a lattice and that the
symmetry group is crystallographic.

I All the polyhedral methods explained above applies
unchanged.

I The problem is with the isomorphism tests
I Method 1 is no longer usable.
I Method 2 goes just as well
I Method 3 is still usable but less powerful because less control

over the occurring fractions.
I Method 4 is just as well usable.
I Method 6 does not work now.



II. Large scale
examples



The O23/Λ∗23 lattices

I We use Method 6 for isomorphism/Automorphism in O23

I We respawn Delaunay computation every time we have more
than 80 vertices.

Nr. |V | Aut

1 94208 84610842624000
2 24 1320
3 24 1320
4 32 1344
5 24 10200960

I (work in progress) Λ∗23 has the following features:
I An incredible variety of Delaunay polytopes, 485000 in earliest

account with 19000 orbits treated.
I Most Delaunays have low number of vertices, their dual

description is easy.
I Most Delaunay have trivial or small stabilizer, Method 4 is

perfect. Otherwise, use O23 for such decisions.
I Only the MD5 invariants are stored in memory, all the rest is

on disk.



Cut lattices

I The cut polytope CUTn is a famous polytope appearing in
combinatorial optimization.

I It has 2n−1 vertices, dimension n(n−1)
2 and

|Aut(CUTn)| = 2n−1n!.

I The Z-span of CUTn is a lattice L(CUTn) for which CUTn is
one of its Delone polytopes.

I Delaunay of CUTn:

lattice dimension # orbit covering density

L(CUT3) 3 2 2.09439
L(CUT4) 6 4 5.16771
L(CUT5) 10 12 40.80262
L(CUT6) 15 112 255.4255



Laminated lattices

I A n-dimensional lamination over a (n − 1)-dimensional lattice
L is one obtained by staking layers of lattice L.

I A laminated lattice is the one of highest density stacked over
lower dimensional laminated lattices.

lattice # orbits # orbits
Λ9 5 Λ∗9 9
Λ10 7 Λ∗10 21

Λmax
11 11 Λmax∗

11 18
Λmin

11 18 Λmin∗
11 153

Λmax
12 5 Λmax∗

12 8
Λmid

12 23 Λmid∗
12 52

Λmin
12 13 Λmin∗

12 78
Λmax

13 18 Λmax∗
13 57

Λmid
13 46 Λmid∗

13 125
Λmin

13 129 Λmin∗
13 5683

Λ14 65 Λ∗14 1392
Λ15 27 Λ∗15 108
Λ16 4 Λ∗16
Λ17 28 Λ∗17 720



The Coxeter lattices An,r

I Context: The best way to determine the covering density of a
lattice is to compute its Delaunay polytopes. The Coxeter
lattices are good candidates.

I The lattice An is defined as

An = {x ∈ Zn+1 such that
∑

xi = 0}

I If r divides n + 1, then writes q = n+1
r and define the lattice

Ar
n by

Ar
n = An∪vn,r + An∪ . . .∪(r − 1)vn,r + An

with

vn,r =
1

r

n+1∑
i=1

ei −
q∑

i=1

ei

I The dual of Ar
n is Aq

n. Also A3
8 = E8, A2

7 = E7.



Specificity of Coxeter lattices

I If n ≥ 9, then the automorphism of Ar
n is Z2 × Sym(n + 1)

encoded on n + 3 points.

I The lattice A2
21 has 21 orbits of Delaunay polytopes, one orbit

is formed of Delaunay polytopes with 40698 vertices.

I Every face of a Delaunay is encoded by its barycenter, thus we
do not need permutation representations on huge number of
vertices.

I The heuristic is to respawn the ADM whenever the number of
vertices is greater than 70. This makes sometimes 16 levels of
recursion.

lattice # orbits

A2
13 10 A3

14 17
A2

15 10 A3
17 26

A2
17 15 A3

20 40
A2

19 15 A3
23 55

A2
21 21 A3

26 75



VI. Second
moment



Second moment of a lattice

I We want to compute

Q(L) =

∫
DV (L)

‖x‖2dx

This is called quantization error and is used in information
theory.

I In fact the true integral we need is the symmetric
(n + 1)× (n + 1) matrix

I2(DV (L)) =

∫
DV (L)

(1, x)(1, x)Tdx

I If one is satisfied with approximate results, then Monte Carlo
methods are to be preferred.



Decomposition method

I All methods for computing integrals over a polytope P rely on
decomposing it into an union (signed or not) of simplices.

à B. Büeler B., A. Enge and K. Fukuda, Exact Volume
Computation for Polytopes: a Practical Study,
Polytopes—combinatorics and computation (Oberwolfach,
1997), 131–154, DMV Sem., 29, Birkhäuser, Basel, 2000.

I Two methods are used by us:
I lrs can return a simplicial decomposition if one computes the

facets from the vertices.
I If one takes a random quadratic form and computes a

Delaunay decomposition for it then “most” Delaunays are
simplices. The remaining can be decomposed by further
application of the method.



Lassere decomposition method

Suppose we have a n-dimensional polytope P and a group G
acting on it by isometries.

I Compute the orbits of facets F1, . . . ,Fs of size n1, . . . , ns
I Compute the isobarycenter Iso(P) of the vertices of P.

I One has the formulas.

vol(conv(Fi , Iso(P))) = 1
nvol(Fi )× d(Fi , Iso(P))

vol(P) =
∑s

i=1 nivol(conv(Fi , Iso(P)))

I We can express the integral I2(conv(Fi , Iso(P))) in terms of
I2(Fi ) the isobarycenter of Fi and its volume.

I The formula I2(P) is then

I2(P) =
s∑

i=1

ni
1

|G |
∑
g∈G

gI2(conv(Fi , Iso(P)))gT



Averaging operation

I If G is a group generated by g1, . . . , gs acting on Rn, x a
vector, we want to compute the barycenter of the orbit Gx :

Iso(x) =
1

|G |
∑
g∈G

gx

but we don’t want to compute the orbit itself.

I Denote by Mov(G ) the smallest subspace of Rn invariant
under G containing the vectors gix − x for 1 ≤ i ≤ s.

I Take a basis v1, . . . , vm of Mov(G ) and write g(x) as

g(x) = x +
m∑
i=1

αivi

The system

gi (Iso(x)) = Iso(x) for 1 ≤ i ≤ s

has a unique solution.



The recursive decomposition method for I2(DV (L))

I We use Lassere’s method recursively until the number of
vertices is low enough.

I Faces of DV (L) are encoded by their dual Delaunay and
vertices generated only when needed.

I We have a banking system to keep computed integral.

I Some results:
Lattice L Q(L)

Λ9
151301

2099520
' 0.07206

Λ∗9
1371514291

19110297600
' 0.07176

A2
9

2120743
9√

5.2813271040
' 0.072166

A5
9

8651427563
9√

2.5826578125000
' 0.072079

D+
10

4568341
64512000

' 0.07081

D+
12

29183629
412776000

' 0.070700

K12
797361941√
36567561000

' 0.070095
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