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|. Delaunay polytopes
In
lattices



The Voronoi polytope of a lattice

> A lattice L is a rank n subgroup of R”, i.e. of the form

L=wZ+- -+ vZ

v

The Voronoi cell DV/(L) of L is defined by (x, v) < 3||v|[? for
v e L—{0}.

DV/(L) is a polytope, i.e. it has a finite number of vertices (of
dimension 0), faces and facets (of dimension n — 1)
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The translates v + DV/(L) with v € L tiles R".

Shortest vector in L define facets of the Voronoi polytope.
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Empty sphere and Delaunay polytopes

A sphere S(c, r) of radius r and center ¢ in an n-dimensional
lattice L is said to be an empty sphere if:

(i) |lv—=-c|| > rforall velL,
(i) the set S(c,r) N L contains n+ 1 affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose
vertex-set is LN S(c, r).




Voronoi and Delaunay in lattices

> Vertices of Voronoi polytope are center of empty spheres
which defines Delaunay polytopes.

» Voronoi and Delaunay polytopes define dual tessellations of
the space R"” by polytopes.

» Every k-dimensional face of a Delaunay polytope is orthogonal
to a (n — k)-dimensional face of a Voronoi polytope.

> Given a lattice L, it has a finite number of orbits of Delaunay
polytopes under translation.



Volume of Delaunay

Take L an n-dimensional lattice.

» The number of vertices of a Delaunay polytope is at most 2"
and at least n+ 1.

» Given a Delaunay polytope P of a lattice L, define L(P) the
lattice generated by P. Denote by a(P) the index of L(P) in
L.

Voronoi: if n < 4, then o(P) = 1.

Baranovski: if n =5, then a(P) =1 or 2.

Ryshkov: if n =6, then a(P) =1, 2 or 3.

Santos, Schiirmann & Vallentin: max «(P) grows

exponentially with n.

» Lovasz a(P) < (fz) nl.

> The volume of a simplex is G ELI)), so a lattice has at most

(n+ 1)! translation classes of Delaunay.
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» Given a polytope P, is there an efficient method for finding all
lattices containing P as a Delaunay?



ll. Applications



Covering density of a lattice

» We consider covering of R” by n-dimensional balls of the
same radius, whose center belong to a lattice L.

» The covering density has the expression

n
(L) 5n >

o) = det(L)

with (L) being the largest radius of Delaunay polytopes and
Kn the volume of the unit ball B”.

» The fact that the covering radius of the Leech lattice is V2
has led to striking progress in hyperbolic Coxeter group theory.



Other applications

» The quantizing constant (in coding theory) of a lattice L is
defined as
Q(L)

QL:/ x|[?dx and quant(L) = ———
(L) v [[x[l (L) det(L)

» Delaunay/Voronoi polytopes gives an Aut(L)-invariant cellular
decomposition of the space R" space.
» This gives a method for computing the homology of
R?/Aut(L).
» This gives a method for computing the homology of Aut(L).



ll. Examples



Root lattices

» Take L = 7Z"; Delaunay:
Name | Center | Nr. vertices | Radius

el P | 7 [ I/
» Take D, = {x € Z"|>_7_; x; is even}; Delaunay:
Name Center | Nr. vertices | Radius
Half-Cube ()" 2" >vn
Cross-polytope | (1,07 1) 2n 1
» Take Eg = Dg U (%8) + Dg; Delaunay:
Name Center | Nr. vertices | Radius
Simplex (2, %7) 9 8
Cross-polytope | (1,07) 16 1

> Take A, = {x € Z" such that 7! x; = 0}.
The Delaunay of A, are obtained by section of the cube
[0,1]"*! by the hyperplanes >". x; = k.
They are named J(n + 1, k), the number of vertices is ("}1).



Root lattice Eg

» The Schlafli polytope Sch:

v

Sch has 27 vertices.

» skel(Sch) is a strongly regular graph.
» Only 2 distances between distinct vertices of Sch.
> | Aut(Sch)| = 51840, the rotation subgroup is simple.
» 2 orbits of facets, 3 orbits of flags.
» Two interesting laminations:
levels polytopes polytopes

1 vertex J(6,1)

0 %H_r, J(6,2)

-1 Bs J(6,1) (parallel)

Ds lamination As lamination

» The root lattice Eg:

» Has | Aut(Eg)| = 2 x 51840
» Has Delaunay polytopes Sch, —Sch up to translation




Root lattice E

» The

vV vy vy VY VY VY

» The

Gosset polytope Gos:

Gos has 56 vertices (centrally symmetric).
skel(Gos) is a distance regular graph.
Only 3 distances between distinct vertices of Sch.

| Aut(Gos)| = 2903040, the rotation subgroup is simple.
2 orbits of facets, 3 orbits of flags.
Three interesting laminations:

levels polytopes polytopes polytopes
2 vertex J(7,1)
1 Sch J(7,2) Be
0 —Sch —J(7,2) %H6
-1 vertex —J(7,1) —Bs
Eg lamination | Ag lamination | Dg lamination

root lattice E7:
» Has | Aut(E7)| = | Aut(Gos)|.
» Has two orbits of Delaunay: Gosset (1 translation class) and
regular simplex (72 translation classes).




3-dimensional lattices

» The 3-dimensional Voronoi polytopes:

Truncated octahedron Hexarhombic dodecahedron Rhombic dodecahedron
—
—
Cube
Hexagonal prism / J
@ 7

» The 3-dimensional Delaunay polytopes:

OS>
M T



ll. Computational
techniques



Closest Vector Problem

» Given a lattice L, a vector ¢, find all vectors v € L such that
|lv—c|| is minimal

or in other term, if M € S, and c € R”, find all v € Z" such
that

(v —c)M(v —¢) is minimal
» CVP is conjecturally a NP problem.
» Only way is to do an exhaustive search in a set of possible
solutions, two programs:

» Lattice-CVP (Dutour) use a hypercube, performing well up to
dimension 10.

» Voro (Vallentin) use an ellipsoid, performing well up to
dimension, say 40.



Finding an initial Delaunay polytope

» Finding a Delaunay is equivalent to finding a vertex of the
Voronoi polytope.

» The problem is that the Voronoi polytope is defined by an
infinity of inequalities.

>

>

>

g < a random linear function.

VY < an initial set of non-zero elements of L.

Maximize g(x) over the polytope defined by (v, x) < 1||v|?
forveV.

Denote by xp the vertex realizing the maximum.

Find C the closest elements to xp.

> If 0 € C then return C as vertex-set of a Delaunay polytope.
> Otherwise do V < V UC.

This algorithm is implemented in the program finddel by
Vallentin.



Finding adjacent Delaunays

» Given a Delaunay polytope and a facet of it, there exist a
unique adjacent Delaunay polytope.
> We use an iterative procedure:
» Select a point outside the facet.
» Create the sphere around it.

> If there is no interior point finish, otherwise rerun with this
point.




Finding Delaunay decomposition

» Find the isometry group of the lattice (program autom by
Plesken & Souvignier).

» Find an initial Delaunay polytope and insert into list of orbits
as undone.

> lterate

» Find the orbit of facets of undone Delaunay polytopes with the
Recursive Adjacency Decomposition method.

» For every facet, find the adjacent Delaunay polytope.

» For every Delaunay test if they are isomorphic to existing ones.
If not insert them to the list as undone.

» Finish when every orbit is done.



Lifted Delaunay decomposition

» The Delaunay polytopes of a lattice L correspond to the
facets of the convex cone C(L) with vertex-set:

{(x,]|x]|?) with x € L} c RITL.

7,




lI. The Isomorphism
and automorphism
problems

(book of tricks)



Automorphism groups

» A Delaunay polytope P has two automorphism groups

» The group Isom(P) of isometries preserving the Delaunay.
» The group Aut(P) of lattice automorphism preserving the
Delaunay.

» Aut(P) C Isom(P).
» If L(P) # L then a priori Isom(P) # Aut(P).

» Method 1 We consider centers ¢ = (ci,...,¢y) € R” with
G € [0, l[.

Aut(P) = Stabilizer(GRP, ¢, ActionMod1)

The trouble is that matrix actions are not easy: the above
operation generates the full orbit.

» Isom(P) is easy to get, consider the edge colored graph on the
vertex-set of P with edge colors ||v; — vj|| and use nauty.



Method 2 lterated stabilizer method

» Compute the center ¢ = (cy,...,¢p) and denote D the
smallest integer such that Dc € Z".

» For every divisor D’ of D, we can reduce the center modulo
%, the action is now modulo %.
Denote the stabilizer Stabp: of this action. Then Stab(c) is a
subgroup of Stabp/(c).

> The strategy is now to consider a series of divisors

D=Dy>Dy>--->D,=1
and an associated series of stabilizers
Stabp,(c) 2 Stabp,(c) 2 --- 2 Stabp,(c)

Stabp, is computed from Stabp, ,; orbit size is
‘St'abD‘._1 ]/|5tabD,.|.



Some strategies

The computation of Isom(P) is almost always relatively easy, then
we can:

» Method 3 Compute the intersection
Aut(P) = Isom(P) N Aut(L)

Well suited if Aut(P) is a group of small index in Isom(P).

» Method 4 lterate over all elements of Isom(P), and select the
ones which correspond to a matrix with integral coefficients.
This yields Aut(P).

This strategy is well suited if Isom(P) is small (say, 10000
elements)



Method 6 Autom/Isom method

» The program autom by Plesken & Souvignier can compute the
group of matrices P € GL,(7Z) satisfying

PM;tP = M

with M; some symmetric positive definite matrices.

» Given a Gram matrix M € SZ of the lattice and a center c of
a Delaunay, form the matrix

cMct+1 —cM 10
A(c)-( Mt Y )andB—<0 0)
» The group Aut(P) is the automorphism group of the family
(A(c), B) with A(c) € S7§* and B € S"*L.



The A3; method

> The shells of A3; are:
» 4600 vectors of norm 3 (1 orbit) defining a sublattice O3 of
index 2
» 94208 vectors of norm 15/4 (1 orbit) spanning A};
» 93150 vectors of norm 4 (1 orbit) spanning A5
So Method 6 cannot be used due to the too large size of
invariant base.

» (O3 has a manageable invariant base; the
automorphism /isomorphism problem is manageable for it.
Also it has the property

Aut( 023) = Aut(/\§3)

» Strategy for computing stabilizer of a Delaunay D under
Aut(A33) is:
» Compute the stabilizer under Aut(Oa3)
» If t € A5; — Oz then test isomorphism of D and D + t.



Crystallographic group case

Suppose now that the point set is no longer a lattice and that the
symmetry group is crystallographic.
» All the polyhedral methods explained above applies
unchanged.
» The problem is with the isomorphism tests
» Method 1 is no longer usable.

» Method 2 goes just as well

» Method 3 is still usable but less powerful because less control
over the occurring fractions.

» Method 4 is just as well usable.

» Method 6 does not work now.



ll. Large scale
examples



The O,3/N3; lattices

» We use Method 6 for isomorphism/Automorphism in Op3
» We respawn Delaunay computation every time we have more
than 80 vertices.

Nr. | |V] Aut
1 | 94208 | 84610842624000
2 24 1320
3 24 1320
4 32 1344
5 24 10200960

» (work in progress) A3 has the following features:

» An incredible variety of Delaunay polytopes, 485000 in earliest
account with 19000 orbits treated.

» Most Delaunays have low number of vertices, their dual
description is easy.

» Most Delaunay have trivial or small stabilizer, Method 4 is
perfect. Otherwise, use O,3 for such decisions.

» Only the MD5 invariants are stored in memory, all the rest is
on disk.



Cut lattices

» The cut polytope CUT, is a famous polytope appearing in
combinatorial optimization.

n(n—1)

> and

» It has 2”1 vertices, dimension
| Aut(CUT,)| = 2" 1nl.

» The Z-span of CUT, is a lattice L(CUT,) for which CUT,, is
one of its Delone polytopes.

> Delaunay of CUT:

lattice ‘ dimension ‘ # orbit ‘ covering density
L(CUT;) 3 2 2.09439
L(CUTy) 6 4 5.16771
L(CUTs) 10 12 40.80262
L(CUTs) 15 112 255.4255




Laminated lattices

» A n-dimensional lamination over a (n — 1)-dimensional lattice
L is one obtained by staking layers of lattice L.

» A laminated lattice is the one of highest density stacked over
lower dimensional laminated lattices.

lattice | # orbits # orbits
Ao 5 ¥ 9
A1o 7 Ao 21
AP 11 AP 18
/\min 18 /\min* 153
Alrr2n'd 23 /\];r21id* 52
A}n%'n 13 A}n%'n* 78
/\%an 18 A%’%’X* 57
/\;'Z{d 46 /\;'Z{d* 125
Arin 129 Aminx | 5683
Aia 65 A, 1392
Ais 27 N5 108
A6 4 N
A7 28 AL 720




The Coxeter lattices A, ,

» Context: The best way to determine the covering density of a
lattice is to compute its Delaunay polytopes. The Coxeter
lattices are good candidates.

» The lattice A, is defined as

A, = {x € Z"! such that Zx,- =0}

» If r divides n+ 1, then writes g = %1 and define the lattice
A7 by

AL =ApUvn, + AU U(r = 1)vp, + A,

with
n+1

q
1
Vnr = — § € — E €
r< p
i=1 i=1

» The dual of AL is A]. Also A} = Eg, A2 = E7.



Specificity of Coxeter lattices

» If n > 9, then the automorphism of Al is Zy x Sym(n+ 1)
encoded on n + 3 points.

» The lattice A2, has 21 orbits of Delaunay polytopes, one orbit
is formed of Delaunay polytopes with 40698 vertices.

» Every face of a Delaunay is encoded by its barycenter, thus we
do not need permutation representations on huge number of
vertices.

» The heuristic is to respawn the ADM whenever the number of
vertices is greater than 70. This makes sometimes 16 levels of

recursion.
lattice | # orbits
A§3 10 Az4 17
A%5 10 A%7 26
A%9 15 A§3 55




VI. Second

moment



Second moment of a lattice

» We want to compute

QL) = / Ix|2dx
DV(L)

This is called quantization error and is used in information
theory.

> In fact the true integral we need is the symmetric
(n+1) x (n+ 1) matrix

/2(DV(L)):/ (1, x)(1,x) "dx

DV(L)

> If one is satisfied with approximate results, then Monte Carlo
methods are to be preferred.



Decomposition method

» All methods for computing integrals over a polytope P rely on
decomposing it into an union (signed or not) of simplices.

w B, Bieler B., A. Enge and K. Fukuda, Exact Volume
Computation for Polytopes: a Practical Study,
Polytopes—combinatorics and computation (Oberwolfach,
1997), 131-154, DMV Sem., 29, Birkh&user, Basel, 2000.

» Two methods are used by us:

» Irs can return a simplicial decomposition if one computes the
facets from the vertices.

» If one takes a random quadratic form and computes a
Delaunay decomposition for it then “most” Delaunays are
simplices. The remaining can be decomposed by further
application of the method.



Lassere decomposition method

Suppose we have a n-dimensional polytope P and a group G
acting on it by isometries.

» Compute the orbits of facets Fi,..., Fs of size ny,...,ns

v

Compute the isobarycenter Iso(P) of the vertices of P.

One has the formulas.

vol(conv(F;, Iso(P))) = Lvol(F;) x d(F;, Iso(P))
vol(P) = "7 1 njvol(conv(F;, Iso(P)))

v

v

We can express the integral h(conv(F;, Iso(P))) in terms of
h(F;) the isobarycenter of F; and its volume.

The formula k(P) is then

v

S

h(P)=Y" n,-|é’ > gh(conv(F;, Iso(P)))g "

i=1 g€G



Averaging operation

» If G is a group generated by gi,...,gs acting on R”, x a
vector, we want to compute the barycenter of the orbit Gx:

Iso(x G ng
6] Jer

but we don't want to compute the orbit itself.

» Denote by Mov(G) the smallest subspace of R” invariant
under G containing the vectors gix — x for 1 </ <'s.

» Take a basis v1,..., vy, of Mov(G) and write g(x) as
g(x)=x+ ZaiVi
i=1
The system
gi(lso(x)) = Iso(x) for 1 < <s

has a unique solution.



The recursive decomposition method for L(DV/(L))

» We use Lassere’s method recursively until the number of
vertices is low enough.

» Faces of DV/(L) are encoded by their dual Delaunay and
vertices generated only when needed.

» We have a banking system to keep computed integral.

» Some results:

Lattice L QD)
Ao 2osop = 0.07206
* 1371514201
Mg 6110507605 ~ 007176
AS 522073 (072166
o /5.2813271040
AS 5 S851427563 __ v 0,072079
’ ¥2.5826578125000
p 4568341
D1o a512000 = 0-07081
+ 20183629 .,
D1 12776000 —~ 0-070700
797361941
Ki aesanseioos = 0-070095
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