Torus Cube Tilings

Mathieu Dutour Sikiric

Yoshiaki Itoh

Rudjer Boskovic institute, Zagreb

Institut Statistical Mathematics, **Tokyo**

Alexei Poyarkov

Moscow State University, Moscow

I. Torus

tilings and

packings

Torus Cube Tilings

- A special cube tiling is a $4\mathbb{Z}^d$ -periodic tiling of the space
ne hypercube $[0,2]^d$.
ng of \mathbb{R}^d by translate of the
- d by integral translates of the hypercube $[0,2]^d$
 general cube tiling is a tiling of \mathbb{R}^d **by translate

ube** $[0,2]^d$ **.**

pecial cube tilings can be lifted to the torus .
9 A **general cube tiling is** a tiling of \mathbb{R}^d by translate of the
cube $[0,2]^d$.
Special cube tilings can be lifted to the torus.
There is only one special cube tiling in dimension 1. cube $[0,2]^d$
Special cul
- Special cube tilings can be lifted to the torus.
- .
ה There is only one special cube tiling in dimension 1 .
- There are two special cube tilings in dimension $2\mathbf{.}$

Keller conjecture

- Conjecture: for any general cube tiling, there exist at least one face-to-face adjacency.
- This conjecture was proved by Perron (1940) for dimension $n \leq 6$.
- Szabo (1986): if there is a counter-example to the conjecture, then there is ^a counter-example, which is special.
- Lagarias & Shor (1992) have constructed counter-example to the Keller conjecture in dimension
- Mackey (2002) has constructed ^a counter-example in dimension $d \geq 8$.

Cube packings

- A cube packing is a packing of \mathbb{R}^d by integral translates
dic.
ng by adding another
<mark>ble</mark>.
- of cubes $[0,2]^d$, which is $4\mathbb{Z}^d$
If we cannot extend a cube
cube, then it is called non-e:
Non-extendible cube packin -periodic.
packing b
xtendible.
g does no If we cannot extend a cube packing by adding another cube, then it is called non-extendible.
- Non-extendible cube packing does not exist in dimension 1 and 2 .
- There is an unique non-extendible cube packing in dimension 3 .
- We are interested in the values of N , for which there is a non-extendible cube packing with N cubes.

non-extendible cube packing

II. Algorithms of generation

Clique formalism

- Associate to every cube C its center $c \in \{$
- $0,1$ ove $\frac{1,2,3\}^d}{\text{erlappi}}$ nat Two cubes with centers x and x' are non-overlapping if and only if there exist a coordinate i , such that $|x_i - x'_i| = 2$. and only if there exist a coordinate i α . , such that x_i'
- $\frac{\prime}{i}|=2.$.
aph C
ro vert The graph G_d is the graph with vertex set $\{$ $\frac{0,1}{\mathsf{if} \; \mathsf{t}}$ $\{1,2,3\}^d$
the and two vertices being adjacent if and only if the corresponding cubes do not overlap.
- A clique S in a graph is a set of vertices such that any
two vertices in G are adiasent two vertices in S are adjacent.
- graph G_d Cube tilings correspond to cliques of size 2^d .
- in the
<mark>ite</mark>, sir
ge. All problems about those cube tilings are finite, since G_d is finite, but the number of possibilities is huge.

GAP enumeration

- The graph G_d has a symmetry group of size $d!8^d$ acts on the 4^d
- , which
ements
<mark>ck</mark> elements {
ssociated to
emely effici
ecking if tw $0,1$
ואפ י $\overline{}$ $\{1,2,3\}^d$
ubsets
t techni Cliques are associated to subsets of those 4^d elements.
<mark>ktrack</mark>
alent under GAP has extremely efficient techniques (backtrack search) for checking if two subsets are equivalent under a permutation group.
- We set $L_1 = \{\{v\}\}$ and iterate i from 2 to 2^d
	- are adjacent to all element in :
:
} For every subset in $\dot{\mathbf{v}}$ $_{i-1}$, consider all vertices, which $\dot{\mathbf{v}}$ $i-1$
	- Test if they are isomorphic to existing elements in L and if not, insert them into $L_{\bm i}.$

Results for

In dimension 3, there is a single non-extendible cube \bullet tiling and there are 9 types of cube tilings.

Results for

In dimension 3, there is a single non-extendible cube \bullet tiling and there are 9 types of cube tilings.

Results for

In dimension 3, there is a single non-extendible cube \bullet tiling and there are 9 types of cube tilings.

In dimension 4 , the repartition is as follows:

Flipping algorithm

-dimensional cube tilings suggest ^a flipping algorithm:

- This algorithm uses face-to-face adjacencies to generate new tilings.
- We know that this flipping algorithm will not work in
dimension $>$ $\frac{8}{7}$ since there are cube tilings with no dimension $\geq 8,$ since there are cube tilings with no face-to-face adjacencies.
- This algorithm works in dimension 3 and 4 .

Random generation

- Another possibility is to take cubes at random and add
them if and only if they do not everlan, until there is no them if and only if they do not overlap, until there is no
space loft any-more space left any-more.
- Practical implementation:
	- Generate elements at random and add them if they
de net everlan do not overlap.
	- After the number of failures in the random generation, reach ^a certain threshold, enumerate all possible cubes, which do not overlap.
	- Then, choose element at random in this list and
undate the list by remeving cubes, which will ove update the list by removing cubes, which will overlap.
	- Finish, when there is no choice left.

Greedy and Metropolis algorithm

- If one wants to generate non-extendible cube packings with low density, then some other strategies are
pessible: possible:
- Greedy algorithm In the choice of a cube at random,
solect the one, which covers the most important part select the one, which covers the most important part of the space.
- Metropolis algorithm Take an existing non-extendible
cube packing with low density and then: cube packing with low density and then:
	- Remove some elements chosen at random in this
sube packing cube packing.
	- Do a random packing procedure on the left holes.
'
	- If the density of the obtained non-extendible cube packing is too high, then discard it; otherwise, take it as basis for future computations.

III. non-extendiblecube

packings

Extension of cube packings

- Theorem A cube packing with N cubes, $N \geq 2^d$ 3 tiles is extendible to ^a cube tiling.
- **Given**
	- aa cube packing with 2^d δ cubes of coordinates x^k \overline{a} \blacksquare $\delta,$
	- a coordinate j and
	- a value $\alpha \in \{$

 $0,1,2,3\}$.
pe packir
ng all ver The induced cube packing is the cube packing of \mathbb{R}^{d-} obtained by taking all vectors x^k with $x_j^k = \alpha, \alpha + 1$
(mod 4) and removing the *j*-th coordinate.
Such cube packings have at least $2^{d-1} - \delta$ tiles.
The proof is by induction, using induced cube pac $\mod 4$ and removing the *j*-th coordinate. Such cube packings have at least 2^{d-}

 $\frac{1}{5} - \delta$ tiles.
ed cube p The proof is by induction, using induced cube packings.

Extension of theorem

- The complement of an non-extendible cube packing $\mathcal C$ is the set \mathbb{R}^d $\cal CP$.
- Conjecture: If ${\cal{CP}}$ is an non-extendible cube packing with 2^d 4 tiles, then its complement is of the same shape, as the one in dimension $3.$
- Conjecture: If ${\cal{CP}}$ is a cube packing with 2^d 5 cubes, then it is extendible by at least one cube.
- A complement of a cube tiling is called irreducible if it is
rest the union of sube tilings are different layers not the union of cube tilings on different layers.
- Conjecture: For a given $\delta,$ there is a finite number of irreducible complements of volume $2^d\delta$.

Low density cube packings

- Denote by $f(d)$ the smallest number of cubes of non-extendible cube packing.
- $(3) = 4$ and $f(4) = 8$.
- The following inequality holds:

$$
f(n+m) \le f(n)f(m) .
$$

The cube packing realizing this is constructed by $\mathcal{L}^{\mathcal{L}}$ "product" of two cube packings of \mathbb{R}^n and \mathbb{R}^m
So, $f(6) \leq f(3) \times f(3) = 16$.

- So, $f(6) \leq f(3) \times f(3) = 16$
- But no random algorithm manage to find such a
packing! packing!

Covering sets

- A covering set \mathcal{CS} is a set of cubes (possibly, overlapping), such that we cannot add ^a cube without overlapping with at least one cube in ${\cal CS}.$
- Let us denote by $h(d)$ the smallest number of cubes in covering sets.
- λ and λ .
- $R < h(d)$ if and only for every set of N cubes (possibly overlapping), there exist ^a cube, which do not overlap with them.
- Theorem. One has the relation

$$
h(d+1) \ge \left\lfloor \frac{4h(d)-1}{3} \right\rfloor + 1.
$$

- **Lemma.** If N satisfies the inequality $\left\lfloor \frac{3N}{4} \right\rfloor < h(d)$, then
one has $h(d+1) > N$.
Take N vectors in $\{0, 1, 2, 3\}^{d+1}$ and consider its last
coordinate. At least $\lceil \frac{N}{2} \rceil$ vectors satisfy to $x_{i+1} = t$ one has $h(d+1) > N$.
- Take N vectors in $\{$ $\left(0,1,2,3\right)^{d+1}$ and consider its last
t $\left\lceil \frac{N}{4}\right\rceil$ vectors satisfy to $x_{d+1}=t$ for d
is and $N-5$ coordinate. At least $\lceil \frac{N}{4} \rceil$ vectors satisfy to $x_{d+1} = t$ for some $t \in \{0, 1, 2, 3\}$.
In illustrated proof below, one has $d = 3$ and $N = 5$. some $t \in \{$
- $0, 1, 2, 3$.
A proof b In illustrated proof below, one has $d=3$ and $N=5.$

Eliminate those vectors and, for the remaining vector, their last coordinate

 $0 \t2 \t0$

We have $\lfloor \frac{3N}{4} \rfloor$ ($< h(d)$) remaining vectors; so, one can find
a not overlapped cube. a not overlapped cube.

By the basic assumption, setting the last coordinate to $t+2$ $\mod 4$) gives a cube, which does not overlap with the preceding ones.

\n- **Set**
$$
N = \left\lfloor \frac{4h(d)-1}{3} \right\rfloor
$$
.
\n- **Then it holds:** $|3N| = |3|$
\n

$$
\left\lfloor \frac{3N}{4} \right\rfloor = \left\lfloor \frac{3\left\lfloor \frac{4h(d)-1}{3} \right\rfloor}{4} \right\rfloor \le \left\lfloor \frac{4h(d)-1}{4} \right\rfloor < h(d).
$$
\nthe Lemma, $h(d+1) > N$, i.e.,:

\n
$$
|4h(d)-1|
$$

So, by the Lemma, $h(d+1) > N$, i.e.:

$$
\begin{bmatrix} 4 & \vert & -\lfloor 4 \rfloor \\ \text{nma}, \, h(d+1) > N, \, \text{i.e.:} \\ \frac{4h(d)-1}{3} & \vert & +1. \end{bmatrix}
$$

Values of

- (Λ) , while $f(4)=8$.
- Above theorem yields

```
(5) \ge 10 and f(6) \ge 1H
```
- We found (by random method) many non-extendible
packings with 12 qubes, but not with loss than 12 qub packings with 12 cubes, but not with less than 12 cubes.
- Could it be that $f(5) = 12$?
- It seems also likely, that $f(6)=16$ and that the best $\mathop{\mathsf{cube}}\nolimits$ packing in dimension 6 is unique.
- An interesting question if to estimate the asymptotic behavior of $h(d)$ or $f(d).$

IV. Second

moment

The counting function

- Take a cube packing ${\cal{CP}}$ and $z\in\mathbb{Z}^d$
	-
	- $_z$ the number of cubes inside $C_z.$

- $N_z(\mathcal{CP}) = 1$ $N_z(\mathcal{CP}) = 2$ $N_z(\mathcal{CP}) = 3$
-periodic. Denote by $E(.)$ the averaging \bar{z}_z is $2\mathbb{Z}^d$ -periodic. Denote by $E(.)$ the averaging
perator.
rst moment $\mathcal{M}_1 = E(N_z) = (\frac{3^d}{4^d})N$. operator.
- First moment $\mathcal{M}_1=E(N)$ $\mathcal{L}_z) = (\frac{3^d}{4^d})N$.

Maximal second moment

- We want to find minimal values of the second moment, i.e. $\mathcal{M}_2 = E(N_z^2).$ One defines the :
- One defines the space

$$
\mathcal{G} = \left\{ \forall x \in \{0, 1, 2, 3\}^d \text{ one has } \sum_{x+\{0,1\}^d} f(x) = 1 \text{ and } f(x) \ge 0 \right\}
$$

and $f(x) \ge 0$
in the tilings correspond to $(0, 1)$ -vectors of \mathcal{G} .

Cube tilings correspond to $(0,1)$ -vectors of ${\cal G}.$

 $\frac{0,1}{N_z}$ We will prove that $\mathcal{M}_2 = E(N_z(f)^2)$, with $f\in\mathcal{G}$, is maximal for f associated to a regular cube tiling. maximal for f associated to a regular cube tiling.

Maximal second moment

Given $f\in\mathcal{G},$ define:

$$
M_i(f)(x) = \begin{cases} f(x) + f(x + e_i) & \text{if } x_i = 0 \text{ or } 2 \\ 0 & \text{if } x_i = 1 \text{ or } 3 \end{cases}
$$

 $F_i(f)$ belongs to ${\cal G}.$

- One proves $E(\{N_z(M_i(f))^2)\geq E(N_z(f)^2)$ for every
 $f\in\mathcal{G}.$ If $f\in\mathcal{G},$ then $M_d\ldots M_1(f)$ is the function of the reg $\overline{}$.
- If $f\in\mathcal{G}$, then M_d . ι $\ldots M_1(f)$ is the function of the regular cube tiling.
- So, the second moment \mathcal{M}_2 is maximal for regular cube tiling.

Lower bound

Theorem. If ${\cal{CP}}$ is a cube packing with N cubes, then its second moment \mathcal{M}_2 satisfies the inequality:

$$
M_1 + N(N-1)2^d + 2^d d\{q(q-1) + rq\} \le M_2
$$

with $N=4q+r, 0\leq r\leq 3$ and

$$
\mathcal{M}_1=(\frac{3^d}{4^d})N
$$

 $\frac{d}{dt}$ For $d=3$ and $N=4,$ the cube packing minimizing the second moment is the non-extendible one.

Proof of lower bound

- Take a cube packing A
- A^N
le collecti med in 3^d .
C
C If C_j for $1\leq j\leq 4^d$ is the collection of all 4×4 -cubes,
pntained in 3^d cubes C_j .
 $1 \leq j \leq 4^d$, the number of cubes A^i then every A^i is contained in 3^d
- cubes C_j .

e number d Denote by n_j , for $1 \le j \le 4^d$, the number of cubes A
contained in C_j .
 $\mathcal{M}_1 = \frac{1}{4^d} \sum n_j = (\frac{3^d}{4^d})N$ and $\mathcal{M}_2 = \frac{1}{4^d} \sum n_j^2$. contained in $C_j.$

$$
\mathcal{M}_1 = \frac{1}{4^d} \sum_j n_j = \left(\frac{3^d}{4^d}\right)N \text{ and } \mathcal{M}_2 = \frac{1}{4^d} \sum_j n_j^2.
$$

ote by t_{ij} the number of cubes C_k , containing A

 $\frac{d}{dt}$ Denote by t_{ij} the number of cubes C_k , containing A and A^j . One has:
 $\sum_{i\cdot}$

$$
\sum_{i < j} t_{ij} = \sum_j \frac{n_j(n_j - 1)}{2}
$$

Proof of lower bound

- Denote μ_{ij} the number of equal coordinates of A^i and A^j .
Then one has: A^j .
- .
.
. Then one has:

$$
t_{ij} = \left(\frac{3}{2}\right)^{\mu_{ij}} 2^d \ge 2^d + 2^{d-1} \mu_{ij} .
$$

or $\mu_{ij} = 0$ or 1.

with equality for $\mu_{ij}=0$ or 1

So, one gets:

$$
\sum_{i < j} t_{ij} \ge N(N-1)2^{d-1} + 2^{d-1} \sum_{i < j} \mu_{ij} \; .
$$

Proof of lower bound

Denote R_k the number of equal pairs in column $k.$ One \bullet has:

$$
\sum_{i
$$

Fix k ; if d_u is the number of vectors of value u in column , then it holds:

$$
R_k = \sum_{u=0}^{3} \frac{d_u(d_u - 1)}{2}, \ d_u \ge 0 \text{ and } \sum_{u=0}^{3} d_u = N.
$$

Writing $N=4q+r$ and minimizing over $d_{\boldsymbol{u}}$, one gets:

$$
R_k \geq 2q(q-1) + rq.
$$

THANKYOU

