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I. Torus

tilings and

packings
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Torus Cube Tilings

A special cube tiling is a

� � �

-periodic tiling of the space� �

by integral translates of the hypercube
���� � 	 �

.

A general cube tiling is a tiling of

� �
by translate of the

cube

���� � 	 �

.

Special cube tilings can be lifted to the torus.

There is only one special cube tiling in dimension




.

There are two special cube tilings in dimension

�

:
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Keller conjecture

Conjecture: for any general cube tiling, there exist at
least one face-to-face adjacency.

This conjecture was proved by Perron (1940) for
dimension � � 

.

Szabo (1986): if there is a counter-example to the
conjecture, then there is a counter-example, which is
special.

Lagarias & Shor (1992) have constructed
counter-example to the Keller conjecture in dimension� � 
 �

Mackey (2002) has constructed a counter-example in
dimension

� � �
.
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Cube packings

A cube packing is a packing of

� �

by integral translates
of cubes

���� � 	 �

, which is

� � �

-periodic.

If we cannot extend a cube packing by adding another
cube, then it is called non-extendible.

Non-extendible cube packing does not exist in
dimension




and

�

.

There is an unique non-extendible cube packing in
dimension

�

.

We are interested in the values of

�

, for which there is
a non-extendible cube packing with

�

cubes.
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non-extendible cube packing
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II. Algorithms of

generation
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Clique formalism

Associate to every cube

�

its center � � � � � 
� �� � � �

Two cubes with centers � and � � are non-overlapping if
and only if there exist a coordinate

�
, such that� �� � � �� � � �

.

The graph

� � is the graph with vertex set

� ��� 
� �� � � �

and two vertices being adjacent if and only if the
corresponding cubes do not overlap.

A clique

 

in a graph is a set of vertices such that any
two vertices in

 

are adjacent.

Cube tilings correspond to cliques of size

� �

in the
graph

� �.
All problems about those cube tilings are finite, since

� �

is finite, but the number of possibilities is huge.
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GAP enumeration

The graph

� � has a symmetry group of size
� ! � �

, which
acts on the

� �

elements

� ��� 
� �� � � �

Cliques are associated to subsets of those

� �
elements.

GAP has extremely efficient techniques (backtrack
search) for checking if two subsets are equivalent under
a permutation group.

We set

"$# � � �&% � �

and iterate
�

from

�

to

� �

:
For every subset in

"�(' # , consider all vertices, which
are adjacent to all element in

"�(' # .
Test if they are isomorphic to existing elements in

"�

and if not, insert them into

"� .
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Results for

In dimension

�

, there is a single non-extendible cube
tiling and there are

)

types of cube tilings.
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Results for

In dimension

�

, there is a single non-extendible cube
tiling and there are

)

types of cube tilings.

In dimension

�

, the repartition is as follows:

* + , - . / 0 1 2 3 +4 + + + , + - + . + / + 0

5 6 4 4 4 4 4 4 4 - 2 0 , . 4 1 + 4 4 4 1 . .
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Flipping algorithm

�

-dimensional cube tilings suggest a flipping algorithm:

This algorithm uses face-to-face adjacencies to
generate new tilings.

We know that this flipping algorithm will not work in
dimension

� �
, since there are cube tilings with no

face-to-face adjacencies.

This algorithm works in dimension

�

and

�

.
– p.11/26



Random generation

Another possibility is to take cubes at random and add
them if and only if they do not overlap, until there is no
space left any-more.

Practical implementation:
Generate elements at random and add them if they
do not overlap.
After the number of failures in the random
generation, reach a certain threshold, enumerate all
possible cubes, which do not overlap.
Then, choose element at random in this list and
update the list by removing cubes, which will overlap.
Finish, when there is no choice left.
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Greedy and Metropolis algorithm

If one wants to generate non-extendible cube packings
with low density, then some other strategies are
possible:

Greedy algorithm In the choice of a cube at random,
select the one, which covers the most important part of
the space.

Metropolis algorithm Take an existing non-extendible
cube packing with low density and then:

Remove some elements chosen at random in this
cube packing.
Do a random packing procedure on the left holes.
If the density of the obtained non-extendible cube
packing is too high, then discard it; otherwise, take it
as basis for future computations.
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III. non-extendible

cube

packings
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Extension of cube packings

Theorem A cube packing with

�

cubes,

� � � � � �
tiles

is extendible to a cube tiling.

Given
a cube packing with

� � � 7

cubes of coordinates � 8,
 � 9 � � � � 7

,
a coordinate

:

and
a value ; � � ��� 
� �� � �

.

The induced cube packing is the cube packing of

� �' #

obtained by taking all vectors � 8 with � 8< � ;� ; = 


>&? @ A � B

and removing the

:

-th coordinate.
Such cube packings have at least

� �' # � 7

tiles.

The proof is by induction, using induced cube packings.
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Extension of theorem

The complement of an non-extendible cube packing

CD

is the set

� � � CD

.

Conjecture: If

C D

is an non-extendible cube packing
with

� � � �

tiles, then its complement is of the same
shape, as the one in dimension

�
.

Conjecture: If

C D

is a cube packing with

� � � E

cubes,
then it is extendible by at least one cube.

A complement of a cube tiling is called irreducible if it is
not the union of cube tilings on different layers.

Conjecture: For a given

7

, there is a finite number of
irreducible complements of volume

� � 7

.
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Low density cube packings

Denote by

F > � B

the smallest number of cubes of
non-extendible cube packing.F > � B � �

and

F > � B � �

.

The following inequality holds:

F > � = G B � F > � B F > G BH

The cube packing realizing this is constructed by
“product” of two cube packings of

� I

and

� J

So,

F >  B � F > � BLK F > � B � 
 
.

But no random algorithm manage to find such a
packing!
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Covering sets

A covering set

CM

is a set of cubes (possibly,
overlapping), such that we cannot add a cube without
overlapping with at least one cube in

C M
.

Let us denote by

N > � B

the smallest number of cubes in
covering sets.N > � B � F > � B

.�PO N > � B

if and only for every set of

�

cubes (possibly
overlapping), there exist a cube, which do not overlap
with them.

Theorem. One has the relation

N > � = 
 B � � N > � B � 

� = 
H
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Proof of theorem

Lemma. If

�

satisfies the inequality

Q R ST U O N > � B
, then

one has

N > � = 
 B V �

.

Take

�

vectors in

� ��� 
� �� � � �W #

and consider its last
coordinate. At least

X S T Y vectors satisfy to � � W # � Z

for
some

Z � � ��� 
� �� � �

.

In illustrated proof below, one has

� � �

and

� � E

.
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Proof of theorem
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Eliminate those vectors and, for the remaining vector, their
last coordinate
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Proof of theorem
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We have

[ R ST \ (O N > � B
) remaining vectors; so, one can find

a not overlapped cube.
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Proof of theorem
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By the basic assumption, setting the last coordinate to

Z = �

>&? @ A � B

gives a cube, which does not overlap with the
preceding ones.
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Proof of theorem

Set

� � ] T ^ _ � `' #R
a

.

Then it holds:

� �
� �

bcbcbed
� ] T ^ _ � `' #R

a
�

fcfcfeg � � N > � B � 

� O N > � BH

So, by the Lemma,

N > � = 
 B V �
, i.e.:

N > � = 
 B � � N > � B � 

� = 
H
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Values of

N > � B � h

, while

F > � B � �

.

Above theorem yields

F > E B � 
 �

and

F >  B � 
 �H
We found (by random method) many non-extendible
packings with


 �

cubes, but not with less than


 �

cubes.

Could it be that

F > E B � 
 �
?

It seems also likely, that
F >  B � 
 

and that the best
cube packing in dimension



is unique.

An interesting question if to estimate the asymptotic
behavior of

N > � B
or

F > � B

.
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IV. Second

moment
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The counting function

Take a cube packing

C D

and i � � �

�kj is the cube i = ���� � 	 �

of corner i

�j the number of cubes inside

� j .

�j > CD B � 
 �j > C D B � � �j > CD B � �

�j is

� � �

-periodic. Denote by

l >H B

the averaging
operator.

First moment # � l > �j B � > R m Tm B �

.
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Maximal second moment

We want to find minimal values of the second moment,
i.e. n � l > � nj B

.

One defines the space

o �
pq

qsr

Fut � ��� 
� �� � � � v �Hw � � � ��� 
� �� � � �

one has x W yz|{ # } m F > � B � 


and
F > � B � �

~ q
qs�

Cube tilings correspond to
> � � 
 B

-vectors of

o

.

We will prove that n � l > �j > F B n B

, with

F � o

, is
maximal for

F
associated to a regular cube tiling.
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Maximal second moment

Given

F � o

, define:

� > F B > � B �
F > � B = F > � =�� � B

if �� � � or

�

�

if �� � 


or

�H

� > F B

belongs to

o

.

One proves

l > � �j > � > F B B n B � l > �j > F B n B

for everyF � o

.

If

F � o

, then �H H H # > F B
is the function of the regular

cube tiling.

So, the second moment n is maximal for regular cube
tiling.
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Lower bound

Theorem. If

CD

is a cube packing with

�

cubes, then its
second moment n satisfies the inequality:

# = � > � � 
 B � � = � � � �&� >� � 
 B =�� � � � n

with

� � �� =� ,

� � � � �

and

# � > � �
� � B �H

For

� � �

and

� � �
, the cube packing minimizing the

second moment is the non-extendible one.
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Proof of lower bound

Take a cube packing

�#

,. . . ,

� S

.

If

� < for


 � : � � �

is the collection of all
�K �

-cubes,
then every

��

is contained in

� �

cubes
� <.

Denote by � <, for


 � : � � �

, the number of cubes

��

contained in

� <.

# � 

� � <

� < � > � �
� � B �

and n � 

� � <

� n <H

Denote by

Z� < the number of cubes

� 8, containing

��

and

� <

. One has:
�� <

Z� < �
<

� < > � < � 
 B
� H

– p.25/26



Proof of lower bound

Denote �� < the number of equal coordinates of
��

and� <

.

Then one has:

Z� < � > �
� B��� � � � � � = � �' # �� <H

with equality for �� < � � or



.

So, one gets:

�� <
Z� < � � > � � 
 B � �' # = � �' #

�� <
�� <H

– p.25/26



Proof of lower bound

Denote

� 8 the number of equal pairs in column
9

. One
has:

�� <
�� < �

�
8�� #

� 8H
Fix

9

; if

��� is the number of vectors of value � in column9

, then it holds:

� 8 �
R

� � z
� � > � � � 
 B

� � � � � �

and

R
� � z

� � � �H

Writing

� � �� = � and minimizing over

� � , one gets:
� 8 � �� >� � 
 B = � � H
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THANK YOU
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