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Torus Cube Tilings

A special cube tiling is a 4Z¢-periodic tiling of the space
R? by integral translates of the hypercube [0, 2]¢.

A general cube tiling is a tiling of R¢ by translate of the
cube [0, 2]¢.
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pecial cube tilings can be lifted to the torus.
nere is only one special cube tiling in dimension 1.

nere are two special cube tilings in dimension 2:
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Keller conjecture

=

for any general cube tiling, there exist at
least one face-to-face adjacency.

This conjecture was proved by Perron (1940) for
dimension n < 6.

Szabo (1986): if there is a counter-example to the
conjecture, then there is a counter-example, which is
special.

Lagarias & Shor (1992) have constructed
counter-example to the Keller conjecture in dimension
d > 10

Mackey (2002) has constructed a counter-example in
dimension d > 8.

-
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Cube packings

A cube packing is a packing of R? by integral translates
of cubes [0, 2], which is 4Z%-periodic.

If we cannot extend a cube packing by adding another
cube, then it is called non-extendible.

Non-extendible cube packing does not exist In
dimension 1 and 2.

There is an uniqgue non-extendible cube packing in
dimension 3.

We are interested in the values of IV, for which there is
a non-extendible cube packing with N cubes.

-
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non-extendible cube packing
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Il. Algorithms of

generation



Clique formalism

=

Two cubes with centers z and 2’ are non-overlapping if
and only if there exist a coordinate ¢, such that
|z, — x| = 2.

Associate to every cube C its center ¢ € {0,1,2,3}¢

The graph G, is the graph with vertex set {0, 1,2, 3}¢
and two vertices being adjacent if and only if the
corresponding cubes do not overlap.

A clique S in a graph is a set of vertices such that any
two vertices in S are adjacent.

Cube tilings correspond to cliques of size 2¢ in the
graph G,.

All problems about those cube tilings are finite, since Gy
IS finite, but the number of possibilities is huge. J
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GAP enumer ation

® The graph G, has a symmetry group of size d!8¢, which
acts on the 4¢ elements {0, 1, 2, 3}¢

# Cliques are associated to subsets of those 4¢ elements.
GAP has extremely efficient technigues (backtrack
search) for checking if two subsets are equivalent under
a permutation group.

® We set L; = {{v}} and iterate i from 2 to 2%

s For every subsetin L;_1, consider all vertices, which
are adjacent to all elementin L;_;.

s Test if they are isomorphic to existing elements in L;
and if not, insert them into L;.

-
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Resultsfor d < 4

o .

# In dimension 3, there is a single non-extendible cube
tiling and there are 9 types of cube tilings.
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Resultsfor d < 4
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# In dimension 3, there is a single non-extendible cube

=

tiling and there are 9 types of cube tilings.
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# In dimension 4, the repartition is as fo

lows:

N1l 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16

nb|0 0 0 0 0 0 0 38 6 24 0

1 0 0 0 744

.

—p.10/2



Flipping algorithm
-

3-dimensional cube tilings suggest a flipping algorithm:

Yy

This algorithm uses face-to-face adjacencies to
generate new tilings.

We know that this flipping algorithm will not work in
dimension > 8, since there are cube tilings with no
face-to-face adjacencies.

This algorithm works in dimension 3 and 4. J

—p.11/2



Random generation
B o

# Another possiblility is to take cubes at random and add

them if and only if they do not overlap, until there is no
space left any-more.

# Practical implementation:

» Generate elements at random and add them if they
do not overlap.

» After the number of failures in the random
generation, reach a certain threshold, enumerate all
possible cubes, which do not overlap.

o Then, choose element at random iIn this list and
update the list by removing cubes, which will overlap.

o Finish, when there is no choice left.

o -
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Greedy and Metropolisalgorithm
- -

# |If one wants to generate non-extendible cube packings
with low density, then some other strategies are
possible:

#® Greedy algorithm In the choice of a cube at random,
select the one, which covers the most important part of
the space.

# Metropolis algorithm Take an existing non-extendible
cube packing with low density and then:

» Remove some elements chosen at random in this
cube packing.
s Do a random packing procedure on the left holes.

s If the density of the obtained non-extendible cube
packing is too high, then discard it; otherwise, take it
L as basis for future computations. J
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Extension of cube packings

-

r A cube packing with N cubes, N > 2¢ — 3 tiles
IS extendible to a cube tiling.
# Given
s a cube packing with 2¢ — § cubes of coordinates z*,
1 <k<2¢—4,

s a coordinate 5 and

s avalue a € {0,1,2,3}.

The induced cube packing is the cube packing of R¢~1
obtained by taking all vectors z* with 2% = a,a + 1

(mod 4) and removing the j-th coordinate.
Such cube packings have at least 2¢—1 — § tiles.

L # The proof is by induction, using induced cube packings.J
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Extension of theorem

-

The complement of an non-extendible cube packing CP
is the set R¢ — CP.

If CP Is an non-extendible cube packing

with 2¢ — 4 tiles, then its complement is of the same
shape, as the one in dimension 3.

If CP is a cube packing with 2¢ — 5 cubes,
then it is extendible by at least one cube.

A complement of a cube tiling is called irreducible if it is
not the union of cube tilings on different layers.

For a given 4, there is a finite number of
irreducible complements of volume 2%5.

-
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L ow density cube packings

=

Denote by f(d) the smallest number of cubes of
non-extendible cube packing.

f(3)=4and f(4) =8.
The following inequality holds:

fln+m) < f(n)f(m).

The cube packing realizing this is constructed by
“product” of two cube packings of R” and R™

So, f(6) < f(3) x f(3) = 16.

But no random algorithm manage to find such a
packing!



Covering sets
-

A covering set CS Is a set of cubes (possibly,
overlapping), such that we cannot add a cube without
overlapping with at least one cube in CS.

Let us denote by i (d) the smallest number of cubes in
covering sets.

h(d) < f(d).

N < h(d) if and only for every set of N cubes (possibly

overlapping), there exist a cube, which do not overlap
with them.

One has the relation

Bd+1) > 4h(‘2 ~ 1J 1
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Proof of theorem

-

r If N satisfies the inequality |22 | < h(d), then
one has h(d+1) > N.

® Take N vectorsin {0,1,2,3}¢*! and consider its last
coordinate. At least [4'] vectors satisfy to 24,1 = ¢ for
somet € {0,1,2,3}.

# |In illustrated proof below, one has d = 3 and N = 5.
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Proof of theorem

0013

1 0 1 0 2
2 3 - 2 30
3 1 3120
0 3 0—3—33

Eliminate those vectors and, for the remaining vector, their
last coordinate

o -
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Proof of theorem

1 0 2
2 30
3120
0—3—33

We have |2Y | (< h(d)) remaining vectors; so, one can find

1 0 2
2 30
312

0 20

a not overlapped cube.
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Proof of theorem
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0 20
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By the basic assumption, setting the last coordinate to ¢ + 2

(mod 4) gives a cube, which does not overlap with the

preceding ones.
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Proof of theorem

® Set N = {‘”L(‘z?_lJ.

® Then it holds:

{%J ) 3 W?lJ . rh(di — 1J < h(d)

® So, by the Lemma, h(d+ 1) > N, i.e.:

h(d+1) > Fh(dg) - 1J +1.




Valuesof f(d)

h(4) =7, while f(4) = 8.
Above theorem yields
f(5) > 10 and f(6) > 14 .
We found (by random method) many non-extendible
packings with 12 cubes, but not with less than 12 cubes.

Could it be that f(5) = 127

It seems also likely, that f(6) = 16 and that the best
cube packing in dimension 6 IS unigue.

An interesting question if to estimate the asymptotic
behavior of h(d) or f(d).

-
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moment



The counting function

® Take a cube packing CP and z € Z¢

s O, isthe cube z + [0,4]¢ of corner 2
s N, the number of cubes inside C..

N.(CP)=1 N,(CP)=2 N.,(CP)=3
® N, is 2Z¢%-periodic. Denote by E(.) the averaging
operator.

® Firstmoment M; = E(N,) = (3—d)N.

o )



M aximal second moment

o .

® We want to find minimal values of the second moment,
l.e. Mo = E(Ng)

#® One defines the space

f:{0,1,2,3}4 - R.
G =14 Vre{0,1,2,3}%onehas } . . flz) =1
and f(z) >0

Cube tilings correspond to (0, 1)-vectors of G.

» We will prove that My = E(N,(f)?), with f € G, is
maximal for f associated to a regular cube tiling.

o -



M aximal second moment

Given f € G, define:

flx)+ fx+e) If xz;=00r2
0O If z,=10r3.

M;(f)(x) = {

M;(f) belongs to G.

One proves E({N,(M;(f))?) > E(N,(f)?) for every
feaqg.

If f €g,then M;... M;(f)is the function of the regular
cube tiling.

So, the second moment Ms is maximal for regular cube

tiling.
o
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L ower bound

o -

#® Theorem. If CP Is a cube packing with N cubes, then its
second moment M, satisfies the inequality:

Mi+ N(N —1)2¢+2%{q(qg — 1) + rq} < My
with N =4¢+r,0 <r <3 and

3d

My = (E)N -

#® Ford=3and N =4, the cube packing minimizing the
second moment is the non-extendible one.

o -
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Proof of lower bound

Take a cube packing Al,..., AV,

If C; for 1 < j < 4%is the collection of all 4 x 4-cubes,
then every A® is contained in 3¢ cubes C;.

Denote by n;, for1 < j < 4% the number of cubes A*
contained in Cj.

4dZn3 Nand M2—4dZn

Denote by ¢;; the number of cubes C}, containing A
and A’. One has:

Sty =3 M= =

Z <] J —p.25/2




Proof of lower bound

=

Denote 1;; the number of equal coordinates of A and
Al
Then one has:

SN _
tm — (§)U132d Z 2d _I_ 2d 1,“7,3 .

with equality for p;; = 0 or 1.

S0, one gets:
D by > N(N =127 4 2971) 5
i< 1<J
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Proof of lower bound

o .

#® Denote R; the number of equal pairs in column . One

has:
d

Z,Uz'j :ZRk-

i< k=1

® Fix k;if d, 1s the number of vectors of value « in column
k, then it holds:

3
d, (d, — 1
szz “("; ), d, >0 and Zdu:N.

# Writing N = 4¢ + r and minimizing over d,,, one gets:

L R >2q(q—1)+rq. J
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THANK YOU
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