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|. Introduction



Definition
» We consider groups of affine transformations acting on R" by
X+— xA+b

> A crystallographic group is a group G of affine
transformations of R”,

» Containing the translation group Z" as a normal subgroup.
» Whose quotient G/7" is a finite group

The quotient G/7 is called a point group and denoted by
Point(G).
» Some examples:

» Gy = Z" acting on R" by translations, Point(G;y) = {Id}
» The group G;:

X X+ tandx— —x+twithteZ"

has Point(Gy) = {Id, —Id}.
» The group Point(G) acts on the torus R"/zn.



Matrix expressions

» Computationally it is better to write the vectors x,y € R" as
x'=(1,x), ¥y = (1,y) and the pair (A, b) as the matrix

1 b
[
A= < Ll )
So, we rewrite y = xA+ b as y' = x'A’.
» If G is a crystallographic group and the elements of G are

matrices ( é f\ > then the point group Point(G) is formed

by all those matrices A.

» The point group is a finite subgroup of GL,(Z).



ll. Examples



Wallpaper groups

1. Wallpaper groups without rotations:
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2. Wallpaper groups with rotations of order 2:
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Wallpaper groups

1. Wallpaper groups with rotations of order 3:
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3. Wallpaper groups with rotations of order 6:
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The space groups

» The 3-dimensional crystallographic groups ( “Space groups”)
have been classified by E.S. Fedorov, A.M. Schonflies and W.
Barlow.

» There are 219 classes up to equivalence and 230 classes if one
distinguish up to reflections.

» 32 types of point groups.

» They have a special naming system and many other things
explained in “International Tables for Crystallography”.

» Another competing nomenclature:

m J.H. Conway, O. Delgado Friedrichs, D.H. Huson, W.P.
Thurston, On three-dimensional space groups. Beitrage
Algebra Geom. 42-2 (2001) 475-507.



Affine Coxeter groups

» A Coxeter group G(m) is a group generated by g1,...,8Mm,
whose set of relations is

g,-2 =1 and (gigj)™ = 1 with mj; = m;; > 2

» The Coxeter matrix Gram(m) is the symmetric matrix

Gram(m) = (cos( 7r’_j

Ni<ij<m

» The generators gi,...,gn are reflections for the scalar
product Gram(m) in a M dimensional space RM along a
fundamental simplex S defined by M linear inequalities.

» If the matrix Gram(m) is positive definite then the group
G(m) is finite and the classification is known.

> If the matrix Gram(m) is positive then the group G(m) is a
crystallographic group and the classification is known.



Finite Coxeter groups

» List of finite irreducible Coxeter groups

names order linear representations
An (n+ 1)1 | GLa(Z)
Bn 2"n! GL,(Z)
D, 2n=Inl | GL,(Z)
Ee 51840 GLe(Z)
Fa 1152 GL4(Z)
E; 2003040 | GL7(Z)
Es 696729600 | GLg(Z)
Hs 120 | GL3(Q(V5))
Ha 14400 | GL4(Q(V/5))
|2(m) 2m GLQ(R)

» Only ones, which can occur as subgroups of GL,(Z) are A,
an Dnv Enr F41 I2(6)



Root lattices

> A lattice L is a subset of R" of the form Zv; + - --+ Zv,. The
group of isometries preserving it is called Aut(L).

» It is the point group of a lattice L

» A root lattice is a lattice spanned by the roots of a finite
irreducible Coxeter group.

» The root lattices are:

Coxeter groups | Root lattices |Aut(L)|
A, A, 2(n+1)!
B, B, and C, 2"n!
D, D, 20=1nl (if n # 4)
Fa Fa 1152
Es Es 103680
E; = 2903040
Es Es 696729600




Lattices having Coxeter groups as point groups

» If L is a lattice then the dual L* is defined as

L*={xeR"| (x,y) € Zforye L}

> Results:
Coxeter groups lattices
An Coxeter lattices A],
Dn Dy, Df and D} if nis even
Fa Fa
E6 E6 and Eg
E7 E7 and E;
Es Es

» A Coxeter lattice A7, is defined if r divides n+ 1.



Crystallographic Coxeter groups

» Crystallographic Coxeter groups
Cryst group | point group
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[Il. Wyckoff positions



Definitions

> Let G be a crystallographic group.

» If v € R", G is a crystallographic group then the stabilizer
Stabg(v) is a finite subgroup of G identified with a subgroup
of the point group.

» If H is a finite subgroup of G, then the set of point stabilized
by H form a plane Py in R”.

» The orbit of Py under G corresponds to the conjugacy class of
H under G and is called the Wyckoff position.

» If G has no non-trivial Wyckoff position, then G is called a
Bieberbach group, that is every point has a trivial stabilizer
and the quotient R"/G is a manifold.

» The interest of Wyckoff positions is to be able to describe
crystallographic structures with less parameters, i.e., less
measures are needed.



A two dimensional case

» From the crystallographic group A,




Computational method

» It is generally hard to compute the Wyckoff positions.
» Basic algorithm given a space group G:

» Compute the conjugacy classes of subgroups of Pt(G).

» For every conjugacy class H find a minimal generating set
hi,.ooshm

» Take a lifting h; of the h; and compute the solution set of
71;(x) = x + t; with t; € Z" up to the transaltion group Z".

» Implemented in the GAP package cryst

> See also

wJ. Fuksa, P. Engel, Derivation of Wyckoff positions of
N-dimensional space groups. Theoretical considerations., Acta
Cryst. Sect. A-6 50 (1994) 778-792.



IV. Lattice
symmetry



Symmetry of lattices

» A symmetry of a lattice L is an isometry u of R” preserving 0
such that L = u(L).

» If one selects a basis v of L and consider the Gram matrix G,
then a u corresponds to a matrix P € GL,(Z) such that
Gy = PG,PT.

> If A€ SZ,, then the symmetry group
Aut(A) = {P € GL,(Z) | A= PAPT}

is finite.



AUTO/ISOM

» We actually want to compute Aut(A).

» The method is to find a characteristic finite set V of vectors,
which is invariant under Aut(A), which Z-span Z".
For such a set we have VP = V.

» A technique is to compute the vectors v of norm vAvT < A
for a well specified A\. AUTO is then the program computing
automorphism group of lattices.

» ISOM is the program for testing lattices up to isomorphism.

» Sometimes, instead of ISOM/AUTO it is better to use nauty
with the same vector family and the edge colored graph on V
defined by the colors v;Mv;".

> See for more details

w \W. Plesken, B. Souvignier, Computing isometries of lattices.
Computational algebra and number theory (London, 1993). J.
Symbolic Comput. 24 (1997), no. 3-4, 327-334.



V. Bravais space
and

normalizer



Space of invariant forms

v

Given a subgroup G of GL,(Z), define

SP(G)={ X € S" such that gXg" =X for all g€ G }

v

If G is finite then dimSP(G) > 0.

Given a linear space SP of S”, define

v

Aut(SP) = { g € GL,(Z) such that }

gXgT =X for all X € SP

v

A Bravais group satisfies to Aut(SP(G)) = G and SP(G) is
its Bravais space.

v

Every finite group is contained in a Bravais group
G C Aut(SP(G)).



The 3-dimensional Bravais spaces
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Triclinic Monoclinic Rhombohedral
(dimension 6) (dimension 4) (dimension 4)



The 3-dimensional Bravais spaces

a#c azb=#c
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Tetragonal Orthorhombic Cubic Hexagonal

(dimension 2)  (dimension 3)  (dimension 1)  (dimension 2)



Normalizer

» If G is a group H a subgroup of G then the normalizer is
{g€G|gHg =H)}

» Thm. (Zassenhaus) If G is a finite subgroup of GL,(Z) then
one has the equality

{g € GLA(Z) | gSP(G)g™ = SP(G)} = Nev,(z)(6)

So, for example if G = {£/,}
» SP(G)=S5"
> Nei,z)(6) = GLa(Z)
» The normalizer is important since it is the automorphism
group of the bravais space.



G-perfect matrices

» A matrix A € SP(G) is G-perfect if:
B € SP(G) and xBxT = min(A) for all x € Min(A)

implies B = A.
» If Ais G-perfect then:
Partition Min(A) into Min(A) = O; UO,U---U O,,
with O; = Ugegx.g for some x € Min(A) (O; is an orbit).

Define pi = )" co X' x
Define the G-perfect domain by

v

vV vy

Domg(A) = {) _ Aipi with \; > 0}
i=1

» A matrix A € SP(G) is G-extreme if it is a local maximum in
SP(G) of the packing density.
> G-extreme = G-perfect.



Voronoi algorithm and the normalizer

» Thm. (Bergé, Martinet & Sigrist): G-perfect domains realize
a polyhedral subdivision of SP(G) N SZ,.
There is a finite number of G-perfect domains up to
NeL,(z)(G).
» We can enumerate all G-perfect matrices with analogs of
Voronoi algorithm.
» The generators of the normalizers come from:
» The automorphism of a G-perfect form, which do not belong
to G and preserve SP(G) globally.
» The matrices P realizing equivalence of a G-perfect domain.
> See for more details:

mJ. Opgenorth, Dual cones and the Voronoi algorithm.
Experiment. Math. 10-4 (2001) 599-608.



VI. Classification methods



Having the point groups

> Suppose that we have G a finite subgroup of GL,(Z), we want
to find the crystallographic groups G having G as point group.

» We write the elements of G as

1 tg+t n
(0 g >forg€GanthZ

> Actually t; € V = R"/7" and belongs to
ZHG,V)={t | t1 =0and tg = tg.h+ ty}

> If one adds the function d; = v.g — v to tg it is simply a
translation. Denote B!(G, V) the space of such functions.

> So, the space of possible tg; coincide with the quotient space
HY(G, V) = Z'(G, V)/BY(G, V) up to Ngi,z)(G)

> tg; € Z" if and only if there is a point of stabilizer G.



The methodology

» The enumeration of crystallographic groups is reduced to the
enumeration of finite subgroups of GL,(Z).

Two subgroups Gy, Gy of GL,(Z) are conjugate if there exist
P € GL,(Z) such that G; = PGyP~!
Theorem Given a finite subgroup G of GL,(Q) there exist a
maximal finite subgroup H of GL,(Q) containing it.
The method is
» Enumerate the maximal finite subgroups of GL,(Q).
» Then their Z-classes.
» Then their conjugacy classes of subgroups.
» Then the corresponding crystallographic groups.
See for more details
wJ. Opgenorth, W. Plesken and T. Schulz, Crystallographic
algorithms and tables, Acta Crystallographica Section A, 54-5,
(1998), 517-531.
w B. Eick and Bernd Souvignier, Algorithms for crystallographic

groups, International Journal of Quantum Chemistry, 106,
316-343 (2006).
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Zassenhaus/Plesken theory

» Theorem For a fixed dimension n, there exist a finite number
of maximal irreducible finite subgroups of GL,(Z) up to
conjugacy.

» The list is enumerated up to dimension 31:

- \W. Plesken, M. Pohst, On maximal finite irreducible subgroups
of GL,(Z). I. The five and seven dimensional cases. Math.
Comp. 31-138 (1977) 536-551.

m  G. Nebe and W. Plesken, Finite rational matrix groups, Mem.
Amer. Math. Soc. 116 (1995), no. 556, viii+144 pp.

m G. Nebe, Finite subgroups of GLy4(Q), Experiment. Math. 5-3
(1996) 163-195.

m G. Nebe, Finite subgroups of GL,(Q) for 25 < n < 31. Comm.
Algebra 24-7 (1996) 2341-2397.
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