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I. Introduction



Definition

I We consider groups of affine transformations acting on Rn by

x 7→ xA + b

I A crystallographic group is a group G of affine
transformations of Rn,

I Containing the translation group Zn as a normal subgroup.
I Whose quotient G/Zn is a finite group

The quotient G/Zn is called a point group and denoted by
Point(G ).

I Some examples:
I G1 = Zn acting on Rn by translations, Point(G1) = {Id}
I The group G2:

x 7→ x + t andx 7→ −x + t with t ∈ Zn

has Point(G2) = {Id ,−Id}.
I The group Point(G ) acts on the torus Rn/Zn.



Matrix expressions

I Computationally it is better to write the vectors x , y ∈ Rn as
x ′ = (1, x), y ′ = (1, y) and the pair (A, b) as the matrix

A′ =

(
1 b
0 A

)
.

So, we rewrite y = xA + b as y ′ = x ′A′.

I If G is a crystallographic group and the elements of G are

matrices

(
1 b
0 A

)
then the point group Point(G ) is formed

by all those matrices A.

I The point group is a finite subgroup of GLn(Z).



II. Examples



Wallpaper groups

1. Wallpaper groups without rotations:

p1
pm pg cm

2. Wallpaper groups with rotations of order 2:

p2
p2mm p2mg

p2gg c2mm



Wallpaper groups

1. Wallpaper groups with rotations of order 3:

p3 p3m1 p31m
2. Wallpaper groups with rotations of order 4:

p4 p4mm p4gm
3. Wallpaper groups with rotations of order 6:

p6 p6mm



The space groups

I The 3-dimensional crystallographic groups (“Space groups”)
have been classified by E.S. Fedorov, A.M. Schonflies and W.
Barlow.

I There are 219 classes up to equivalence and 230 classes if one
distinguish up to reflections.

I 32 types of point groups.

I They have a special naming system and many other things
explained in “International Tables for Crystallography”.

I Another competing nomenclature:

à J.H. Conway, O. Delgado Friedrichs, D.H. Huson, W.P.
Thurston, On three-dimensional space groups. Beiträge
Algebra Geom. 42-2 (2001) 475–507.



Affine Coxeter groups

I A Coxeter group G (m) is a group generated by g1, . . . , gM ,
whose set of relations is

g2
i = 1 and (gigj)

mij = 1 with mji = mij ≥ 2

I The Coxeter matrix Gram(m) is the symmetric matrix

Gram(m) = (cos(
π

mij
))1≤i ,j≤M

I The generators g1, . . . , gM are reflections for the scalar
product Gram(m) in a M dimensional space RM along a
fundamental simplex S defined by M linear inequalities.

I If the matrix Gram(m) is positive definite then the group
G (m) is finite and the classification is known.

I If the matrix Gram(m) is positive then the group G (m) is a
crystallographic group and the classification is known.



Finite Coxeter groups

I List of finite irreducible Coxeter groups

names order linear representations

An (n + 1)! GLn(Z)
Bn 2nn! GLn(Z)
Dn 2n−1n! GLn(Z)
E6 51840 GL6(Z)
F4 1152 GL4(Z)
E7 2903040 GL7(Z)
E8 696729600 GL8(Z)

H3 120 GL3(Q(
√

5))

H4 14400 GL4(Q(
√

5))
I2(m) 2m GL2(R)

I Only ones, which can occur as subgroups of GLn(Z) are An,
Bn, Dn, En, F4, I2(6).



Root lattices

I A lattice L is a subset of Rn of the form Zv1 + · · ·+ Zvn. The
group of isometries preserving it is called Aut(L).

I It is the point group of a lattice L

I A root lattice is a lattice spanned by the roots of a finite
irreducible Coxeter group.

I The root lattices are:
Coxeter groups Root lattices |Aut(L)|

An An 2(n + 1)!
Bn Bn and Cn 2nn!
Dn Dn 2n−1n! (if n 6= 4)
F4 F4 1152
E6 E6 103680
E7 E7 2903040
E8 E8 696729600



Lattices having Coxeter groups as point groups

I If L is a lattice then the dual L∗ is defined as

L∗ = {x ∈ Rn | 〈x , y〉 ∈ Z for y ∈ L}

I Results:
Coxeter groups lattices

An Coxeter lattices Ar
n

Dn Dn, D∗
n and D+

n if n is even
F4 F4

E6 E6 and E∗6
E7 E7 and E∗7
E8 E8

I A Coxeter lattice Ar
n is defined if r divides n + 1.



Crystallographic Coxeter groups

I Crystallographic Coxeter groups

Cryst group point group

Ãn An

B̃n Bn

C̃n Bn

D̃n Dn

Ẽ6 E6

Ẽ7 E7

Ẽ8 E8

F̃4 F4



III. Wyckoff positions



Definitions

I Let G be a crystallographic group.
I If v ∈ Rn, G is a crystallographic group then the stabilizer

StabG (v) is a finite subgroup of G identified with a subgroup
of the point group.

I If H is a finite subgroup of G , then the set of point stabilized
by H form a plane PH in Rn.

I The orbit of PH under G corresponds to the conjugacy class of
H under G and is called the Wyckoff position.

I If G has no non-trivial Wyckoff position, then G is called a
Bieberbach group, that is every point has a trivial stabilizer
and the quotient Rn/G is a manifold.

I The interest of Wyckoff positions is to be able to describe
crystallographic structures with less parameters, i.e., less
measures are needed.



A two dimensional case

I From the crystallographic group Ã2



Computational method

I It is generally hard to compute the Wyckoff positions.
I Basic algorithm given a space group G :

I Compute the conjugacy classes of subgroups of Pt(G ).
I For every conjugacy class H find a minimal generating set

h1, . . . , hm

I Take a lifting h̃i of the hi and compute the solution set of
h̃i (x) = x + ti with ti ∈ Zn up to the transaltion group Zn.

I Implemented in the GAP package cryst
I See also

à J. Fuksa, P. Engel, Derivation of Wyckoff positions of
N-dimensional space groups. Theoretical considerations., Acta
Cryst. Sect. A-6 50 (1994) 778–792.



IV. Lattice
symmetry



Symmetry of lattices

I A symmetry of a lattice L is an isometry u of Rn preserving 0
such that L = u(L).

I If one selects a basis v of L and consider the Gram matrix Gv,
then a u corresponds to a matrix P ∈ GLn(Z) such that
Gv = PGvP

T .

I If A ∈ Sn
>0, then the symmetry group

Aut(A) = {P ∈ GLn(Z) | A = PAPT}

is finite.



AUTO/ISOM

I We actually want to compute Aut(A).

I The method is to find a characteristic finite set V of vectors,
which is invariant under Aut(A), which Z-span Zn.
For such a set we have VP = V.

I A technique is to compute the vectors v of norm vAvT ≤ λ
for a well specified λ. AUTO is then the program computing
automorphism group of lattices.

I ISOM is the program for testing lattices up to isomorphism.

I Sometimes, instead of ISOM/AUTO it is better to use nauty
with the same vector family and the edge colored graph on V
defined by the colors viMvT

j .

I See for more details

à W. Plesken, B. Souvignier,Computing isometries of lattices.
Computational algebra and number theory (London, 1993). J.
Symbolic Comput. 24 (1997), no. 3-4, 327–334.



V. Bravais space

and

normalizer



Space of invariant forms

I Given a subgroup G of GLn(Z), define

SP(G ) =
{

X ∈ Sn such that gXgT = X for all g ∈ G
}

I If G is finite then dimSP(G ) > 0.

I Given a linear space SP of Sn, define

Aut(SP) =

{
g ∈ GLn(Z) such that

gXgT = X for all X ∈ SP

}
I A Bravais group satisfies to Aut(SP(G )) = G and SP(G ) is

its Bravais space.

I Every finite group is contained in a Bravais group
G ⊂ Aut(SP(G )).



The 3-dimensional Bravais spaces

Triclinic
(dimension 6)

Monoclinic
(dimension 4)

Rhombohedral
(dimension 4)



The 3-dimensional Bravais spaces

Tetragonal
(dimension 2)

Orthorhombic
(dimension 3)

Cubic
(dimension 1)

Hexagonal
(dimension 2)



Normalizer

I If G is a group H a subgroup of G then the normalizer is

{g ∈ G | gHg−1 = H}

I Thm. (Zassenhaus) If G is a finite subgroup of GLn(Z) then
one has the equality

{g ∈ GLn(Z) | gSP(G )gT = SP(G )} = NGLn(Z)(G )

So, for example if G = {±In}
I SP(G ) = Sn

I NGLn(Z)(G ) = GLn(Z)

I The normalizer is important since it is the automorphism
group of the bravais space.



G -perfect matrices

I A matrix A ∈ SP(G ) is G -perfect if:

B ∈ SP(G ) and xBxT = min(A) for all x ∈ Min(A)

implies B = A.
I If A is G -perfect then:

I Partition Min(A) into Min(A) = O1 ∪ O2 ∪ · · · ∪ Or ,
I with Oi = ∪g∈Gx .g for some x ∈ Min(A) (Oi is an orbit).
I Define pi =

∑
x∈Oi

xT x
I Define the G -perfect domain by

DomG (A) = {
r∑

i=1

λipi with λi ≥ 0}

I A matrix A ∈ SP(G ) is G -extreme if it is a local maximum in
SP(G ) of the packing density.

I G -extreme ⇒ G -perfect.



Voronoi algorithm and the normalizer

I Thm. (Bergé, Martinet & Sigrist): G -perfect domains realize
a polyhedral subdivision of SP(G ) ∩ Sn

>0.
There is a finite number of G -perfect domains up to
NGLn(Z)(G ).

I We can enumerate all G -perfect matrices with analogs of
Voronoi algorithm.

I The generators of the normalizers come from:
I The automorphism of a G -perfect form, which do not belong

to G and preserve SP(G ) globally.
I The matrices P realizing equivalence of a G -perfect domain.

I See for more details:

à J. Opgenorth, Dual cones and the Voronoi algorithm.
Experiment. Math. 10-4 (2001) 599–608.



VI. Classification methods



Having the point groups

I Suppose that we have G a finite subgroup of GLn(Z), we want
to find the crystallographic groups G̃ having G as point group.

I We write the elements of G̃ as(
1 tg + t
0 g

)
for g ∈ G and t ∈ Zn

I Actually tg ∈ V = Rn/Zn and belongs to

Z 1(G ,V ) = {t | t1 = 0 and tgh = tg .h + th}

I If one adds the function δg = v .g − v to tg it is simply a
translation. Denote B1(G ,V ) the space of such functions.

I So, the space of possible tg coincide with the quotient space

H1(G ,V ) = Z 1(G ,V )/B1(G ,V ) up to NGLn(Z)(G )

I tg ∈ Zn if and only if there is a point of stabilizer G .



The methodology

I The enumeration of crystallographic groups is reduced to the
enumeration of finite subgroups of GLn(Z).

I Two subgroups G1, G2 of GLn(Z) are conjugate if there exist
P ∈ GLn(Z) such that G1 = PG2P

−1

I Theorem Given a finite subgroup G of GLn(Q) there exist a
maximal finite subgroup H of GLn(Q) containing it.

I The method is
I Enumerate the maximal finite subgroups of GLn(Q).
I Then their Z-classes.
I Then their conjugacy classes of subgroups.
I Then the corresponding crystallographic groups.

I See for more details
à J. Opgenorth, W. Plesken and T. Schulz, Crystallographic

algorithms and tables, Acta Crystallographica Section A, 54-5,
(1998), 517–531.

à B. Eick and Bernd Souvignier, Algorithms for crystallographic
groups, International Journal of Quantum Chemistry, 106,
316–343 (2006).



Zassenhaus/Plesken theory

I Theorem For a fixed dimension n, there exist a finite number
of maximal irreducible finite subgroups of GLn(Z) up to
conjugacy.

I The list is enumerated up to dimension 31:

à W. Plesken, M. Pohst, On maximal finite irreducible subgroups
of GLn(Z). I. The five and seven dimensional cases. Math.
Comp. 31-138 (1977) 536–551.

à G. Nebe and W. Plesken, Finite rational matrix groups, Mem.
Amer. Math. Soc. 116 (1995), no. 556, viii+144 pp.

à G. Nebe, Finite subgroups of GL24(Q), Experiment. Math. 5-3
(1996) 163–195.

à G. Nebe, Finite subgroups of GLn(Q) for 25 ≤ n ≤ 31. Comm.
Algebra 24-7 (1996) 2341–2397.
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