Crystallographic groups

Mathieu Dutour Sikirić

January 16, 2010

I. Introduction

Definition

• We consider groups of affine transformations acting on \mathbb{R}^n by

 $x \mapsto xA + b$

- ► A crystallographic group is a group G of affine transformations of ℝⁿ,
 - Containing the translation group \mathbb{Z}^n as a normal subgroup.
 - Whose quotient G/\mathbb{Z}^n is a finite group

The quotient G/\mathbb{Z}^n is called a point group and denoted by Point(G).

Some examples:

- $G_1 = \mathbb{Z}^n$ acting on \mathbb{R}^n by translations, $Point(G_1) = \{Id\}$
- The group G_2 :

```
x \mapsto x + t and x \mapsto -x + t with t \in \mathbb{Z}^n
```

has $Point(G_2) = \{Id, -Id\}.$

• The group Point(G) acts on the torus $\mathbb{R}^n/\mathbb{Z}^n$.

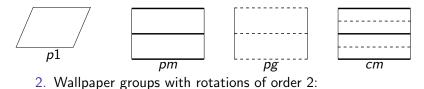
Matrix expressions

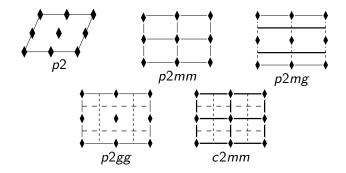
- Computationally it is better to write the vectors $x, y \in \mathbb{R}^n$ as x' = (1, x), y' = (1, y) and the pair (A, b) as the matrix $A' = \begin{pmatrix} 1 & b \\ 0 & A \end{pmatrix}$. So, we rewrite y = xA + b as y' = x'A'.
- If G is a crystallographic group and the elements of G are matrices ¹ b 0 A
 ¹ then the point group Point(G) is formed by all those matrices A.
- The point group is a finite subgroup of $GL_n(\mathbb{Z})$.

II. Examples

Wallpaper groups

1. Wallpaper groups without rotations:

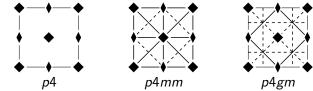




Wallpaper groups

1. Wallpaper groups with rotations of order 3:

2. Wallpaper groups with rotations of order 4:



3. Wallpaper groups with rotations of order 6:

The space groups

- The 3-dimensional crystallographic groups ("Space groups") have been classified by E.S. Fedorov, A.M. Schonflies and W. Barlow.
- There are 219 classes up to equivalence and 230 classes if one distinguish up to reflections.
- 32 types of point groups.
- They have a special naming system and many other things explained in "International Tables for Crystallography".
- Another competing nomenclature:
 - J.H. Conway, O. Delgado Friedrichs, D.H. Huson, W.P. Thurston, On three-dimensional space groups. Beiträge Algebra Geom. 42-2 (2001) 475–507.

Affine Coxeter groups

► A Coxeter group G(m) is a group generated by g₁,..., g_M, whose set of relations is

$$g_i^2=1$$
 and $(g_ig_j)^{m_{ij}}=1$ with $m_{ji}=m_{ij}\geq 2$

The Coxeter matrix Gram(m) is the symmetric matrix

$$Gram(m) = (\cos(\frac{\pi}{m_{ij}}))_{1 \le i,j \le M}$$

- ► The generators g₁,..., g_M are reflections for the scalar product Gram(m) in a M dimensional space ℝ^M along a fundamental simplex S defined by M linear inequalities.
- If the matrix Gram(m) is positive definite then the group G(m) is finite and the classification is known.
- If the matrix Gram(m) is positive then the group G(m) is a crystallographic group and the classification is known.

Finite Coxeter groups

List of finite irreducible Coxeter groups

	names	order	linear representations
-	A _n	(n+1)!	$\operatorname{GL}_n(\mathbb{Z})$
	B _n	2 ⁿ n!	$\operatorname{GL}_n(\mathbb{Z})$
	D_n	$2^{n-1}n!$	$\operatorname{GL}_n(\mathbb{Z})$
	E_6	51840	$GL_6(\mathbb{Z})$
	F_4	1152	$GL_4(\mathbb{Z})$
	E ₇	2903040	$GL_7(\mathbb{Z})$
	E ₈	696729600	$GL_8(\mathbb{Z})$
	H_3	120	$GL_3(\mathbb{Q}(\sqrt{5}))$
	H_4	14400	$GL_4(\mathbb{Q}(\sqrt{5}))$
	$I_2(m)$	2 <i>m</i>	$GL_2(\mathbb{R})$

▶ Only ones, which can occur as subgroups of GL_n(Z) are A_n, B_n, D_n, E_n, F₄, I₂(6).

Root lattices

- A lattice L is a subset of ℝⁿ of the form Zv₁ + · · · + Zv_n. The group of isometries preserving it is called Aut(L).
- It is the point group of a lattice L
- A root lattice is a lattice spanned by the roots of a finite irreducible Coxeter group.
- The root lattices are:

Coxeter groups	Root lattices	Aut(L)
A _n	A _n	2(n+1)!
B _n	B_n and C_n	2 ⁿ n!
D_n	D_n	$2^{n-1}n!$ (if $n \neq 4$)
F ₄	F ₄	1152
E_6	E ₆	103680
E ₇	E ₇	2903040
E ₈	E ₈	696729600

Lattices having Coxeter groups as point groups

▶ If *L* is a lattice then the dual *L*^{*} is defined as

$$L^* = \{ x \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z} \text{ for } y \in L \}$$

Results:

Coxeter groups	lattices			
A _n	Coxeter lattices A_n^r			
D_n	D_n , D_n^* and D_n^+ if <i>n</i> is even			
F ₄	F ₄			
E ₆	E_6 and E_6^*			
E ₇	E_7 and E_7^*			
E ₈	E ₈			

• A Coxeter lattice A_n^r is defined if r divides n + 1.

Crystallographic Coxeter groups

Crystallographic Coxeter groups

Cryst group	point group
Ã _n	An
₿ _n	B _n
Ĉ,	B _n
Ũ _n	D_n
Ĕ ₆ Ĕ₁	E ₆
Ĕ ₇	E ₇
Ĕ ₈	E ₈
₽̃4	F ₄

III. Wyckoff positions

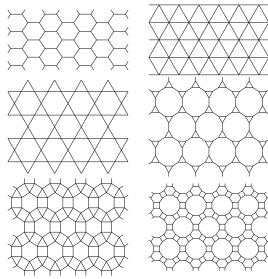
Definitions

• Let G be a crystallographic group.

- If v ∈ ℝⁿ, G is a crystallographic group then the stabilizer Stab_G(v) is a finite subgroup of G identified with a subgroup of the point group.
- If H is a finite subgroup of G, then the set of point stabilized by H form a plane P_H in ℝⁿ.
- The orbit of P_H under G corresponds to the conjugacy class of H under G and is called the Wyckoff position.
- If G has no non-trivial Wyckoff position, then G is called a Bieberbach group, that is every point has a trivial stabilizer and the quotient ℝⁿ/G is a manifold.
- The interest of Wyckoff positions is to be able to describe crystallographic structures with less parameters, i.e., less measures are needed.

A two dimensional case

From the crystallographic group \tilde{A}_2



Computational method

- It is generally hard to compute the Wyckoff positions.
- ► Basic algorithm given a space group *G*:
 - Compute the conjugacy classes of subgroups of Pt(G).
 - ► For every conjugacy class H find a minimal generating set h₁,..., h_m
 - Take a lifting *h̃*_i of the *h_i* and compute the solution set of *h̃*_i(x) = x + t_i with t_i ∈ Zⁿ up to the transaltion group Zⁿ.
- Implemented in the GAP package cryst
- See also
 - J. Fuksa, P. Engel, Derivation of Wyckoff positions of N-dimensional space groups. Theoretical considerations., Acta Cryst. Sect. A-6 50 (1994) 778–792.

IV. Lattice symmetry

Symmetry of lattices

- A symmetry of a lattice L is an isometry u of ℝⁿ preserving 0 such that L = u(L).
- If one selects a basis v of L and consider the Gram matrix G_v, then a u corresponds to a matrix P ∈ GL_n(ℤ) such that G_v = PG_vP^T.
- If $A \in S_{>0}^n$, then the symmetry group

$$\operatorname{Aut}(A) = \{P \in \operatorname{GL}_n(\mathbb{Z}) \mid A = PAP^T\}$$

is finite.

AUTO/ISOM

- We actually want to compute Aut(A).
- ► The method is to find a characteristic finite set V of vectors, which is invariant under Aut(A), which Z-span Zⁿ. For such a set we have VP = V.
- A technique is to compute the vectors v of norm vAv^T ≤ λ for a well specified λ. AUTO is then the program computing automorphism group of lattices.
- ▶ ISOM is the program for testing lattices up to isomorphism.
- Sometimes, instead of ISOM/AUTO it is better to use nauty with the same vector family and the edge colored graph on V defined by the colors v_iMv_i^T.
- See for more details
 - W. Plesken, B. Souvignier, *Computing isometries of lattices*. Computational algebra and number theory (London, 1993). J. Symbolic Comput. 24 (1997), no. 3-4, 327–334.

V. Bravais space and normalizer

Space of invariant forms

• Given a subgroup G of $GL_n(\mathbb{Z})$, define

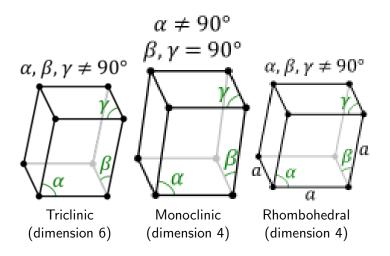
 $\mathcal{SP}(G) = \{ X \in S^n \text{ such that } gXg^T = X \text{ for all } g \in G \}$

- If G is finite then dim SP(G) > 0.
- Given a linear space SP of S^n , define

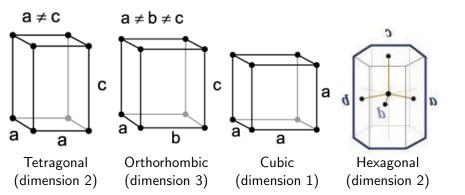
$$egin{aligned} & {\sf Aut}(\mathcal{SP}) = \left\{ egin{array}{c} g \in {\sf GL}_n(\mathbb{Z}) & {
m such that} \ gXg^{\,\mathcal{T}} = X & {
m for all} & X \in \mathcal{SP} \end{array}
ight\} \end{aligned}$$

- A Bravais group satisfies to Aut(SP(G)) = G and SP(G) is its Bravais space.
- ► Every finite group is contained in a Bravais group G ⊂ Aut(SP(G)).

The 3-dimensional Bravais spaces



The 3-dimensional Bravais spaces



Normalizer

• If G is a group H a subgroup of G then the normalizer is

$$\{g\in G\mid gHg^{-1}=H\}$$

► Thm. (Zassenhaus) If G is a finite subgroup of GL_n(Z) then one has the equality

$$\{g \in \mathsf{GL}_n(\mathbb{Z}) \mid g\mathcal{SP}(G)g^{\mathsf{T}} = \mathcal{SP}(G)\} = N_{\mathsf{GL}_n(\mathbb{Z})}(G)$$

So, for example if $G = \{\pm I_n\}$

•
$$SP(G) = S^n$$

• $N_{GL_n(\mathbb{Z})}(G) = GL_n(\mathbb{Z})$

The normalizer is important since it is the automorphism group of the bravais space.

G-perfect matrices

• A matrix $A \in SP(G)$ is G-perfect if:

 $B \in \mathcal{SP}(G)$ and $xBx^T = min(A)$ for all $x \in Min(A)$

implies B = A.

- If A is G-perfect then:
 - Partition Min(A) into $Min(A) = O_1 \cup O_2 \cup \cdots \cup O_r$,
 - with $O_i = \bigcup_{g \in G} x.g$ for some $x \in Min(A)$ (O_i is an orbit).
 - Define $p_i = \sum_{x \in O_i} x^T x$
 - Define the G-perfect domain by

$$Dom_G(A) = \{\sum_{i=1}^r \lambda_i p_i \text{ with } \lambda_i \ge 0\}$$

- A matrix $A \in SP(G)$ is *G*-extreme if it is a local maximum in SP(G) of the packing density.
- *G*-extreme \Rightarrow *G*-perfect.

Voronoi algorithm and the normalizer

- ► Thm. (Bergé, Martinet & Sigrist): G-perfect domains realize a polyhedral subdivision of SP(G) ∩ Sⁿ_{>0}. There is a finite number of G-perfect domains up to N_{GL_n(Z)}(G).
- ▶ We can enumerate all G-perfect matrices with analogs of Voronoi algorithm.
- The generators of the normalizers come from:
 - ► The automorphism of a G-perfect form, which do not belong to G and preserve SP(G) globally.
 - ► The matrices *P* realizing equivalence of a *G*-perfect domain.
- See for more details:
 - J. Opgenorth, Dual cones and the Voronoi algorithm. Experiment. Math. 10-4 (2001) 599–608.

VI. Classification methods

Having the point groups

- Suppose that we have G a finite subgroup of GL_n(ℤ), we want to find the crystallographic groups G̃ having G as point group.
- We write the elements of \tilde{G} as

$$\left(egin{array}{cc} 1 & t_g+t \ 0 & g \end{array}
ight)$$
 for $g\in G$ and $t\in \mathbb{Z}^n$

• Actually $t_g \in V = \mathbb{R}^n / \mathbb{Z}^n$ and belongs to

$$Z^{1}(G, V) = \{t \mid t_{1} = 0 \text{ and } t_{gh} = t_{g}.h + t_{h}\}$$

- If one adds the function δ_g = v.g − v to t_g it is simply a translation. Denote B¹(G, V) the space of such functions.
- ▶ So, the space of possible t_g coincide with the quotient space

$$H^1(G,V) = Z^1(G,V)/B^1(G,V)$$
 up to $N_{\operatorname{GL}_n(\mathbb{Z})}(G)$

• $t_g \in \mathbb{Z}^n$ if and only if there is a point of stabilizer G.

The methodology

- ► The enumeration of crystallographic groups is reduced to the enumeration of finite subgroups of GL_n(ℤ).
- ▶ Two subgroups G_1 , G_2 of $GL_n(\mathbb{Z})$ are conjugate if there exist $P \in GL_n(\mathbb{Z})$ such that $G_1 = PG_2P^{-1}$
- ► Theorem Given a finite subgroup G of GL_n(Q) there exist a maximal finite subgroup H of GL_n(Q) containing it.
- The method is
 - Enumerate the maximal finite subgroups of $GL_n(\mathbb{Q})$.
 - Then their Z-classes.
 - Then their conjugacy classes of subgroups.
 - Then the corresponding crystallographic groups.
- See for more details
 - J. Opgenorth, W. Plesken and T. Schulz, *Crystallographic algorithms and tables*, Acta Crystallographica Section A, 54-5, (1998), 517–531.
 - B. Eick and Bernd Souvignier, Algorithms for crystallographic groups, International Journal of Quantum Chemistry, 106, 316–343 (2006).

Zassenhaus/Plesken theory

- ► Theorem For a fixed dimension n, there exist a finite number of maximal irreducible finite subgroups of GL_n(Z) up to conjugacy.
- The list is enumerated up to dimension 31:
 - W. Plesken, M. Pohst, On maximal finite irreducible subgroups of GL_n(ℤ). I. The five and seven dimensional cases. Math. Comp. **31-138** (1977) 536–551.
 - G. Nebe and W. Plesken, *Finite rational matrix groups*, Mem. Amer. Math. Soc. **116** (1995), no. 556, viii+144 pp.
 - ➡ G. Nebe, *Finite subgroups of* GL₂₄(Q), Experiment. Math. **5-3** (1996) 163–195.
 - G. Nebe, *Finite subgroups of* GL_n(ℚ) *for* 25 ≤ n ≤ 31. Comm. Algebra 24-7 (1996) 2341-2397.

THANK YOU