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I. Metric and cut

polytopes



Distances and metrics

Given a set X of points a distance on X is a function
d : X × X 7→ R such that

I d(x , x) = 0 for all x ∈ X

I d(x , y) = d(y , x) for all x , y ∈ X

The distance becomes a metric if in addition it satisfies the
triangle inequality

d(x , y) ≤ d(x , z) + d(z , y) for all x , y , z ∈ X .

We have following sets:

I We call MET(Kn) the set formed by all the metrics on n
points {1, . . . , n}. It is a convex polyhedral cone.

I We call METP(Kn) the set formed by all d ∈ MET(Kn)
satisfying in addition the perimeter inequalities

d(x , y) + d(x , z) + d(z , y) ≤ 2 for all x , y , z ∈ X .



Cuts and the cut cone/polytope

For a subset S ⊂ {1, . . . , n} we define a cut metric to be

δS(x , y) =

{
1 if |S ∩ {x , y}| = 1
0 otherwise.

We have δS = δ{1,...,n}−S and δ∅ = 0.

I We define CUT(Kn) to be the cone spanned by the δS . It has
2n−1 − 1 extreme rays.

I We define CUTP(Kn) to be the convex hull of the δS . It has
2n−1 vertices.

The cut cone corresponds to the metrics that are embeddable in
Rn for the L1 norm.



Symmetries

For a subset S ⊂ {1, . . . , n} we define a switching operation on the
distances on {1, . . . , n}. For d a distance and 1 ≤ x , y ≤ n we
write

FS(d)(x , y) =

{
1− d(x , y) if |S ∩ {x , y}| = 1
d(x , y) otherwise.

The following holds:

I We have FS(δT ) = δS∆T so FS acts on CUTP(Kn).

I The switchings also act on METP(Kn).

I The switchings and the symmetries on n points define a
symmetry group of order 2n−1n!.

I For n 6= 4 this is all the symmetries there is for METP(Kn)
and CUTP(Kn).



Vertices/Facets of METP(Kn) and CUTP(Kn)

P n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

CUTP(Kn), e 4(1) 8(1) 16(1) 32(1) 64(1) 128(1)
CUTP(Kn), f 4(1) 16(1) 56(2) 368(3) 116, 764(11) 217, 093, 472(147)
CUT(Kn), e 3(1) 7(2) 15(2) 31(3) 63(3) 127(4)
CUT(Kn), f 3(1) 12(1) 40(2) 210(4) 38, 780(36) 49, 604, 520(2, 169)
MET(Kn), e 3(1) 7(2) 25(3) 296(7) 55, 226(46) 119, 269, 588(3, 918)
MET(Kn), f 3(1) 12(1) 30(1) 60(1) 105(1) 168(1)

METP(Kn), e 4(1) 8(1) 32(2) 554(3) 275, 840(13) 1, 550, 825, 600(533)
METP(Kn), f 4(1) 16(1) 40(1) 80(1) 140(1) 224(1)

Computation of facets of CUTP(K8), vertices of METP(K8) was
done in

I M. Deza, M. Dutour Sikirić, Enumeration of the facets of cut
polytopes over some highly symmetric graphs, International
Transactions in Operational Research 23-5 (2016) 853–860

I A. Deza, K. Fukuda, T. Mizutani, C. Vo, On the face lattice
of the metric polytope, Lecture Notes in Comput. Sci., 2866,
118–128



II. Algorithms for

dual description problems



Program comparisons

We consider a polytope defined by a set LF of inequalities for
which we want its vertex set LV.

I lrs: it iterates over all admissible basis in the simplex
algorithm of linear programming

I It is a tree search, no memory limitation.
I Ideal if the polytope has a lot of vertices.

I cdd/ppl: it adds inequalities one after the other and maintain
the double description throughout the computation

I All vertices and facets are stored memory limitation.
I Good performance if the polytope has degenerate vertices.

I pd: We have a partial list of vertices, we compute the facets
with lrs. If it does not coincide with LF then we can generate
a missed vertex by linear programming.

I It is a recommended method only if there is less vertices than
facets.

I Other technique of beneath/beyond exist

I So, in general, choosing the right method is really difficult.



The adjacency decomposition method

Input: The vertex-set of a polytope P and a group G acting on P.
Output: O, the orbits of facets of P.

I Compute some initial facet F (by linear programming) and
insert the corresponding orbit into O as undone.

I For every undone orbit O of facet:
I Take a representative F of O.
I Find the ridges contained in F , i.e. the facets of the facet F

(this is a dual description computation).
I For every ridge R, find the corresponding adjacent facet F ′

such that R = F ∩ F ′.
I For every adjacent facet found test if the corresponding orbit is

already present in O. If no insert it as undone.
I Mark the orbit O as done.

I Terminate when all orbits are done.

Reinvented many times (D. Jaquet 1993, T. Christof and G.
Reinelt 1996).



General feature of the algorithm

It is a graph traversal algorithm:

I The algorithm starts by computing the orbits of lowest
incidence, which are the one for which the dual description is
easiest to be done.

I Sometimes it seems that no end is in sight, we get a lower
bound on the number of orbits.

I At the end, only the orbits of highest incidence remains.

I The method can be applied recursively.



Permutation groups

I Polytopes of interest have usually less than 1000 vertices
v1, . . . , vN , their symmetry group can be represented as a
permutation of their vertex-set.

I The first benefit is that permutation group algorithms have
been well studied for a long time and have good
implementation in GAP.

à A. Seress, Permutation group algorithms, Cambridge
University Press, 2003.

à D.F. Holt, B. Eick and E.A. O’Brien, Handbook of
computational group theory, Chapman & Hall/CRC, 2005.

I The second benefit is that a facet of a polytope thus
corresponds to a subset of {1, . . . ,N} and that permutation
group acting on sets have a very good implementation in GAP.

I In some extreme cases (# vertices > 100000) permutation
groups might not work as quietly and other methods have to
be used.



Balinski theorem and linear programming
I Balinski theorem The skeleton of a n-dimensional polytope is

n-connected, i.e. the removal of any set of n − 1 vertices
leaves it connected.

I So, if the number of facets in remaining orbits is at most
n − 1, then we know that no more orbits is to be discovered.

I Theorem: For a polytope P, if one removes all the edges of
the skeleton contained in a proper face F then the graph on
the remaining edges is still connected.

I So if all remaining facets contain a common vertex then we
do not need to continue further.



III. Metric and cut

polytopes of graphs



Cut polytope of a graph

Let us take a graph G on n vertices. For a subset S ⊂ {1, . . . , n}
and an edge e = (x , y) of G we define a cut metric to be

δGS (e) =

{
1 if |S ∩ e| = 1
0 otherwise.

I We have δS = δ{1,...,n}−S and δ∅ = 0.

I We define CUTP(G ) to be the convex hull of the δS . It has
2n−1 vertices if G is connected.

I The dimension of CUTP(G ) is equal to |E |, i.e. the number
of edges of G .

I The polytope CUTP(G ) can be interpreted as the projection
of CUTP(Kn) on RE .



Metric polytope of a graph

Let us take a graph G on n vertices and we want to define the
metric polytope.

I One possibility is to define METP(G ) as the projection of
METP(Kn) on RE but this is a little difficult to work with.

I It turns out that we can express in a nice way the facets of
METP(G ):

I For an edge e not contained in any triangle we add the
inequalities 0 ≤ d(e) ≤ 1.

I For any chordless cycle C and odd sized set F ⊂ C the
inequality is

d(F )− d(C − F ) ≤ |F | − 1

where d(U) =
∑

u∈U d(u).



Seymour theorem

Theorem: We have MET(G ) = CUT(G ) if and only if G has no
K5 minor.

I The result was extended to polytope case by Barahona.

I It is an especially beautiful theorem that allows to compute
the facets of many cut polytopes.

I It remains an isolated result:
I Seymour, P. D., Matroids and multicommodity flows,

European Journal of Combinatorics 2 (1981) 257–290.

I The smallest case where MET(G ) 6= CUT(G ) is G = K5. The
additional facet inequality of CUT(K5) that needs to be added
is the pentagonal inequality introduced in

I M. E. Tylkin (=M. Deza), On Hamming geometry of unitary
cubes, Soviet Physics Dokl. 5 (1960) 940–943

I Maybe the theorem can be generalized.



Bell polytopes

I For a family of list of integers (L1, . . . , Lr ) a notion of Bell
polytope B(L1, . . . , Lr ) can be defined and a question is how
to compute the facet inequalities of those polytopes.

I The dimension of many of them are too large to be computed.

I We can restrict ourselves to the facets having some
symmetries

I By using only the conjugacy class of elements defining
polytope of dimension as most 20 we find many symmetric
facets for the cases

{{2, 2}, {2, 2}, {2, 2, 2}} {{2, 2, 2}, {2, 2, 2, 2}}
{{2, 2}, {2, 2}, {2, 2}, {2, 2}} {{2, 2}, {2, 2}, {2, 2, 2, 2}}
{{3, 3, 2}, {3, 3, 3}} {{3, 3, 3}, {3, 3, 2}}
{{4, 4}, {4, 4}} {{5, 2, 2}, {5, 2, 2}}

I Some special Bell polytopes can be interpreted as CUTP(G )
and this was done for G = K1,4,4



IV. Hypermetrics



Hypermetrics
A function d : {1, . . . , n}2 7→ R belongs to the hypermetric
polytope HYPP(Kn) if and only if for all b = (b1, . . . , bn) ∈ Zn

with
∑

i bi = 2s + 1 with s ∈ Z we have∑
i<j

bibjd(i , j) ≤ s(s + 1)

I If one limits oneself to the inequalities with s = 0 then one
gets the hypermetric cone.

I The hypermetric cone can be interpreted in term of Delaunay
polytope and the hypermetric polytope in term of centrally
symmetric Delaunay polytope.

I Facets and vertices of the hypermetric cone and polytope
were computed up to n = 8.

I No generalization to graphs were found.
I M. Deza, M. Dutour Sikirić, The hypermetric cone on eight

vertices and some generalizations, Journal of Symbolic
Computations (to appear).



V. Quasi-metrics

Cones and polytopes



Quasi-metrics on Kn

Given a set X of points a quasi-metrics on X is a function
d : X × X 7→ R such that

I d(x , x) = 0 for all x ∈ X ,

I d(x , y) ≥ 0 for all x , y ∈ X ,

I d(x , y) ≤ d(x , z) + d(z , y) for all x , y , z ∈ X .

The quasi-metric cone QMET(Kn) is the cone of quasi-metrics on
{1, . . . , n}. Its dimension is n(n − 1). We studied it in

I M. Deza, M. Dutour, E. Panteleeva, Small cones of oriented
semi-metrics, American Journal of Mathematical and
Management Sciences 22 (2002) 199–225.

If we add the following constraints

d(x , y) ≤ 1 and d(x , y) + d(y , z) + d(z , x) ≤ 2 for all x , y , z ∈ X

then we obtain the quasi-metric polytope QMETP(Kn).



Symmetries

I For a set S ⊂ {1, . . . , n} the oriented switching is defined as

FS(d)(x , y) =

{
1− d(y , x) if |S ∩ {x , y}| = 1
d(x , y) otherwise.

I The reversal operation is defined as

R(d)(x , y) = d(y , x)

I The reversal and symmetric group Sym(n) define a symmetry
group of QMET(Kn) of order of 2n!.

I The reversal, oriented switchings and Sym(n) define a
symmetry group of QMETP(Kn) of order of 2nn!.



Quasi-metrics on graphs

If we have an undirected graph G then we define Dir(E (G )) to be
the set of directed edges of E (G ). That is each edge e = (i , j)
corresponds to an oriented edge (i , j) and (j , i). We define
QMET(G ) and QMETP(G ) to be the projection of QMET(Kn)
and QMETP(Kn) on Dir(E (G )).
Theorem: QMET(G ) is described as the cone of functions
d ∈ RDir(E(G)) satisfying to

I 0 ≤ d(i , j) for (i , j) ∈ Dir(E (G ))

I For each cycle c = (v1, . . . , vm) of G the inequality

d(v1, vm) ≤ d(v1, v2) + d(v2, v3) + · · ·+ d(vm−1, vm)

There is a similar descriptions for QMETP(G ).



Weighted quasi-metrics and cuts

I A quasi-metric is called weighted if there exist a function
w : X 7→ R such that

d(x , y) + w(x) = d(y , x) + w(y) for all x , y ∈ X .

I The cone and polytopes of weighted quasi-metrics are called
WQMET(G ) and WQMETP(G ). This defines an interesting
subcase between METP(G ) and QMETP(G ).

I For a set S ⊂ {1, . . . , n} we define the (weighted) oriented cut

δ′
G
S (x , y) =

{
1 if x ∈ S
0 otherwise

I We define OCUTP(G ) to be the convex hull of the FS(δ′GT )
and it has at most 22n−2 vertices.

I We have OCUTP(Kn) = WQMETP(Kn) for n ≤ 4 but we
have OCUTP(G ) 6= WQMETP(G ) for some graph G which
do not have K5 minor, e.g. K5 − K2 or Prism3.



V. Hemimetric



m-Hemimetrics
Metrics are an abstraction of distance between 2 points. What
about the notion of area, volume, etc? We define an
m-hemidistance on m + 1 points x1, . . . , xm+1 ∈ X to be a function
satisfying

I d(x1, . . . , xm+1) ≥ 0 for all x1, . . . , xm+1 ∈ X

I d(xσ(1), . . . xσ(m+1)) = d(x1, . . . , xm+1) for all
x1, . . . , xm+1 ∈ X and σ ∈ Sym(m + 1)

But what about the equivalent of the triangle inequality? The
naive extension is to consider

d(x1, . . . , xm+1) ≤
m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

for all x1, . . . , xm+2 ∈ X . This definition was used in:

I M. Dutour, M. Deza, Cones of metrics, hemi-metrics and
super-metrics, Annals of the European Academy of Sciences
(2003) 141–162



The simplex inequalities

I If m = 1 then the cycle inequalities are implied by the triangle
inequalities:

d(v1, vm) ≤ d(v1, v2) + d(v2, vm)
≤ d(v1, v2) + d(v2, v3) + d(v3, vm)
≤ d(v1, v2) + d(v2, v3) + · · ·+ d(vm−1, vm)

But such a decomposition does not necessarily exist for m > 1.

I A closed manifold is a family M of m + 1-subsets of
{1, . . . , n} such that for any m-set S the number of cells in M
containing S is even.

I For a closed manifold M = (S1, . . . ,SM) the simplex
inequality is

d(Si ) ≤
∑

1≤j≤M,i 6=j

d(Sj).



Hemimetrics on simplicial complexes

I We define Set(n,m) to be the set of all m + 1-subsets of
{1, . . . , n}.

I A m-dimensional simplicial complex is a subset of Set(n,m)
for some n.

I For a simplicial complex K we define the cone HMET(K) to
be the set of functions satisfying all simplicial inequalities
induced by all closed submanifolds M of K.

I Theorem: The cone HMET(K) is the projection of
HMET(Set(n,m)) on RK.

I For the case m = 2 and 6 points, the octahedron gives an
inequality in HMET(Set(6, 2))

d(S1) ≤
8∑

i=2

d(Si )

which cannot be decomposed into inequalities over the
simplex.
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