Cones of metrics, quasimetrics and hemimetrics

Michel Deza and Mathieu Dutour Sikirić

December 11, 2017

I. Metric and cut polytopes

Distances and metrics

Given a set X of points a distance on X is a function $d: X \times X \mapsto \mathbb{R}$ such that

•
$$d(x,x) = 0$$
 for all $x \in X$

•
$$d(x,y) = d(y,x)$$
 for all $x, y \in X$

The distance becomes a metric if in addition it satisfies the triangle inequality

$$d(x,y) \leq d(x,z) + d(z,y)$$
 for all $x, y, z \in X$.

We have following sets:

- We call MET(K_n) the set formed by all the metrics on n points {1,...,n}. It is a convex polyhedral cone.
- We call METP(K_n) the set formed by all d ∈ MET(K_n) satisfying in addition the perimeter inequalities

$$d(x,y) + d(x,z) + d(z,y) \le 2$$
 for all $x, y, z \in X$.

Cuts and the cut cone/polytope

For a subset $S \subset \{1, \ldots, n\}$ we define a cut metric to be

$$\delta_{\mathcal{S}}(x,y) = \begin{cases} 1 & \text{if } |S \cap \{x,y\}| = 1 \\ 0 & \text{otherwise.} \end{cases}$$

We have $\delta_{\mathcal{S}} = \delta_{\{1,...,n\}-S}$ and $\delta_{\emptyset} = 0$.

- We define $CUT(K_n)$ to be the cone spanned by the δ_S . It has $2^{n-1} 1$ extreme rays.
- We define $\text{CUTP}(K_n)$ to be the convex hull of the δ_S . It has 2^{n-1} vertices.

The cut cone corresponds to the metrics that are embeddable in \mathbb{R}^n for the L^1 norm.

Symmetries

For a subset $S \subset \{1, ..., n\}$ we define a switching operation on the distances on $\{1, ..., n\}$. For *d* a distance and $1 \le x, y \le n$ we write

$$F_{\mathcal{S}}(d)(x,y) = \begin{cases} 1 - d(x,y) & \text{if } |S \cap \{x,y\}| = 1 \\ d(x,y) & \text{otherwise.} \end{cases}$$

The following holds:

- We have $F_S(\delta_T) = \delta_{S\Delta T}$ so F_S acts on $\text{CUTP}(K_n)$.
- The switchings also act on $METP(K_n)$.
- The switchings and the symmetries on n points define a symmetry group of order 2ⁿ⁻¹n!.
- For n ≠ 4 this is all the symmetries there is for METP(K_n) and CUTP(K_n).

Vertices/Facets of $METP(K_n)$ and $CUTP(K_n)$

Р	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6	n = 7	<i>n</i> = 8
$CUTP(K_n), e$	4(1)	8(1)	16(1)	32(1)	64(1)	128(1)
$CUTP(K_n), f$	4(1)	16(1)	56(2)	368(3)	116,764(11)	217,093,472(147)
$CUT(K_n), e$	3(1)	7(2)	15(2)	31(3)	63(3)	127(4)
$CUT(K_n), f$	3(1)	12(1)	40(2)	210(4)	38,780(36)	49,604,520(2,169)
$MET(K_n), e$	3(1)	7(2)	25(3)	296(7)	55,226(46)	119,269,588(3,918)
$MET(K_n), f$	3(1)	12(1)	30(1)	60(1)	105(1)	168(1)
$METP(K_n), e$	4(1)	8(1)	32(2)	554(3)	275,840(13)	1,550,825,600(533)
$METP(K_n), f$	4(1)	16(1)	40(1)	80(1)	140(1)	224(1)

Computation of facets of $\text{CUTP}(K_8)$, vertices of $\text{METP}(K_8)$ was done in

- M. Deza, M. Dutour Sikirić, Enumeration of the facets of cut polytopes over some highly symmetric graphs, International Transactions in Operational Research 23-5 (2016) 853–860
- A. Deza, K. Fukuda, T. Mizutani, C. Vo, On the face lattice of the metric polytope, Lecture Notes in Comput. Sci., 2866, 118–128

II. Algorithms for dual description problems

Program comparisons

We consider a polytope defined by a set \mathcal{LF} of inequalities for which we want its vertex set \mathcal{LV} .

- Irs: it iterates over all admissible basis in the simplex algorithm of linear programming
 - It is a tree search, no memory limitation.
 - Ideal if the polytope has a lot of vertices.
- cdd/ppl: it adds inequalities one after the other and maintain the double description throughout the computation
 - All vertices and facets are stored memory limitation.
 - Good performance if the polytope has degenerate vertices.
- ▶ pd: We have a partial list of vertices, we compute the facets with Irs. If it does not coincide with *LF* then we can generate a missed vertex by linear programming.
 - It is a recommended method only if there is less vertices than facets.
- Other technique of beneath/beyond exist
- ► So, in general, choosing the right method is really difficult.

The adjacency decomposition method

Input: The vertex-set of a polytope P and a group G acting on P. **Output**: \mathcal{O} , the orbits of facets of P.

- ► Compute some initial facet F (by linear programming) and insert the corresponding orbit into O as undone.
- ► For every **undone** orbit *O* of facet:
 - Take a representative *F* of *O*.
 - ► Find the ridges contained in F, i.e. the facets of the facet F (this is a dual description computation).
 - For every ridge R, find the corresponding adjacent facet F' such that R = F ∩ F'.
 - ► For every adjacent facet found test if the corresponding orbit is already present in O. If no insert it as undone.
 - Mark the orbit *O* as done.
- Terminate when all orbits are done.

Reinvented many times (D. Jaquet 1993, T. Christof and G. Reinelt 1996).

General feature of the algorithm

It is a graph traversal algorithm:

- The algorithm starts by computing the orbits of lowest incidence, which are the one for which the dual description is easiest to be done.
- Sometimes it seems that no end is in sight, we get a lower bound on the number of orbits.
- At the end, only the orbits of highest incidence remains.
- The method can be applied recursively.

Permutation groups

- Polytopes of interest have usually less than 1000 vertices v₁,..., v_N, their symmetry group can be represented as a permutation of their vertex-set.
- The first benefit is that permutation group algorithms have been well studied for a long time and have good implementation in GAP.
 - A. Seress, *Permutation group algorithms*, Cambridge University Press, 2003.
 - D.F. Holt, B. Eick and E.A. O'Brien, Handbook of computational group theory, Chapman & Hall/CRC, 2005.
- The second benefit is that a facet of a polytope thus corresponds to a subset of {1,..., N} and that permutation group acting on sets have a very good implementation in GAP.
- In some extreme cases (# vertices > 100000) permutation groups might not work as quietly and other methods have to be used.

Balinski theorem and linear programming

- ▶ Balinski theorem The skeleton of a *n*-dimensional polytope is *n*-connected, i.e. the removal of any set of *n* − 1 vertices leaves it connected.
- ► So, if the number of facets in remaining orbits is at most n − 1, then we know that no more orbits is to be discovered.

- ▶ Theorem: For a polytope *P*, if one removes all the edges of the skeleton contained in a proper face *F* then the graph on the remaining edges is still connected.
- So if all remaining facets contain a common vertex then we do not need to continue further.

III. Metric and cut polytopes of graphs

Cut polytope of a graph

Let us take a graph G on n vertices. For a subset $S \subset \{1, ..., n\}$ and an edge e = (x, y) of G we define a cut metric to be

$$\delta_{S}^{G}(e) = \left\{ egin{array}{cc} 1 & ext{if } |S \cap e| = 1 \ 0 & ext{otherwise.} \end{array}
ight.$$

• We have
$$\delta_{\mathcal{S}} = \delta_{\{1,...,n\}-\mathcal{S}}$$
 and $\delta_{\emptyset} = 0$.

- We define CUTP(G) to be the convex hull of the δ_S . It has 2^{n-1} vertices if G is connected.
- ► The dimension of CUTP(G) is equal to |E|, i.e. the number of edges of G.
- The polytope CUTP(G) can be interpreted as the projection of CUTP(K_n) on ℝ^E.

Metric polytope of a graph

Let us take a graph G on n vertices and we want to define the metric polytope.

- One possibility is to define METP(G) as the projection of METP(K_n) on ℝ^E but this is a little difficult to work with.
- It turns out that we can express in a nice way the facets of METP(G):
- For an edge e not contained in any triangle we add the inequalities 0 ≤ d(e) ≤ 1.
- For any chordless cycle C and odd sized set F ⊂ C the inequality is

$$d(F) - d(C - F) \le |F| - 1$$

where $d(U) = \sum_{u \in U} d(u)$.

Seymour theorem

Theorem: We have MET(G) = CUT(G) if and only if G has no K_5 minor.

- ► The result was extended to polytope case by Barahona.
- It is an especially beautiful theorem that allows to compute the facets of many cut polytopes.
- It remains an isolated result:
 - Seymour, P. D., *Matroids and multicommodity flows*, European Journal of Combinatorics 2 (1981) 257–290.
- ► The smallest case where MET(G) ≠ CUT(G) is G = K₅. The additional facet inequality of CUT(K₅) that needs to be added is the pentagonal inequality introduced in
 - ► M. E. Tylkin (=M. Deza), On Hamming geometry of unitary cubes, Soviet Physics Dokl. 5 (1960) 940–943
- Maybe the theorem can be generalized.

Bell polytopes

- ► For a family of list of integers (L₁,..., L_r) a notion of Bell polytope B(L₁,..., L_r) can be defined and a question is how to compute the facet inequalities of those polytopes.
- ► The dimension of many of them are too large to be computed.
- We can restrict ourselves to the facets having some symmetries
- By using only the conjugacy class of elements defining polytope of dimension as most 20 we find many symmetric facets for the cases

 $\begin{array}{l} \{\{2,2\},\{2,2\},\{2,2,2\}\} & \{\{2,2,2\},\{2,2,2,2\}\} \\ \{\{2,2\},\{2,2\},\{2,2\},\{2,2\},\{2,2\}\} & \{\{2,2\},\{2,2\},\{2,2,2,2\}\} \\ & \{\{3,3,2\},\{3,3,3\}\} & \{\{3,3,3\},\{3,3,2\}\} \\ & \{\{4,4\},\{4,4\}\} & \{\{5,2,2\},\{5,2,2\}\} \end{array} \end{array}$

Some special Bell polytopes can be interpreted as CUTP(G) and this was done for G = K_{1,4,4}

IV. Hypermetrics

Hypermetrics

A function $d : \{1, ..., n\}^2 \mapsto \mathbb{R}$ belongs to the hypermetric polytope HYPP(K_n) if and only if for all $b = (b_1, ..., b_n) \in \mathbb{Z}^n$ with $\sum_i b_i = 2s + 1$ with $s \in \mathbb{Z}$ we have

$$\sum_{i < j} b_i b_j d(i, j) \le s(s+1)$$

- If one limits oneself to the inequalities with s = 0 then one gets the hypermetric cone.
- The hypermetric cone can be interpreted in term of Delaunay polytope and the hypermetric polytope in term of centrally symmetric Delaunay polytope.
- Facets and vertices of the hypermetric cone and polytope were computed up to n = 8.
- No generalization to graphs were found.
- M. Deza, M. Dutour Sikirić, The hypermetric cone on eight vertices and some generalizations, Journal of Symbolic Computations (to appear).

V. Quasi-metrics Cones and polytopes

Quasi-metrics on K_n

Given a set X of points a quasi-metrics on X is a function $d: X \times X \mapsto \mathbb{R}$ such that

- d(x,x) = 0 for all $x \in X$,
- $d(x,y) \ge 0$ for all $x, y \in X$,
- $d(x,y) \leq d(x,z) + d(z,y)$ for all $x, y, z \in X$.

The quasi-metric cone $QMET(K_n)$ is the cone of quasi-metrics on $\{1, \ldots, n\}$. Its dimension is n(n-1). We studied it in

 M. Deza, M. Dutour, E. Panteleeva, Small cones of oriented semi-metrics, American Journal of Mathematical and Management Sciences 22 (2002) 199–225.

If we add the following constraints

 $d(x,y) \leq 1$ and $d(x,y) + d(y,z) + d(z,x) \leq 2$ for all $x,y,z \in X$

then we obtain the quasi-metric polytope $QMETP(K_n)$.

Symmetries

▶ For a set $S \subset \{1, ..., n\}$ the oriented switching is defined as

$$F_{\mathcal{S}}(d)(x,y) = \left\{egin{array}{cc} 1-d(y,x) & ext{if } |\mathcal{S}\cap\{x,y\}|=1 \ d(x,y) & ext{otherwise.} \end{array}
ight.$$

The reversal operation is defined as

$$R(d)(x,y) = d(y,x)$$

- ► The reversal and symmetric group Sym(n) define a symmetry group of QMET(K_n) of order of 2n!.
- The reversal, oriented switchings and Sym(n) define a symmetry group of QMETP(K_n) of order of 2ⁿn!.

Quasi-metrics on graphs

If we have an undirected graph G then we define Dir(E(G)) to be the set of directed edges of E(G). That is each edge e = (i, j)corresponds to an oriented edge (i, j) and (j, i). We define QMET(G) and QMETP(G) to be the projection of QMET(K_n) and QMETP(K_n) on Dir(E(G)).

Theorem: QMET(G) is described as the cone of functions $d \in \mathbb{R}^{Dir(E(G))}$ satisfying to

- $0 \le d(i,j)$ for $(i,j) \in Dir(E(G))$
- For each cycle $c = (v_1, \ldots, v_m)$ of G the inequality

$$d(v_1, v_m) \leq d(v_1, v_2) + d(v_2, v_3) + \cdots + d(v_{m-1}, v_m)$$

There is a similar descriptions for QMETP(G).

Weighted quasi-metrics and cuts

A quasi-metric is called weighted if there exist a function w : X → ℝ such that

$$d(x,y) + w(x) = d(y,x) + w(y)$$
 for all $x, y \in X$.

- The cone and polytopes of weighted quasi-metrics are called WQMET(G) and WQMETP(G). This defines an interesting subcase between METP(G) and QMETP(G).
- ▶ For a set $S \subset \{1, ..., n\}$ we define the (weighted) oriented cut

$$\delta'_{S}^{G}(x,y) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$$

- We define OCUTP(G) to be the convex hull of the F_S(δ^{'G}_T) and it has at most 2^{2n−2} vertices.
- We have OCUTP(K_n) = WQMETP(K_n) for n ≤ 4 but we have OCUTP(G) ≠ WQMETP(G) for some graph G which do not have K₅ minor, e.g. K₅ − K₂ or Prism₃.

V. Hemimetric

m-Hemimetrics

Metrics are an abstraction of distance between 2 points. What about the notion of area, volume, etc? We define an *m*-hemidistance on m+1 points $x_1, \ldots, x_{m+1} \in X$ to be a function satisfying

▶
$$d(x_1, \ldots, x_{m+1}) \ge 0$$
 for all $x_1, \ldots, x_{m+1} \in X$
▶ $d(x_{\sigma(1)}, \ldots, x_{\sigma(m+1)}) = d(x_1, \ldots, x_{m+1})$ for all $x_1, \ldots, x_{m+1} \in X$ and $\sigma \in Sym(m+1)$

But what about the equivalent of the triangle inequality? The naive extension is to consider

$$d(x_1,\ldots,x_{m+1}) \leq \sum_{i=1}^{m+1} d(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{m+2})$$

for all $x_1, \ldots, x_{m+2} \in X$. This definition was used in:

M. Dutour, M. Deza, Cones of metrics, *hemi-metrics and super-metrics*, Annals of the European Academy of Sciences (2003) 141–162

The simplex inequalities

► If m = 1 then the cycle inequalities are implied by the triangle inequalities:

$$\begin{array}{rcl} d(v_1,v_m) & \leq & d(v_1,v_2) + d(v_2,v_m) \\ & \leq & d(v_1,v_2) + d(v_2,v_3) + d(v_3,v_m) \\ & \leq & d(v_1,v_2) + d(v_2,v_3) + \dots + d(v_{m-1},v_m) \end{array}$$

But such a decomposition does not necessarily exist for m > 1.

- ► A closed manifold is a family M of m + 1-subsets of {1,...,n} such that for any m-set S the number of cells in M containing S is even.
- ► For a closed manifold M = (S₁,..., S_M) the simplex inequality is

$$d(S_i) \leq \sum_{1 \leq j \leq M, i \neq j} d(S_j).$$

Hemimetrics on simplicial complexes

- ► We define Set(n, m) to be the set of all m + 1-subsets of {1,...,n}.
- ► A *m*-dimensional simplicial complex is a subset of Set(n, m) for some n.
- ► For a simplicial complex K we define the cone HMET(K) to be the set of functions satisfying all simplicial inequalities induced by all closed submanifolds M of K.
- ► Theorem: The cone HMET(*K*) is the projection of HMET(*Set*(*n*, *m*)) on ℝ^K.
- For the case m = 2 and 6 points, the octahedron gives an inequality in HMET(Set(6, 2))

$$d(S_1) \leq \sum_{i=2}^8 d(S_i)$$

which cannot be decomposed into inequalities over the simplex.

THANK YOU