Exhaustive Combinatorial Enumeration

Mathieu Dutour Sikirié

Rudjer Boskovi¢ Institute

February 25, 2010

|. The problem
and the algorithm

Combinatorial enumeration

» Example of problem considered:
» List all 3-valent plane graphs with faces of gonality 5 and 9
and all 9-gonal faces in pairs.
» List all independent sets of 600-cell.
» List all triangulations of the sphere on n vertices.
» List all isohedral (r, g)-polycycles.
» The main feature of the proposed problems is that we do not
have any intelligent way of doing it.

» We do not want only to know the numbers of objects, we
want to have those objects so as to work with them.

Limitation of hope

» In the best scenario, the speed of computers multiply by 2
every year.

» In most combinatorial problems, the number of solutions grow
much more than exponentially in the size of the problem.
» One typical example is the listing of all graphs with n vertices:

» The number of labeled graphs with n vertices is 2%

» The symmetric group Sym(n) act on those labeled graphs.
» So, the number of unlabeled graphs, i.e., graphs up to
isomorphism, is around

nnl)]_ \/7

> So, the progress brought by computer should diminish as time
goes on.

What we are not considering

Pure enumeration techniques
(Give number of objects but not their list)
» Formal Power Series.
» Polya, Polya/Redfield method.
» Transfer Matrix Method in Statistical Mechanics.

Estimation methods
» Asymptotic results as the size of the problem goes to infinity.
» Probabilistic methods to prove existence of objects.
Special techniques
» Polyhedral enumeration techniques and algorithms.
» Mass formula methods in number theory.

The methods explained here are generally bad, if there is some
additional structure, use it!

Applications and variants

Applications
» Get classification results
» Find new remarkable objects.
» Find (by hand) infinite series from the first cases.
» Optimize quantities.
Variants
» Enumeration of objects with specified symmetry group.
» Branch and bound methods in exact optimization.

Non rigorous methods in optimization
In real life, it is not possible to consider all possibilities when
solving problems. Some approximate methods are necessary:

» Hill climbing methods, simulated annealing, quantum
annealing, etc.

» Tabu search, variable neighborhood search, etc.

» Ant colony optimization, etc.

ll. The automorphism
and isomorphism

problems

The graph isomorphism problem

» Suppose that we have a graph G on n vertices {1,...,n}, we
want to compute its automorphism group Aut(G).
g is formed of all elements in Sym(n) such that

{g(i),g(j)} € E(G) if and only if {i,j} € E(G)

» Suppose that G; and G, are two graphs on n vertices
{1,...,n}, we want to test if G; and G, are isomorphic, i.e. if
there is g € Sym(n) such that

{g(i),g(j)} € E(Gy) if and only if {i,j} € E(G2)

» It is generally believed that those problems do not admit
solution in a time bounded by a polynomial in n.

The program nauty

» The program nauty by Brendan McKay solves the graph
isomorphism and the automorphism problems.

http://cs.anu.edu.au/people/bdm/nauty/
» nauty is extremely efficient in doing those computations.

» nauty can deal with directed graph but this is not
recommended.

» nauty can deal with vertex colors.

» nauty iterates over all n! permutation but it prunes the
search tree so as to obtain a fast running time.

» nauty has no problem at all for graph with several hundred
vertices.

http://cs.anu.edu.au/people/bdm/nauty/

The reduction to a graph

Why focus on graph?
» We have many other combinatorial problems:

> subset of vertex-set of a graph,
set system,

edge weighted graph,

plane graph,

partially ordered set, etc.

vV vy VvYy

» If M is a “combinatorial structure”, then we have to define a
graph G(M), such that:
» If My and M, are two “combinatorial structure”, then My and
My, are isomorphic if and only if G(M;) and G(M,) are
isomorphic.
» If M is a “"combinatorial structure”, then Aut(M) is isomorphic
to Aut(G(M)).

Subset of vertex-set of a graph

» Suppose that we have a graph G, two subsets 51, S of G, we
want to know if there is an automorphism ¢ of G such that

#(51) = S.

S1={1,2,4}
S» ={3,5,6}

Set systems

» Suppose we have some subsets Sy, ..., S, of {1,...,n}. We
want to find the permutations of {1,..., n}, which permutes
the S;.

» We define a graph with n 4 r vertices j and S; with j adjacent
to S; if and only if j € §;
> Example § = {{1,2,3},{1,5,6},{3,4,5},{2,4,6}}:

1 2 3 4 5 6

Edge colored graphs

» G is a graph with vertex-set (v;)1<j<n, edges are colored with
k colors Cy, ..., Cy:

» We want to find automorphisms preserving the graph and the
edge colors.
» We form the graph with vertex-set (v;, C;) and
» edges between (v;, G;) and (v;, Cjr)
» edges between (v;, G;) and (vj/, Gj) if there is an edge between
v; and vjs of color C;
We get a graph with kN vertices.

Edge colored graphs

» The picture obtained is:

» Actually, one can do better, if the binary expression of j is
by ...b, with by = 0 or 1 then we form the graph with
vertex-set (v;, /), 1 < /< r and
> edges between (v;,/) and (v;, /")
» edges between (v;,/) and (v, /) if the binary number by of the
expression of C; is 1.

This makes a graph with [log, (k)| N vertices.

Plane graphs

» If G is a simple 3-connected plane graph then the skeleton
determine the embedding, we can forget the faces.

» If G has multiple edge and/or is not 3-connected we consider
the graph formed by its vertices, edges and faces with
adjacency given by incidence

» This idea extends to partially ordered sets, face lattices, etc.

Canonical form

» nauty has yet another wonderful feature: it can compute a
canonical form of a given graph.

» One possible canonical form of a graph is obtained by taking
the lexicographic minimum of all possible adjacency matrix of
a given graph.

» This canonical form is not the one used by nauty though |
don’t know which one is used.

» Suppose that one has N different graphs from which we want
to select the non-isomorphic ones.

> if one do isomorphism tests with nauty then at worst we have
N(N-1)

tests.
2
» If one computes canonical forms, then we have N calls to
nauty and then string equality tests.

» This is a key to many computer enumeration goals.

Conclusion

» Computing the automorphism group of a given combinatorial
structure is not difficult.
» The only difficulty is that one has to be careful in defining the
graph G(M).
» For example if K, is the complete graph with edge colors, then
the line graph L(K,) is a graph with vertex colors
» But |Aut(Ky)| = 4! and |Aut(L(Ky))| =2 x 4!

» In many cases, most of the time is taken by the slow program
writing the graph to a file.

[1l. Exhaustive
enumeration

Plane graph example

» A ({a, b}, k)-graph is a k-valent plane graph, whose faces
have size a or b.
» A ({a, b}, k)-graph is called:
» aR; if every a-gonal face is adjacent to exactly i a-gonal faces
> bR, if every b-gonal face is adjacent to exactly j b-gonal faces

» Suppose that one wants to enumerate the ({4, 6}, 3)-graphs,
which are 4Ry and 6R3

» We start with a single 4-gon

Next step

oS

IO\

Next step

Conclusion of the process

» So, we are left with

» In the end we obtain the following graph:

24, Oy

Features of the exhaustive method

» We have a lot of intermediate steps, even if in the end we
obtain a few or no objects.

» For example the enumeration of ({4, 9}, 3)-graphs, which are
4Ry, 9R, took several days with in the end no graph found.
» The time run is unpredictable.

» The symmetry and the feature of the obtained objects cannot
be used in their determination.

> At every step we have several possibilities. We need to make
some choices.

» The method is essentially a computerized case by case
analysis. But the program is actually more stupid than us and
a priori it cannot do generalizations easily.

» Sometimes, we run into infinite loops with a non-terminating
program even if the finiteness is proved beforehand.
» All ({3,4},4)-graphs, which are 3R, and 4R; have 30 vertices
» The program find those graphs but actually it continues with
some partial structure of more than 30 vertices.
» A key point is some pruning functions with which one can
prove that a structure admits no extension
» All ({4, 8}, 3)-graphs, which are 8Ry satisfy to
> e4_4 = 12 with es_4 the number of edges separating two
4-gons
> xg + x3 = 8 with x; the number of vertices contained in i
4-gons
» So, if e4_4 > 12 or xg + x3 > 8, then we can discard this case.

» If we have several possible options, select the one with the
minimal number of possibilities of extension.

» After the first stages, the speedup obtained by isomorphism
rejection decrease and can result in a slow down.

A successful example

» We wanted to determine the ({5, 9}, 3)-graphs 9R;

» With an exhaustive enumeration scheme, it took less than 1
hour, 21 graphs were generated, the largest of which is

V. Augmentation
schemes

(or orderly generation)

Computing independent sets up to symmetry

» If G is a graph, then a k-ind.set is a set S of k vertices such
that no two elements in S are adjacent.

» We want to enumerate all independent sets up to symmetry of
the graph G, not just maximal independent sets..
» The straightforward algorithm is the following:

» Take the list of all k-ind.sets up to isomorphism.

» For every k-ind.set, consider all possibilities of adding a vertex
to it, i.e. the (k + 1)-ind.sets it is included in.

» Reduce by isomorphism this set of (k + 1)-ind.sets.

Iterate from 1 to the independent set number of the graph.

» The problem is that one has to store the list of all k-ind.sets
in memory.

Canonical augmentation for independent sets

» We number the vertices of G. If S C {1,...,n} then its
canonical form is the lexicographic minimum of its orbit under
Aut(G).

» Suppose that S = {x1,...,Xxk—1, Xk} is a lexicographically
minimal k-ind.set. Then the subset

S/ = {Xl7 e 7Xk71}

is a (k — 1)-ind.set, which is lexicographically minimal.
» The method is then the following

> Take the list of k-ind.sets, which are lexicographically minimal.
» For every lexicographically minimal k-ind.set S = {x1,...,xk},
consider all its extensions

S" ={x1,...,xx, t} with x, < t

and select the (k + 1)-ind.sets amongst them, which are
lexicographically minimal.

Feature of this scheme

» For every lexicographically minimal k-ind.set

Sk = {x1,...,%k}, we have a canonical path to obtain it:
51 = {xal
S2 = {x1,x}
Sk-1 = {xi,x,..., XK1}

» The memory is no longer a problem.
» This method split well on parallel computers.

» It is difficult to make this kind of schemes:

> You need to be able to obtain your objects sequentially.
> You need to have an efficient canonical form.

All independent sets of 600-cells

» 600-cell has 120 vertices, and a symmetry group Hy of size
14400.

» The independent sets of 600-cell correspond to some

polytopes, whose faces are regular polytopes.

k nb

1 1 7 334380 13 | 74619659 || 19 | 25265
2 8 | 1826415 || 14 | 54482049 || 20 | 1683
3 39 9 | 7355498 || 15 | 26749384 || 21 86
4 | 436 10 | 21671527 || 16 | 8690111 || 22 9

51 4776 || 11 | 46176020 || 17 | 1856685 || 23 1

6 | 45775 || 12 | 70145269 || 18 | 263268 24 1

A special independent set algorithm

Take G a graph with n vertices with group '

> Independent sets corresponds to subsets of {0, 1}V.
» We assign three colors to vertices 1,...,n:

> red if vertex i belong to the independent set.
> blue if vertex i belong does not belong to the independent set.
> if vertex i is not assigned yet.

We fix red > blue.

» We begin with all vertices

» We assign vertices 1,..., p to red or blue and we authorize a
solution only if they are lexicographically higher then their
image under I". If the comparison is impossible, we keep
elements.

» The algorithm is then a tree search in the set of all possible
solutions and is about 1000 times faster.

Generating triangulations

» We want to enumerate plane graph whose faces are 3-gons:

Vo 8

» Triangulations are generated by iteration of the following
operations starting from the Tetrahedron:

Opl
e
Opy Opy
.
—

» One can get a canonical path leading to a given triangulations.

» This method is used by the program plantri by Gunnar
Brinkmann and Brendan McKay.

Programming language issues

» We have fast programming languages: C, Fortran.

> no support for groups or other algebraic structures,
» difficult to put complicated combinatorial structures

» We have slow programming languages: GAP, Mathematica

» support for groups,
» good debugging environment,

» C++ is intermediate between both world. With the STL it has
support for sets, lists, etc

» The speed factor C++/GAP is around 100 but the programming
is more complicated.

» Advice: program in GAP and if necessary do in C++.

» Advice: in C or C++ allocate memory only once.

V. The

homomorphism
principle

An example

» Suppose that one wants to generate 4-valent plane graphs
with faces of size 2, 4, 6 such that every vertex is contained in
exactly one face of size 2

» If one collapse the 2-gons to edges, one obtains a
({4,6},3)-graph. The 2-gons correspond to a perfect
matching in it.

» The method is then

» List all ({4,6},3)-graphs
» For every ({4,6},3)-graph, list its perfect matching.
We factorize the difficulties.

Isohedral (r, g)-polycycles

» A (r, q)-polycycle is a plane graph, whose interior faces are
r-gons and all vertices are of degree g except those on the
boundary, which have degree in [2, q].

» It is isohedral if its symmetry group act transitively on the
r-gonal faces. Below is an isohedral (5, 3)-polycycle

» By the isohedrality, we simply need to define the image along
the edges of an r-gon

The method used

» If we have the r-gon, then we first specify:

> the edges which are boundary edges,
» the vertices which are interior vertices,
> the stabilizer of the r-gon.

» Then we enumerate all possibilities around all interior edges.

» One example:
T T .

Enumeration results

» Number of isohedral (r, g)-polycycle for r, g < 8.

rlqg—

3 4 5 6 7 8

3

~N o oA

3 4 5 5 5 5

4 7 10 12 12 14
8 18 25 39 38 52
13 46 68 131 124 197
29 158 258 519 453 897
59 487 895 2096 1782 3824

» All isohedral (5, 3)-polycycles:

I
<%®

T WA
T

1-factorizations of Ks,

» A 1-factor of Ky, is a set of 2n — 1 perfect matchings in Ky,
which partition the edge-set of Kj,.

» The graph Kg has exactly one 1-factorization with symmetry
group Sym(5), i.e. the group Sym(5) acts on 6 elements.

graph | |isomorphism types| authors

Ko 1

Ksg 6 1906, Dickson, Safford
K1o 396 1973, Gelling

K12 526915620 1993, Dinitz, Garnick, McKay

References

Generalities

> A. Kerber, Applied finite group actions, 2" edition,
Springer-Verlag, 1999.

» P. Ostergard, Constructing combinatorial objects via cliques,
Surveys in combinatorics 2005, 57-82, London Math. Soc.
Lecture Note Ser., 327.

» G. Brinkmann, Isomorphism rejection in structure generation
programs, Discrete mathematical chemistry, DIMACS Ser.
Discrete Math. Theoret. Comput. Sci. 51 (Amer. Math.
Soc., 2000) 25-38.

Nauty papers

» B. McKay, Practical graph isomorphism, Congressus
Numerantium 30 (1981) 45-87.

References
Orderly generation

>

>

P. Kaski, P. Ostergard, Classification algorithms for codes and
designs, Springer Verlag 2006.

B. McKay, Isomorph-free exhaustive generation, J.
Algorithms, 26 (1998) 306-324.

G. Brinkmann and B.D. McKay. Fast generation of planar
graphs, to appear in MATCH Commun. Math. Comput.
Chem.

C.J. Colbourn, R.C. Read, Orderly algorithms for graph
generation, Internat. J. Comput. Math. 7-3 (1979) 167-172.
R.C. Read, Every one a winner or how to avoid isomorphism
search when cataloguing combinatorial configurations,
Algorithmic aspects of combinatorics (Conf., Vancouver
Island, B.C., 1976). Ann. Discrete Math. 2 (1978) 107-120.
I.A. Faradzev, Generation of nonisomorphic graphs with a
given distribution of the degrees of vertices (Russian)
Algorithmic studies in combinatorics “Nauka”, Moscow, 185
(1978) 11-19.

THANK
YOU

