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I. Introduction



Lattice and Voronoi polytope

I A subgroup L = Zv1 + · · ·+ Zvn ⊂ Rn is a lattice if
det(v1, . . . , vn) 6= 0.

I The Voronoi polytope is defined as

V = {x ∈ Rn s.t. ‖x‖ ≤ ‖x − v‖ for v ∈ L− {0}}

I The translates v + V tile Rn.

I The vectors v defining a facet of V are named relevant. The
set of relevant vectors is named Vor(L).

I Voronoi Theorem: A vector u is relevant if and only if it can
not be written as u = v + w with 〈v ,w〉 ≥ 0.
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Problem statement: Coloring lattices

I Given a lattice L, the problem that we consider is choosing a
color on each element of L such that if v − w is a relevant
vector then v and w have different colors. The minimal
number is named χ(L).

I For the root lattice A2 just three colors suffice:

I Questions:
I What is χ for remarkable lattices? (Leech, root lattices, . . . )
I How does χ vary when the lattice is perturbed?
I What are the possible χ in a fixed dimension n?
I How does the maximum value of χ depend on n?



II. Tools of the trade



Generalities on chromatic numbers

Finite graphs:

I Given c > 2 the problem of checking if graphs on n-vertices
are colorable with c colors is NP-hard.

I For each g > 0 and c > 0 there exist graph with girth at least
g and coloring number at least c .

I It is difficult to use graph symmetries since a graph can have
many symmetries but colorings with no symmetries.

Lattice case:

I No general algorithm

I If we find a sublattice Λ such that Λ has no relevant vectors
and L/Λ can be colored by c colors then χ(L) ≤ c .

I Lattice 2L does not contain relevant vectors and so χ(L) ≤ 2n.

I If L = L1 ⊕⊥ L2 then χ(L) = max(χ(L1), χ(L2)).



Satisfiability for testing coloring

I Given a graph on n vertices, can it be colored with c colors?

I We defined a number of Boolean Bv ,i with v a vertex and
1 ≤ i ≤ c a color.

I We have following constraints:

1. For vertex v adjacent to w we want for any i to have
Bv ,i ∧ Bw ,i

2. For any vertex v and colors i < j we should have Bv ,i ∧ Bv ,j

3. For any vertex v we want Bv ,1 ∧ Bv ,2 ∧ · · · ∧ Bv ,c

I This kind of satisfiability problem can be resolved for example
with minisat.

I Computational situation:
I It is NP problem, so cannot work for very large problems.
I Proving UNSAT is much harder than SAT.
I Sometimes fails with n = 100 and works with n = 1.6e4.

I Remark: Satisfaction Modulo Theories (SMT) is a foundation
of modern computer technology (see Z3).



Lower bounds on chromatic number
Fractional chromatic number

I Denote by IG the set of all independent sets of G .

I The fractional chromatic number of G is the solution of the
following linear program:

min

∑
I∈IG

λI : λI ∈ R≥0 for I ∈ IG ,
∑

I∈IG with v∈I
λI ≥ 1 for v ∈ V

 .

I It is still NP-hard, but reasonably fast since we can use
symmetries.

Subgraph

I For H an induced subgraph of G we have χ(G ) ≥ χ(H).

Spectral lower bounds

I The advantage of spectral lower bounds is that they are
computable in polynomial time.

I But they may not be very good lower bounds.



Spectral lower bounds

I Hoffman lower bound: If the eigenvalues of A are
µ1 ≥ · · · ≥ µn then χ(G ) ≥ 1 + µ1

−µn .
For regular d-graphs, µ1 = d and µn can be computed as an
extremal problem. Numerically, it can be computed by the
inflation method.

I Inertia lower bound: Denote n+, n− the number of positive,

negative eigenvalues. We have χ(G ) ≥ 1 + max
(

n+
n−
, n−n+

)
.

I Ando/Lin lower bound: Denote S+ =
∑

µ>0 µ
2,

S− =
∑

µ<0 µ
2 we have χ(G ) ≥ 1 + S+

S−
.

I Elphick/Wocjan lower bound: For all 1 ≤ m ≤ n we have

χ(G ) ≥ 1 +

∑m
i=1 µi

−
∑m

i=1 µn+1−i

There are lower bounds that use the diagonal degree matrix.



III. Special lattices



Case of the Leech and E8 lattice

I Def: The Leech lattice Λ is the unique even unimodular lattice
without roots in dimension 2.

I The length of vectors of the Leech lattice are 4, 6, 8, . . . ,

I The length of the relevant vectors of Λ are 4 and 6.

I There exist a copy of
√

2Λ embedded into Λ. It does not
contain relevant vectors. Thus χ(Λ) ≤ (

√
2)24 = 4096.

I If there were a better coloring then one of the color class
would have density greater than 1

4096 . This color class would
give a better packing than Leech lattice. By Cohn, Kumar,
Miller, Radchenko, Viazovska, The sphere packing problem in
dimension 24 this is impossible.

I Def: The root lattices are the lattices for which Vor(L) is the
set of shortest vectors.

I The irreducible root lattices are An, Dn, E6, E7, E8.

I The same method works for the root lattice E8.



Empty sphere and Delaunay polytopes

I Def: A sphere S(c, r) of center c and radius r in an
n-dimensional lattice L is said to be an empty sphere if:

(i) ‖v − c‖ ≥ r for all v ∈ L,
(ii) the set S(c , r) ∩ L contains n + 1 affinely independent points.

I Def: A Delaunay polytope P in a lattice L is a polytope,
whose vertex-set is L ∩ S(c , r).

c
r

I Delaunay polytopes define a tessellation of the Euclidean
space Rn

I Each Delaunay polytope define a natural induced subgraph.



The root lattices An

I Def: The root lattice An is defined as

An =

{
x ∈ Zn+1 such that

n+1∑
i=1

xi = 0

}
I Its relevant vectors are ei − ej for 1 ≤ i , j ≤ n + 1.
I The preferred basis is (vi = ei+1 − ei )1≤i≤n.
I An index n + 1 sublattice is defined by

v =
n∑

i=1

αivi ∈ An such that
n∑

i=1

αi ≡ 0 (mod n + 1)

and has no relevant vectors. So, χ(An) ≤ n + 1.
I The Delaunay polytopes of An are for 1 ≤ k ≤ n:

J(n, k) =

{
x ∈ {0, 1}n+1 s.t.

∑
i

xi = k

}
− ke1

I J(n, 1) is a n-dimensional simplex. So χ(An) = n + 1.



The root lattices Dn

I The Delaunay polytopes of the lattice Zn are translations of
[0, 1]n.

I Def: The root lattice Dn is

Dn =

{
x ∈ Zn such that

n∑
i=1

xi ≡ 0 (mod 2)

}
I The Delaunay polytopes are

I The cross polytope βn = conv {e1 ± ei for 1 ≤ i ≤ n}
I The half cube

1
2Hn = conv

{
x ∈ {0, 1}n s.t.

∑n
i=1 xi ≡ 0 (mod 2)

}
I Thm: For all n we have χ(Dn) = χ(12Hn) and for n ≤ 11:

n 4 5 6 7 8 9 10 11

χ(12Hn) 4 8 8 8 8 13∗ [13, 15] [15, 18]

∗: J.I. Kokkala and P.R.J. Österg̊ard, The chromatic number
of the square of the 8-cube, Math. Comp. 87 (2018),
2551–2561.



The root lattice E6

I The Delaunay polytopes of E6 are the Schläfli polytope Sch
and -Sch.

I It has 27 vertices, 51840 symmetries. The lattice E6 is
laminated on D5 and Sch is formed of three layers:

I One vertex
I 16 vertices in the half cube 1

2H5

I 10 vertices in the cross polytope β5

I Maximum independent sets have size 3 and form just 1 orbit.

I Sch has chromatic number 9: There are two orbits of
colorings, one orbit of size 160 and another of size 40 (use
libexact). Thus χ(E6) ≥ 9.

I Thm: χ(E6) = 9. Take a coloring in the orbit of size 40. For
each triple take the difference of vectors in it. The spanned
lattice is of index 9 and has no relevant vectors.

I Conj: All 9-colorings of E6 are of this form.



The root lattice E7

I The Delaunay polytopes of E7 is the Gosset polytope Gos and
an orbit of simplices.

I Gos has 56 vertices, 2903040 symmetries. Some laminations:
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I Maximum independent sets have size 2 or 4 and form 2 orbits.

I Gos has chromatic number 14: There are 40457 orbits of
colorings (use libexact and symmetries). Thus χ(E7) ≥ 14.

I The lattice E7 is laminated on A6 and we have χ(A6) = 7.

I Thm: χ(E7) = 14. We color the odd layers of A6 by
{1, . . . , 7} and the even layers by {8, . . . , 14}.



Hoffman lower bounds for lattices

I The Hoffman lower bounds can be expressed on infinite
graphs.

I Let us denote µ a measure on Vor(L) with µ(v) = µ(−v).
We have

χ(L) ≥ 1−
supx∈Rn

∑
u∈Vor(L) µ(u)e2πiu·x

infx∈Rn

∑
u∈Vor(L) µ(u)e2πiu·x

I If we choose µ(u) = 1
|Vor(L)| then we have

χ(L) ≥ 1− |Vor(L)|

 inf
x∈Rn

∑
u∈Vor(L)

e2πiu·x

−1

I The proof method uses Harmonic analysis and Fourier
analysis. Expressing other spectral bounds on infinite graphs
would be hard.



Hoffman lower bounds for root lattices

I The character of the adjoint representation corresponding to
the group is expressed as

chL
ad(g) = dim(L) +

∑
u∈Vor(L)

e2πiu·x

I The critical values of the characters (see Serre, 2004) were
computed by algebraic methods and this gives:

Crit chE6
ad = {−3,−2, 6, 14, 78}

Crit chE7
ad =

{
−7,−3,−2, 1, 175 , 5, 25, 133

}
Crit chE8

ad =
{
−8,−4,−104

27 ,−
57
16 ,−3,−2, 0, 5, 24, 248

}
I This gives χ(E6) ≥ 9, χ(E7) ≥ 10 and χ(E8) ≥ 16.

I We have Crit chAn
ad = {−1, n(n + 2)}.

I Also Crit chDn
ad is known.



The dual root lattices

I For a lattice L ⊂ Rn the dual lattice L∗ is

L∗ = {x ∈ Rn s.t. 〈x , y〉 ∈ Z for y ∈ L}

I χ(A∗n) = n + 1 since the Delaunay polytopes are simplices and
An is an index n + 1 sublattice without relevant vectors.

I χ(D∗n) = 4 since D∗n = Zn ∪ ((1/2)n + Zn)

I Thm: We have χ(E∗n) = 16 for n = 6, 7, 8.

I Lower bound is obtained by the fractional chromatic method
applied to a sufficient set of vectors around the origin.

I Explicit coloring for E∗6 is obtained by finding an adequate
sublattice.

I For E∗7 we could not find an index 16 sublattice that works.

I Instead we consider E∗7/4E∗7 and color the 16384 points with
16 colors with minisat in 2 minutes. Note that computing
spectral lower bounds for this graph did not finish in 2 hours.



IV. Gram matrix
iso-Delaunay

and iso-edge domains



Gram matrix and lattices

I Denote by Sn the vector space of real symmetric n × n
matrices and Sn

>0 the convex cone of real symmetric positive
definite n × n matrices.

I Take a basis (v1, . . . , vn) of a lattice L and associate to it the
Gram matrix Gv = (〈vi , vj〉)1≤i ,j≤n ∈ Sn

>0.
I Example: take the hexagonal lattice generated by v1 = (1, 0)

and v2 =
(
1
2 ,
√
3
2

)

2
v

v
1

Gv = 1
2

(
2 1
1 2

)

I This gives a parameter space of dimension n(n + 1)/2.
I All programs for lattices (SVP, CVP, Arithmetic equivalence,

etc.) use Gram matrices as input.



Iso-Delaunay domains

I Take a lattice L and select a basis v1, . . . , vn.

I We want to assign the Delaunay polytopes of a lattice.
Geometrically, this means that

1
v

2
v

2
v’

1
v’

are part of the same iso-Delaunay domain.

I Formally, an iso-Delaunay domain is a set of positive definite
matrices corresponding to the same iso-Delaunay domains.

I A primitive iso-Delaunay domain is a domain of maximum
dimension and this means that all Delaunay are simplices.



Equalities and inequalities for iso-Delaunay domains

I Take M = Gv with v = (v1, . . . , vn) a basis of lattice L.

I If V = (w1, . . . ,wN) with wi ∈ Zn are the vertices of a
Delaunay polytope of empty sphere S(c , r) then:

‖wi − c‖M = r i.e. wT
i Mwi − 2wT

i Mc + cTMc = r2

I Substracting one obtains{
wT
i Mwi − wT

j Mwj

}
− 2

{
wT
i − wT

j

}
Mc = 0

I Inverting matrices, one obtains Mc = ψ(M) with ψ linear and
so one gets linear equalities on M.

I Similarly ||w − c || ≥ r translates into a linear inequality on M:
Take V = (v0, . . . , vn) a simplex (vi ∈ Zn), w ∈ Zn. If one
writes w =

∑n
i=0 λivi with 1 =

∑n
i=0 λi , then one has

‖w − c‖ ≥ r ⇔ wTMw −
n∑

i=0

λiv
T
i Mvi ≥ 0



Plane representation of S2
≥0
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Iso-Delaunay domains in S2
>0

Primitive and non-primitive iso-Delaunay domains in S2
>0:



Enumeration results on iso-Delaunay domains
The equivalence used is the arithmetic equivalence A 7→ PAPT for
P ∈ GLn(Z) which corresponds to changing basis in the lattice.

Dimension Nr. iso-Delaunay domain Nr. prim. iso-Delaunay domains
1 1 1
2 2 1
3 5 1

Fedorov, 1885 Fedorov, 1885
4 52 3

Delaunay & Shtogrin 1973 Voronoi, 1905
5 110244 222

MDS, AG, AS & CW, 2016 Engel & Gr. 2002

Truncated octahedron Hexarhombic dodecahedron Rhombic dodecahedron Hexagonal prism Cube



Iso-edge domain
I A parity class is a vector v ∈ L− 1

2L. There are 2n − 1 up to
translation by L. The middle of each edge of a Delaunay
polytope is a parity class.

I A iso-edge domain is the assignation of an edge to each
translation class.

1
2

v

v

I For the edge [0, v1] of center v1/2 we have the set of
inequalities:

‖v − v1/2‖ ≥ ‖v1/2‖ for v ∈ L

I If we express in term of the basis (v1, v2) back into Gram
matrices we obtain:

A [x − (1/2, 0)] ≥ A [(1/2, 0)] for x ∈ Z2

I This defines an infinite set of inequalities but actually it
reduces to a finite number



Implications on chromatic numbers

I A iso-Delaunay domain will be contained in an iso-edge
domain. An iso-edge domain will contain a finite number of
iso-Delaunay domains.

I Enumeration results:
n |prim.iso − edge| n |prim.iso − edge|
2 1 4 3 Baranovski & Ryshkov 1973
3 1 5 76 Baranovski & Ryshkov 1973

I What matters for chromatic numbers is facets of Voronoi and
so edges of Delaunay polytopes and so iso-Edge domains.

I The maximum chromatic number is attained in the generic
case. When one goes to the boundary of an iso-Edge domain,
some edges disappear and so the chromatic number decrease.

I For dimension n ≥ 6 we do not know the full list.



V. Lattices in
principal domain



The principal domain

I A lattice Λ is in the principal domain if there are vectors
{v0, v1, . . . , vn} such that

I {v1, . . . , vn} is a basis of Λ.
I v0 + v1 + · · ·+ vn = 0
I For i < j we have vi · vj ≤ 0.

I The Delauney graph D(Λ) of Λ is the graph with two vertices
on (vi ) with two vertices adjacent if vi · vj < 0.

I For such a lattice Λ, we have χ(Λ) ≤ n + 1. More generally if
(Gi ) is the decomposition into biconnected components of
D(Λ) then

χ(Λ) ≤ 1 + max
i
|V (Gi )|

I The chromatic number of Λ is at least the maximal length of
a cycle in D(Λ).



Three dimensional case

In dimension 3 all lattices are in the principal domain. Their
lattice, Voronoi cell, Delaunay graph, and chromatic numbers:

Z3 A2 ⊥ Z A3 Z

2
0
0

 ⊕ Z

0
2
0

 ⊕ Z

−1
−1
2

 A∗
3

cube hexagonal rhombic elongated truncated
prism dodecahedron dodecahedron octahedron

2 3 4 4 4

Beyond dimension three, we have to consider lattices which are not
in the principal domain.



VI. Exponential growth



Bounds

I We are interested in maximum chromatic number of lattices.
Does it grow exponentially?

I We already know χ(L) ≤ 2n.

I For S ⊂ {1, . . . , n} we define the cut metric

δS : {1, . . . , n}2 → R

(x , y) 7→
{

1 |S ∩ {x , y}| = 1
0 otherwise

I The polytope CUTn = conv(δS , S ⊂ {1, . . . , n}) has 2n−1

vertices (since δS = δ{1,...,n}−S) and they form a clique.

I The lattice Lattn spanned by the δS is the cut lattice and
CUTn is a Delaunay polytope of it. So χ(Lattn) ≥ 2n−1 with

dim Lattn = n(n−1)
2 .



Exponential growth

With high probability, the chromatic number of a random
n-dimensional lattice grows exponentially in n. Moreover, there are
n-dimensional lattices Λn with

χ(Λn) ≥ 2(0.0990···−o(1))n

I The proof is existential, it does not give those lattices.

I The probability refers to the density of the quotient
SL(n,R)/ SL(n,Z) which is of finite covolume (but not
cocompact).

I A quasi-linear factor can be added in front.

I The proof depends on some elementary argument and the
Minkowski-Hlawka lower bounds on lattice packings.


