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|. Introduction



Lattice and Voronoi polytope

> A subgroup L=7Zvi + -+ Zv, C R" is a lattice if
det(vi,...,vn) # 0.
» The Voronoi polytope is defined as

V={xeR"st. x| <||x—v| forvel—{0}}

» The translates v 4V tile R".

» The vectors v defining a facet of V are named relevant. The
set of relevant vectors is named Vor(L).

» Voronoi Theorem: A vector u is relevant if and only if it can

not be written as u = v + w with (v, w) > 0.
[ ]

irrelevant



Problem statement: Coloring lattices

» Given a lattice L, the problem that we consider is choosing a
color on each element of L such that if v — w is a relevant
vector then v and w have different colors. The minimal
number is named x(L).

» For the root lattice Ay just three colors suffice:

» Questions:

What is x for remarkable lattices? (Leech, root lattices, ...)
How does x vary when the lattice is perturbed?

What are the possible x in a fixed dimension n?

How does the maximum value of x depend on n?

vV vy vVvyYy



[1. Tools of the trade



Generalities on chromatic numbers

Finite graphs:

» Given ¢ > 2 the problem of checking if graphs on n-vertices
are colorable with ¢ colors is NP-hard.

> For each g > 0 and ¢ > 0 there exist graph with girth at least
g and coloring number at least c.

» It is difficult to use graph symmetries since a graph can have
many symmetries but colorings with no symmetries.

Lattice case:
> No general algorithm

> If we find a sublattice A such that A has no relevant vectors
and L/ can be colored by ¢ colors then x(L) < c.

» Lattice 2L does not contain relevant vectors and so x(L) < 2".
» If L=L; &) Ly then x(L) = max(x(L1), x(L2)).



Satisfiability for testing coloring

» Given a graph on n vertices, can it be colored with ¢ colors?

» We defined a number of Boolean B, ; with v a vertex and
1 << cacolor.
» We have following constraints:

1. For vertex v adjacent to w we want for any i/ to have

Bv7i A Bw,i
2. For any vertex v and colors i < j we should have B, ; A B, ;
3. For any vertex v we want B, 1 ABys A---AB, ¢

» This kind of satisfiability problem can be resolved for example
with minisat.
» Computational situation:
» It is NP problem, so cannot work for very large problems.
» Proving UNSAT is much harder than SAT.
» Sometimes fails with n = 100 and works with n = 1.6e4.
» Remark: Satisfaction Modulo Theories (SMT) is a foundation
of modern computer technology (see Z3).



Lower bounds on chromatic number
Fractional chromatic number
» Denote by Z¢ the set of all independent sets of G.

» The fractional chromatic number of G is the solution of the
following linear program:

min Z)\,:)\/ERZOforIEIg, Z A >1lforveV
1€l 1€Zs with vel

» It is still NP-hard, but reasonably fast since we can use
symmetries.

Subgraph
» For H an induced subgraph of G we have x(G) > x(H).
Spectral lower bounds

» The advantage of spectral lower bounds is that they are
computable in polynomial time.

» But they may not be very good lower bounds.



Spectral lower bounds

» Hoffman lower bound: If the eigenvalues of A are
pi1 = -+ = pin then x(G) > 1+ L1
For regular d-graphs, 1 = d and p, can be computed as an
extremal problem. Numerically, it can be computed by the
inflation method.

> Inertia lower bound: Denote ny, n_ the number of positive,

negative eigenvalues. We have x(G) > 1 + max ("+ L—)

ni’ ny
> Ando/Lin lower bound: Denote S, =3} 2,
S- =30 12 we have x(G) > 1+ g—f
» Elphick/Wocjan lower bound: For all 1 < m < n we have

271:1 Hi

x(G)> 1+ ——F——
( ) —Zizlﬂnﬂq

There are lower bounds that use the diagonal degree matrix.



lIl. Special lattices



Case of the Leech and Eg lattice

>

Def: The Leech lattice A is the unique even unimodular lattice
without roots in dimension 2.

The length of vectors of the Leech lattice are 4, 6, 8, ...,
The length of the relevant vectors of A are 4 and 6.

There exist a copy of v/2A embedded into A. It does not
contain relevant vectors. Thus x(A) < (v/2)?* = 4096.

If there were a better coloring then one of the color class
would have density greater than ﬁ. This color class would
give a better packing than Leech lattice. By Cohn, Kumar,
Miller, Radchenko, Viazovska, The sphere packing problem in
dimension 24 this is impossible.

Def: The root lattices are the lattices for which Vor(L) is the
set of shortest vectors.

The irreducible root lattices are A,,, D,, E¢, E7, Es.

The same method works for the root lattice Eg.



Empty sphere and Delaunay polytopes

» Def: A sphere S(c, r) of center ¢ and radius r in an
n-dimensional lattice L is said to be an empty sphere if:

(i) |lv—=-c||>rforallvel,
(ii) the set S(c,r) N L contains n+ 1 affinely independent points.
» Def: A Delaunay polytope P in a lattice L is a polytope,
whose vertex-set is L N S(c, r).

» Delaunay polytopes define a tessellation of the Euclidean
space R”
» Each Delaunay polytope define a natural induced subgraph.



The root lattices A,

» Def: The root lattice A, is defined as

n+1
A, = {X € Z"1 such that Zx,- = 0}

i=1

v

Its relevant vectors are e; — ¢j for 1 </,j < n+ 1.

v

The preferred basis is (v; = ej+1 — €j)1<i<n-
An index n + 1 sublattice is defined by

v

v = Ea;v,- € A, such that Za; =0 (modn+1)
i=1 i=1

and has no relevant vectors. So, x(A,) < n+ 1.
The Delaunay polytopes of A, are for 1 < k < n:

J(n, k) = {x € {0,111 st Zx,- = k} — ke

v

» J(n,1) is a n-dimensional simplex. So x(A,) = n+ 1.



The root lattices D,,

» The Delaunay polytopes of the lattice Z" are translations of
[0, 1]".
» Def: The root lattice D, is

n
D, = {x € Z" such that Y x; =0 (mod 2)}
i=1
» The Delaunay polytopes are
» The cross polytope 8, = conv{e; + ¢ for 1 < i < n}
» The half cube
fHy,=conv{x € {0,1}"st. 37 ;x5 =0 (mod 2)}
» Thm: For all n we have x(D,) = x(3H,) and for n < 11

n |4]5]6]7]8] 9 | 10 11
Xx(3H,) [4 |8 888|137 |[13,15] | [15, 18]

*: J.I. Kokkala and P.R.J. éstergérd, The chromatic number
of the square of the 8-cube, Math. Comp. 87 (2018),
2551-2561.



The root lattice Eg

» The Delaunay polytopes of Eg are the Schlafli polytope Sch
and -Sch.

> It has 27 vertices, 51840 symmetries. The lattice Eg is
laminated on Ds and Sch is formed of three layers:

» One vertex
> 16 vertices in the half cube 3 Hs
» 10 vertices in the cross polytope (s

» Maximum independent sets have size 3 and form just 1 orbit.

» Sch has chromatic number 9: There are two orbits of
colorings, one orbit of size 160 and another of size 40 (use
libexact). Thus x(Es) > 9.

» Thm: x(Es) = 9. Take a coloring in the orbit of size 40. For
each triple take the difference of vectors in it. The spanned
lattice is of index 9 and has no relevant vectors.

> Conj: All 9-colorings of Eg are of this form.



The root lattice E-

>

The Delaunay polytopes of E7 is the Gosset polytope Gos and

an orbit of simplices.

Gos has 56 vertices, 2903040 symmetries. Some laminations:

Es Ds As
1 O point |5 _ Be 7 — J(6,1)
27 Sch | 1 | 262
27 _Sch LR S —— (]
1 o pomt |12 — B |7 — _ye1

Maximum independent sets have size 2 or 4 and form 2 orbits.

Gos has chromatic number 14: There are 40457 orbits of
colorings (use libexact and symmetries). Thus x(E7) > 14.

The lattice E7 is laminated on Ag and we have x(Ag) = 7.

Thm: x(E7) = 14. We color the odd layers of Ag by
{1,...,7} and the even layers by {8,...,14}.




Hoffman lower bounds for lattices

» The Hoffman lower bounds can be expressed on infinite

graphs.
» Let us denote 1 a measure on Vor(L) with p(v) = p(—v).
We have
2miu-x
SUPKER? 2 ue Vor u)e
W)>1- €R™ D ueVo (L)M( )

ianER" ZUG Vor(L) /’L(u)eZﬂ'iu.X
> If we choose p(u) = \\/Tl(m then we have

-1

1)>1— : 2miu-x
(D)2 1= |vor(L)| | inf S e
ueVor(L)
» The proof method uses Harmonic analysis and Fourier
analysis. Expressing other spectral bounds on infinite graphs

would be hard.



Hoffman lower bounds for root lattices

» The character of the adjoint representation corresponding to
the group is expressed as

chiy(g) = dim(L) + Z p2miux

ueVor(L)

v

The critical values of the characters (see Serre, 2004) were
computed by algebraic methods and this gives:

Critch™ = {-3,-2,6,14 78}

Critcht, = {-7,-3,-2,1,% 525133}
Critch® = {-8, 4,—17074,—%,—3, ~2,0,5,24,248}

v

This gives x(E¢) > 9, x(E7) > 10 and x(Eg) > 16.
We have CritchaAg ={-1,n(n+2)}.

Also Crit ch?; is known.

v

v



The dual root lattices

» For a lattice L C R" the dual lattice L* is
L*={xeR"st. (x,y) € Zforyec L}

» x(A}) = n+ 1 since the Delaunay polytopes are simplices and
A, is an index n + 1 sublattice without relevant vectors.

» x(D%) =4 since D =Z"U((1/2)" +Z")

» Thm: We have x(E};) = 16 for n =6,7,8.

» Lower bound is obtained by the fractional chromatic method
applied to a sufficient set of vectors around the origin.

» Explicit coloring for Eg is obtained by finding an adequate
sublattice.

» For E; we could not find an index 16 sublattice that works.

» Instead we consider E3/4E% and color the 16384 points with
16 colors with minisat in 2 minutes. Note that computing
spectral lower bounds for this graph did not finish in 2 hours.



V. Gram matrix
iso-Delaunay
and iso-edge domains



Gram matrix and lattices

» Denote by S” the vector space of real symmetric n X n
matrices and 5” the convex cone of real symmetric positive
definite n X n matrices.

» Take a basis (v1,...,Vv,) of a lattice L and associate to it the
Gram matrix Gy = ((vi, vj))1<ij<n € SZo.

» Example: take the hexagonal lattice generated by v; = (1,0)

and v = (%, §>

» This gives a parameter space of dimension n(n+ 1)/2.
» All programs for lattices (SVP, CVP, Arithmetic equivalence,
etc.) use Gram matrices as input.



Iso-Delaunay domains

» Take a lattice L and select a basis vi, ..., v,.

» We want to assign the Delaunay polytopes of a lattice.
Geometrically, this means that

***********************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

are part of the same iso-Delaunay domain.

» Formally, an iso-Delaunay domain is a set of positive definite
matrices corresponding to the same iso-Delaunay domains.

» A primitive iso-Delaunay domain is a domain of maximum
dimension and this means that all Delaunay are simplices.



Equalities and inequalities for iso-Delaunay domains

» Take M = G, with v = (v1,...,v,) a basis of lattice L.
> If V= (w,...,wy) with w; € Z" are the vertices of a
Delaunay polytope of empty sphere S(c, r) then:
|wi —cllpyy=r ie w' Mw;— 2w, Mc+c"Mc = r?
» Substracting one obtains
{W,-TI\/IW,- — WjTI\/IWj} -2 {W,-T - WjT} Mc =0

» Inverting matrices, one obtains Mc = ¢(M) with % linear and
so one gets linear equalities on M.

» Similarly ||w — c|| > r translates into a linear inequality on M:
Take V = (w,...,Vvn) a simplex (v; € Z"), w € Z". If one
writes w = > 7 o A\jv; with 1 =Y"7 ;)\, then one has

n
|lw—c|>rew Mw— Z)\,‘VITMV,' >0
i=0



Plane representation of 52




. . 2
Iso-Delaunay domains in 5%,

Primitive and non-primitive iso-Delaunay domains in 5§0:




Enumeration results on iso-Delaunay domains

The equivalence used is the arithmetic equivalence A — PAPT for
P € GL,(Z) which corresponds to changing basis in the lattice.

Dimension Nr. iso-Delaunay domain Nr. prim. iso-Delaunay domains
1 1 1
2 2 1
3 5 1
Fedorov, 1885 Fedorov, 1885
4 52 3
Delaunay & Shtogrin 1973 Voronoi, 1905
5 110244 222
MDS, AG, AS & CW, 2016 Engel & Gr. 2002

Truncated octahedron

Hexarhombic dodecahedron

Rhombic dodecahedron

I prism Cube




|so-edge domain

» A parity class is a vector v € L — %L. There are 2" — 1 up to
translation by L. The middle of each edge of a Delaunay
polytope is a parity class.

> A iso-edge domain is the assignation of an edge to each
translation class.

» For the edge [0, v1] of center v1/2 we have the set of
inequalities:

lv—vi/2]| > ||v1i/2|| forveL

» If we express in term of the basis (vi, v2) back into Gram
matrices we obtain:

Alx —(1/2,0)] > A[(1/2,0)] for x € Z?



Implications on chromatic numbers

v

A iso-Delaunay domain will be contained in an iso-edge
domain. An iso-edge domain will contain a finite number of
iso-Delaunay domains.

» Enumeration results:

n | |prim.iso — edge| || n |prim.iso — edge|
2 1 4 | 3 Baranovski & Ryshkov 1973
3 1 5 | 76 Baranovski & Ryshkov 1973

» What matters for chromatic numbers is facets of Voronoi and
so edges of Delaunay polytopes and so iso-Edge domains.

» The maximum chromatic number is attained in the generic
case. When one goes to the boundary of an iso-Edge domain,
some edges disappear and so the chromatic number decrease.

» For dimension n > 6 we do not know the full list.



V. Lattices in
principal domain



The principal domain

> A lattice A is in the principal domain if there are vectors

{vo,v1,...,Vp} such that
» {vi,..., vy} is a basis of A.
» vot+vi+--+v, =0
» For i < j we have v;-v; <0.

» The Delauney graph D(A) of A is the graph with two vertices
on (v;) with two vertices adjacent if v; - v; < 0.

» For such a lattice A, we have x(A) < n+ 1. More generally if
(G;j) is the decomposition into biconnected components of
D(N) then

X(A) <1+ ml_ax|V(G;)’

» The chromatic number of A is at least the maximal length of
a cycle in D(A).



Three dimensional case

In dimension 3 all lattices are in the principal domain. Their
lattice, Voronoi cell, Delaunay graph, and chromatic numbers:

5 2 0 —1
Z Ay L Z ()EBZ(2>EBZ(—1> A3
2

cube hexagonal rhombic elongated truncated
prism dodecahedron dodecahedron octahedron
2 3 4 4 4

Beyond dimension three, we have to consider lattices which are not
in the principal domain.



VI. Exponential growth



Bounds

» We are interested in maximum chromatic number of lattices.
Does it grow exponentially?

» We already know (L) < 2".
» For S C {1,...,n} we define the cut metric

6s:{1,...,n}2 — R
L [Sn{x,y} =1
(ey) = { 0 otherwise

» The polytope CUT, = conv(ds,S C {1,...,n}) has 271
vertices (since 0s = dg1, . n1—s) and they form a clique.

» The lattice Latt, spanned by the ds is the cut lattice and

CUT, is a Delaunay polytope of it. So x(Latt,) > 2"~! with

dim Latt, = @



Exponential growth

With high probability, the chromatic number of a random
n-dimensional lattice grows exponentially in n. Moreover, there are
n-dimensional lattices A, with

X(An) > 2(0.0990-~~—o(1))n

» The proof is existential, it does not give those lattices.

» The probability refers to the density of the quotient
SL(n,R)/SL(n,Z) which is of finite covolume (but not
cocompact).

» A quasi-linear factor can be added in front.

» The proof depends on some elementary argument and the
Minkowski-Hlawka lower bounds on lattice packings.



