Coloring Voronoi cells

Mathieu Dutour Sikirić Rudjer Bošković Institute, Croatia Joint work with D. Madore, F. Vallentin and P. Moustrou

February 21, 2020

I. Introduction

Lattice and Voronoi polytope

- A subgroup L = Zv₁ + · · · + Zv_n ⊂ ℝⁿ is a lattice if det(v₁, . . . , v_n) ≠ 0.
- The Voronoi polytope is defined as

 $\mathcal{V} = \{ x \in \mathbb{R}^n \text{ s.t. } \|x\| \le \|x - v\| \text{ for } v \in L - \{0\} \}$

- The translates $v + \mathcal{V}$ tile \mathbb{R}^n .
- ► The vectors v defining a facet of V are named relevant. The set of relevant vectors is named Vor(L).
- Voronoi Theorem: A vector u is relevant if and only if it can not be written as u = v + w with ⟨v, w⟩ ≥ 0.

Problem statement: Coloring lattices

- ► Given a lattice L, the problem that we consider is choosing a color on each element of L such that if v − w is a relevant vector then v and w have different colors. The minimal number is named χ(L).
- ▶ For the root lattice A₂ just three colors suffice:

Questions:

- What is χ for remarkable lattices? (Leech, root lattices, ...)
- How does χ vary when the lattice is perturbed?
- What are the possible χ in a fixed dimension n?
- ▶ How does the maximum value of χ depend on *n*?

II. Tools of the trade

Generalities on chromatic numbers

Finite graphs:

- ▶ Given c > 2 the problem of checking if graphs on n-vertices are colorable with c colors is NP-hard.
- For each g > 0 and c > 0 there exist graph with girth at least g and coloring number at least c.
- It is difficult to use graph symmetries since a graph can have many symmetries but colorings with no symmetries.

Lattice case:

- No general algorithm
- If we find a sublattice ∧ such that ∧ has no relevant vectors and L/∧ can be colored by c colors then χ(L) ≤ c.
- Lattice 2L does not contain relevant vectors and so $\chi(L) \leq 2^n$.
- If $L = L_1 \oplus_{\perp} L_2$ then $\chi(L) = \max(\chi(L_1), \chi(L_2))$.

Satisfiability for testing coloring

- ▶ Given a graph on *n* vertices, can it be colored with *c* colors?
- We defined a number of Boolean $B_{v,i}$ with v a vertex and $1 \le i \le c$ a color.
- We have following constraints:
 - 1. For vertex v adjacent to w we want for any i to have $\overline{B_{v,i}} \wedge \overline{B_{w,i}}$
 - 2. For any vertex v and colors i < j we should have $\overline{B_{v,i}} \wedge \overline{B_{v,j}}$
 - 3. For any vertex v we want $B_{v,1} \wedge B_{v,2} \wedge \cdots \wedge B_{v,c}$
- This kind of satisfiability problem can be resolved for example with minisat.
- Computational situation:
 - It is NP problem, so cannot work for very large problems.
 - Proving UNSAT is much harder than SAT.
 - Sometimes fails with n = 100 and works with n = 1.6e4.
- Remark: Satisfaction Modulo Theories (SMT) is a foundation of modern computer technology (see Z3).

Lower bounds on chromatic number

Fractional chromatic number

- Denote by \mathcal{I}_G the set of all independent sets of G.
- ► The fractional chromatic number of *G* is the solution of the following linear program:

$$\min\left\{\sum_{I\in\mathcal{I}_{G}}\lambda_{I}:\lambda_{I}\in\mathbb{R}_{\geq0}\text{ for }I\in\mathcal{I}_{G},\sum_{I\in\mathcal{I}_{G}\text{ with }\nu\in I}\lambda_{I}\geq1\text{ for }\nu\in V\right\}$$

 It is still NP-hard, but reasonably fast since we can use symmetries.

Subgraph

For H an induced subgraph of G we have $\chi(G) \ge \chi(H)$.

Spectral lower bounds

- The advantage of spectral lower bounds is that they are computable in polynomial time.
- But they may not be very good lower bounds.

Spectral lower bounds

- Hoffman lower bound: If the eigenvalues of A are μ₁ ≥ · · · ≥ μ_n then χ(G) ≥ 1 + μ₁/-μ_n. For regular d-graphs, μ₁ = d and μ_n can be computed as an extremal problem. Numerically, it can be computed by the inflation method.
- ► Inertia lower bound: Denote n₊, n₋ the number of positive, negative eigenvalues. We have χ(G) ≥ 1 + max (n₊/n₊, n₋/n₊).
- ▶ Ando/Lin lower bound: Denote $S_+ = \sum_{\mu>0} \mu^2$, $S_- = \sum_{\mu<0} \mu^2$ we have $\chi(G) \ge 1 + \frac{S_+}{S_-}$.
- Elphick/Wocjan lower bound: For all $1 \le m \le n$ we have

$$\chi(G) \geq 1 + \frac{\sum_{i=1}^{m} \mu_i}{-\sum_{i=1}^{m} \mu_{n+1-i}}$$

There are lower bounds that use the diagonal degree matrix.

III. Special lattices

Case of the Leech and E_8 lattice

- Def: The Leech lattice Λ is the unique even unimodular lattice without roots in dimension 2.
- ▶ The length of vectors of the Leech lattice are 4, 6, 8, ...,
- The length of the relevant vectors of Λ are 4 and 6.
- There exist a copy of √2Λ embedded into Λ. It does not contain relevant vectors. Thus χ(Λ) ≤ (√2)²⁴ = 4096.
- If there were a better coloring then one of the color class would have density greater than ¹/₄₀₉₆. This color class would give a better packing than Leech lattice. By Cohn, Kumar, Miller, Radchenko, Viazovska, The sphere packing problem in dimension 24 this is impossible.
- Def: The root lattices are the lattices for which Vor(L) is the set of shortest vectors.
- The irreducible root lattices are A_n , D_n , E_6 , E_7 , E_8 .
- ▶ The same method works for the root lattice E₈.

Empty sphere and Delaunay polytopes

- Def: A sphere S(c, r) of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
 (i) ||v c|| ≥ r for all v ∈ L,
 (ii) the set S(c, r) ∩ L contains n + 1 affinely independent points.
- ▶ Def: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

- ▶ Delaunay polytopes define a tessellation of the Euclidean space ℝⁿ
- Each Delaunay polytope define a natural induced subgraph.

The root lattices A_n

Def: The root lattice A_n is defined as

$$\mathsf{A}_n = \left\{ x \in \mathbb{Z}^{n+1} ext{ such that } \sum_{i=1}^{n+1} x_i = 0
ight\}$$

▶ Its relevant vectors are $e_i - e_j$ for $1 \le i, j \le n + 1$.

- The preferred basis is $(v_i = e_{i+1} e_i)_{1 \le i \le n}$.
- ► An index n + 1 sublattice is defined by

$$\mathbf{v} = \sum_{i=1}^n lpha_i \mathbf{v}_i \in \mathsf{A}_n ext{ such that } \sum_{i=1}^n lpha_i \equiv 0 \pmod{n+1}$$

and has no relevant vectors. So, $\chi(A_n) \leq n+1$.

• The Delaunay polytopes of A_n are for $1 \le k \le n$:

$$J(n,k) = \left\{ x \in \{0,1\}^{n+1} \text{ s.t. } \sum_{i} x_i = k \right\} - ke_1$$

• J(n,1) is a *n*-dimensional simplex. So $\chi(A_n) = n + 1$.

The root lattices D_n

- ► The Delaunay polytopes of the lattice Zⁿ are translations of [0, 1]ⁿ.
- ▶ Def: The root lattice D_n is

$$\mathsf{D}_n = \left\{ x \in \mathbb{Z}^n ext{ such that } \sum_{i=1}^n x_i \equiv 0 \pmod{2}
ight\}$$

- The Delaunay polytopes are
 - The cross polytope $\beta_n = \operatorname{conv} \{e_1 \pm e_i \text{ for } 1 \le i \le n\}$
 - ► The half cube $\frac{1}{2}H_n = \operatorname{conv}\left\{x \in \{0,1\}^n \text{ s.t. } \sum_{i=1}^n x_i \equiv 0 \pmod{2}\right\}$

• Thm: For all *n* we have $\chi(D_n) = \chi(\frac{1}{2}H_n)$ and for $n \le 11$:

n	4	5	6	7	8	9	10	11
$\chi(\frac{1}{2}H_n)$	4	8	8	8	8	13*	[13, 15]	[15, 18]

*: J.I. Kokkala and P.R.J. Östergård, *The chromatic number* of the square of the 8-cube, Math. Comp. **87** (2018), 2551–2561.

The root lattice E_6

- The Delaunay polytopes of E₆ are the Schläfli polytope Sch and -Sch.
- ► It has 27 vertices, 51840 symmetries. The lattice E₆ is laminated on D₅ and Sch is formed of three layers:
 - One vertex
 - 16 vertices in the half cube $\frac{1}{2}H_5$
 - 10 vertices in the cross polytope β_5
- Maximum independent sets have size 3 and form just 1 orbit.
- Sch has chromatic number 9: There are two orbits of colorings, one orbit of size 160 and another of size 40 (use libexact). Thus χ(E₆) ≥ 9.
- Thm: χ(E₆) = 9. Take a coloring in the orbit of size 40. For each triple take the difference of vectors in it. The spanned lattice is of index 9 and has no relevant vectors.
- ► Conj: All 9-colorings of E₆ are of this form.

The root lattice E₇

- The Delaunay polytopes of E₇ is the Gosset polytope Gos and an orbit of simplices.
- ► Gos has 56 vertices, 2903040 symmetries. Some laminations:

	E_6	D ₆	A ₆
1 c	point Sch	12 <u>β₆</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
27 <u> </u>	— – Sch point	$\begin{array}{cccc} 16 & & & \frac{1}{2}H_6 \\ 12 & & & \beta_6 \end{array}$	$\begin{array}{cccc} 21 & & & J(0,2) \\ 21 & & & -J(6,2) \\ 7 & & & -J(6,1) \end{array}$

- Maximum independent sets have size 2 or 4 and form 2 orbits.
- ► Gos has chromatic number 14: There are 40457 orbits of colorings (use libexact and symmetries). Thus \u03c0(E₇) ≥ 14.
- The lattice E_7 is laminated on A_6 and we have $\chi(A_6) = 7$.
- ► Thm: $\chi(E_7) = 14$. We color the odd layers of A₆ by $\{1, \ldots, 7\}$ and the even layers by $\{8, \ldots, 14\}$.

Hoffman lower bounds for lattices

- The Hoffman lower bounds can be expressed on infinite graphs.
- Let us denote µ a measure on Vor(L) with µ(v) = µ(−v). We have

$$\chi(L) \ge 1 - \frac{\sup_{x \in \mathbb{R}^n} \sum_{u \in Vor(L)} \mu(u) e^{2\pi i u \cdot x}}{\inf_{x \in \mathbb{R}^n} \sum_{u \in Vor(L)} \mu(u) e^{2\pi i u \cdot x}}$$

• If we choose $\mu(u) = \frac{1}{|Vor(L)|}$ then we have

$$\chi(L) \ge 1 - |Vor(L)| \left(\inf_{x \in \mathbb{R}^n} \sum_{u \in Vor(L)} e^{2\pi i u \cdot x} \right)^{-1}$$

 The proof method uses Harmonic analysis and Fourier analysis. Expressing other spectral bounds on infinite graphs would be hard.

Hoffman lower bounds for root lattices

 The character of the adjoint representation corresponding to the group is expressed as

$$ch_{ad}^{L}(g) = dim(L) + \sum_{u \in Vor(L)} e^{2\pi i u \cdot x}$$

The critical values of the characters (see Serre, 2004) were computed by algebraic methods and this gives:

$$\begin{array}{rcl} {\it Crit} {\rm ch}_{ad}^{{\rm E}_6} &=& \{-3,-2,6,14,78\} \\ {\it Crit} {\rm ch}_{ad}^{{\rm E}_7} &=& \{-7,-3,-2,1,\frac{17}{5},5,25,133\} \\ {\it Crit} {\rm ch}_{ad}^{{\rm E}_8} &=& \{-8,-4,-\frac{104}{27},-\frac{57}{16},-3,-2,0,5,24,248\} \end{array}$$

- This gives $\chi(\mathsf{E}_6) \ge 9$, $\chi(\mathsf{E}_7) \ge 10$ and $\chi(\mathsf{E}_8) \ge 16$.
- We have $Crit \operatorname{ch}_{ad}^{A_n} = \{-1, n(n+2)\}.$
- Also *Crit* $ch_{ad}^{D_n}$ is known.

The dual root lattices

• For a lattice $L \subset \mathbb{R}^n$ the dual lattice L^* is

$$L^* = \{x \in \mathbb{R}^n \text{ s.t. } \langle x, y \rangle \in \mathbb{Z} \text{ for } y \in L\}$$

•
$$\chi(\mathsf{D}_n^*) = 4$$
 since $\mathsf{D}_n^* = \mathbb{Z}^n \cup ((1/2)^n + \mathbb{Z}^n)$

- Thm: We have $\chi(\mathsf{E}_n^*) = 16$ for n = 6, 7, 8.
- Lower bound is obtained by the fractional chromatic method applied to a sufficient set of vectors around the origin.
- Explicit coloring for E^{*}₆ is obtained by finding an adequate sublattice.
- ▶ For E^{*}₇ we could not find an index 16 sublattice that works.
- Instead we consider E^{*}₇/4E^{*}₇ and color the 16384 points with 16 colors with minisat in 2 minutes. Note that computing spectral lower bounds for this graph did not finish in 2 hours.

IV. Gram matrix iso-Delaunay and iso-edge domains

Gram matrix and lattices

- Denote by Sⁿ the vector space of real symmetric n × n matrices and Sⁿ_{>0} the convex cone of real symmetric positive definite n × n matrices.
- ► Take a basis (v₁,..., v_n) of a lattice L and associate to it the Gram matrix G_v = (⟨v_i, v_j⟩)_{1≤i,j≤n} ∈ Sⁿ_{>0}.
- ► Example: take the hexagonal lattice generated by $v_1 = (1,0)$ and $v_2 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

• This gives a parameter space of dimension n(n+1)/2.

 All programs for lattices (SVP, CVP, Arithmetic equivalence, etc.) use Gram matrices as input.

Iso-Delaunay domains

- Take a lattice L and select a basis v_1, \ldots, v_n .
- We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.

- Formally, an iso-Delaunay domain is a set of positive definite matrices corresponding to the same iso-Delaunay domains.
- A primitive iso-Delaunay domain is a domain of maximum dimension and this means that all Delaunay are simplices.

Equalities and inequalities for iso-Delaunay domains

- Take $M = G_v$ with $v = (v_1, \ldots, v_n)$ a basis of lattice L.
- If V = (w₁,..., w_N) with w_i ∈ Zⁿ are the vertices of a Delaunay polytope of empty sphere S(c, r) then:

$$||w_i - c||_M = r$$
 i.e. $w_i^T M w_i - 2w_i^T M c + c^T M c = r^2$

Substracting one obtains

$$\left\{w_i^T M w_i - w_j^T M w_j\right\} - 2\left\{w_i^T - w_j^T\right\} M c = 0$$

- Inverting matrices, one obtains Mc = ψ(M) with ψ linear and so one gets linear equalities on M.
- Similarly ||w − c|| ≥ r translates into a linear inequality on M: Take V = (v₀,..., v_n) a simplex (v_i ∈ Zⁿ), w ∈ Zⁿ. If one writes w = ∑ⁿ_{i=0} λ_iv_i with 1 = ∑ⁿ_{i=0} λ_i, then one has

$$\|w-c\| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0$$

Plane representation of $S_{>0}^2$

Iso-Delaunay domains in $S_{>0}^2$

Primitive and non-primitive iso-Delaunay domains in $S^2_{>0}$:

Enumeration results on iso-Delaunay domains

The equivalence used is the arithmetic equivalence $A \mapsto PAP^T$ for $P \in GL_n(\mathbb{Z})$ which corresponds to changing basis in the lattice.

Dimension	Nr. iso-Delaunay domain	Nr. prim. iso-Delaunay domains	
1	1	1	
2	2	1	
3	5	1	
	Fedorov, 1885	Fedorov, 1885	
4	52	3	
	Delaunay & Shtogrin 1973	Voronoi, 1905	
5	110244	222	
	MDS, AG, AS & CW, 2016	Engel & Gr. 2002	

Iso-edge domain

- A parity class is a vector v ∈ L − ¹/₂L. There are 2ⁿ − 1 up to translation by L. The middle of each edge of a Delaunay polytope is a parity class.
- A iso-edge domain is the assignation of an edge to each translation class.

For the edge [0, v₁] of center v₁/2 we have the set of inequalities:

$$\| v - v_1/2 \| \geq \| v_1/2 \|$$
 for $v \in L$

If we express in term of the basis (v₁, v₂) back into Gram matrices we obtain:

$$A\left[x-(1/2,0)
ight]\geq A\left[(1/2,0)
ight]$$
 for $x\in\mathbb{Z}^2$

Implications on chromatic numbers

- A iso-Delaunay domain will be contained in an iso-edge domain. An iso-edge domain will contain a finite number of iso-Delaunay domains.
- Enumeration results:

n	prim.iso – edge	n	prim.iso – edge
2	1	4	3 Baranovski & Ryshkov 1973
3	1	5	76 Baranovski & Ryshkov 1973

- What matters for chromatic numbers is facets of Voronoi and so edges of Delaunay polytopes and so iso-Edge domains.
- The maximum chromatic number is attained in the generic case. When one goes to the boundary of an iso-Edge domain, some edges disappear and so the chromatic number decrease.
- For dimension $n \ge 6$ we do not know the full list.

V. Lattices in principal domain

The principal domain

- A lattice ∧ is in the principal domain if there are vectors {v₀, v₁,..., v_n} such that
 - $\{v_1, \ldots, v_n\}$ is a basis of Λ .
 - $\blacktriangleright v_0 + v_1 + \dots + v_n = 0$
 - For i < j we have $v_i \cdot v_j \leq 0$.
- The Delauney graph D(Λ) of Λ is the graph with two vertices on (v_i) with two vertices adjacent if v_i · v_j < 0.</p>
- For such a lattice Λ, we have χ(Λ) ≤ n + 1. More generally if (G_i) is the decomposition into biconnected components of D(Λ) then

$$\chi(\Lambda) \leq 1 + \max_i |V(G_i)|$$

The chromatic number of Λ is at least the maximal length of a cycle in D(Λ).

Three dimensional case

In dimension 3 all lattices are in the principal domain. Their lattice, Voronoi cell, Delaunay graph, and chromatic numbers:

Beyond dimension three, we have to consider lattices which are not in the principal domain.

VI. Exponential growth

Bounds

- We are interested in maximum chromatic number of lattices. Does it grow exponentially?
- We already know $\chi(L) \leq 2^n$.
- For $S \subset \{1, \ldots, n\}$ we define the cut metric

$$egin{array}{rcl} \delta_{\mathcal{S}}:\{1,\ldots,n\}^2& o&\mathbb{R}\ (x,y)&\mapsto&\left\{egin{array}{cc} 1&|\mathcal{S}\cap\{x,y\}|=1\ 0& ext{otherwise}\end{array}
ight.$$

- The polytope CUT_n = conv(δ_S, S ⊂ {1,...,n}) has 2ⁿ⁻¹ vertices (since δ_S = δ_{{1,...,n}−S}) and they form a clique.
- ► The lattice *Latt_n* spanned by the δ_S is the cut lattice and CUT_n is a Delaunay polytope of it. So $\chi(Latt_n) \ge 2^{n-1}$ with dim $Latt_n = \frac{n(n-1)}{2}$.

Exponential growth

With high probability, the chromatic number of a random n-dimensional lattice grows exponentially in n. Moreover, there are n-dimensional lattices Λ_n with

$$\chi(\Lambda_n) \geq 2^{(0.0990\cdots - o(1))n}$$

- The proof is existential, it does not give those lattices.
- ► The probability refers to the density of the quotient SL(n, ℝ)/SL(n, ℤ) which is of finite covolume (but not cocompact).
- A quasi-linear factor can be added in front.
- The proof depends on some elementary argument and the Minkowski-Hlawka lower bounds on lattice packings.