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Empty sphere and Delaunay polytopes
B -

A sphere S(c,r) of radius r» and center ¢ in an n-dimensional
lattice L is said to be an empty sphere If:

() |l[v—c|| >rforallve L,

(i) the set S(c,r) N L contains n + 1 affinely independent
points.

A Delaunay polytope P in a lattice L Is a polytope, whose
vertex-setis L N S(c,r).
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Gram matrix and lattices

-

Take v an isometry of R™. D Is a Delaunay polytope of a
lattice L if and only if (D) is a Delaunay polytope of
u(L). We want to study isometry classes of lattices.

Denote by S™ the vector space of real symmetric n x n
matrices and by S, the convex cone of positive definite
ones.

Lattice L generated by v4, ..., v, corresponds to
Gy = ((vi, vj))1<ij<n € S0 -

G, depends only on the isometry class of L.
Given M € S™,, one can find vectors v4, ..., v, such that

>0
M = G,.
|
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Gram matrix and lattices

-

Two matrices M, M’ are arithmetically equivalent if
there exist P € GL,(Z) such that

M =P'MP .
For any two basis v, v’ of a lattice L, G, and G- are

arithmetically equivalent.

Lattices up to isometric equivalence correspond to SZ,,
up to arithmetic equivalence.

In practice it is preferable to think and draw in terms of
lattices, but to compute in terms of matrices in SZ,,.

In the following, the Delaunay decomposition of a matrix
M e SZ, is the Delaunay decomposition of Z" with

respect to the scalar product z! My.
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L.’

L-type domains

A L-type domain Is the set of matrices M < SZ, with thej
same Delaunay decomposition.

Geometrically this means that the Gram matrices Gy,
G+ of following lattices L and L’

_______________________________________________________________

_______________________________________________________________

are part of the same L-type domain.

Specifying Delaunay polytopes, means putting some
linear equalities and inequalities on the Gram matrix G,.

A priori, infinity of inequalities but a finite number J
suffices.
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Equivalence and enumeration

If there Is no equalities, I.e. if all Delaunays are T
simplices, then the L-type is called primitive.

The group GL,(Z) acts on SZ, by arithmetic
equivalence and preserve the primitive L-type domains.

Voronol proved that there is a finite number of primitive
L-type domains up to arithmetic equivalence.

Bistellar flipping creates new triangulations. In dim. 2:

[ ]

N

—

—

Voo —\

"N

Enumerating them is done classically:
s Find one primitive L-type domain.

» Find the adjacent ones by bistellar flipping and
reduce by arithmetic equivalence. J
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Il. C'-types
(by Ryshkov & Baranovs



C-primitivity

If D is a Delaunay polytope, an edge e = vy, v2] of D
between two vertices vy and v, of D Is a face of D.

The edge e is encoded by its middle vector
m(e) = (v1 + v2). Up to translation, one can assume

that m(e) € {0, 5}".

A parity class is a vector ¢ € {0, 3}" — {0}; we denote by
PC the set of all parity classes.

The matrix M € SZ, Is said to be C'-primitive If for every

c € PC, there exist an edge e = |vy, v2| Of the Delaunay
decomposition of M such that m(e) = c.

-

|
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C-rigidity index
- -

® If c € PC, denote by N(c) the vectors, which are closest
to c. N(c) Is a centrally symmetric face of a Delaunay

polytope of Z".

# cIs at equal distance from all points in N(c) so there Is
A > 0 such that

(v—c)! M(v—c)= ) forall ve N(c).

This makes linear equalities on M.

# The C-rigidity index Is defined as the dimension of the
space defined by those equalities.

o |
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C'-type

Denote FS(Z") the family of all finite subsets of Z".

A C-type s
s afunction N : PC — FS(Z") with

s N(c) being a collection of vertices in Z", which Is
Invariant by the action = — 2¢ — =.

A C-type is called primitive if for every c € PC, one has
N(c) ={vy,v2}.
A primitive C-type can be encoded by the family

{?)2—?}1‘06736}

Primitive C'-types can be reconstructed from this
information.

-
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C'-type domain
B -

#® A C-type is called realizable If there exists a matrix
M e SZ, having centrally symmetric faces of Delaunay
being In this C-type.

# We will consider only realizable C'-types. Associated to
a realizable C-type, there is its C-type domain, i.e. the
set of matrices M > S, whose centrally symmetric

faces are this C-type.

# A (C-type domain is primitive if and only if its centrally
symmetric faces are simply edges.
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Matrix expression

-

Take a C-type CT and M in the C-type domain. For any
¢ € PC, one should have

s Take vg € N(c); forany v € N(c):

(v—c)! M(v—c) = (vg — )T M(vg — ¢)
s Foranyv e Z" — N(c):

(v—c)' M(v—c¢)> (vog— ) M(vg — ¢)

The first part makes linear equalities, the second part
makes linear inequalities.

Hence C-type domains are convex cone in SZ,.
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Dimension2 example

f.n Take a lattice L = Zuvy + Zws: T

# The condition that v; + v9 IS outside of the edge |vy, 2v1]
of center ¢ = v, yields

o1 +v2 — 21| > [Jv1 — Sv1]]
l.e. H?}2H2 — <1}1,?)2> >0

L.o In fact in dimension 2, C'-types coincide with L-types. J
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General theorem

- N

# The group GL,(Z) acts on the set of C-type domains by
arithmetic action

GLp(Z) x 8%y — SZ,
(P,M) — PI'MP

# Thm.(Ryshkov & Baranovskii)
s (C-type domains are polyhedral cones.
s (C'-type domains realize a face-to-face tesselation of

n
>0

s The L-type domain tesselation of SZ Is a finite
refinement of the C-type domain tesselation.

» In a fixed dimension, there are a finite number of
L C'-type domains up to equivalence. J
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Results

# All results on C-type were obtained by Ryskov &
BaranovskKil.

# They used it as technical tool for enumerating the
L-types in dimension 5.

dim | Primitive Authors Primitive
L-types C-types
2 1 Dirichlet (1860) 1
3 1 Fedorov (1885) 1
4 3 Voronoi (1908) 3
5 222 BaRy (1976), Engel & Gr (2002) 76

-
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Proofs

- N

o |If M € S™ satisfy all the condition of a C'-type then
M € 53,
proof: for v € Z™ and \ € Z one has

(M — )T M\ —¢) > (vg — )T M(vg — ¢) with vy € N(c)

passing to the limit A — oo, one obtains v! Mwv > 0.

#® Every L-type domain £7 Is contained in a unique
C-type domain C7 denoted by ¢(LT).
proof: The L-type domain £7 defines all the Delaunay
polytopes. Computing their centrally symmetric faces,
one obtains a C-type domain.

#® A C-type CT is the union of L-type domains.
L proof: if M € CT,then M € LT with L7 a L-type J
domain. By the above L7 C CT.
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fA

<

C-type CT contains a finite number of L-type domains.

Proofs
-

proof: There are a finite number of primitive L-type
domains up to equivalence. Take L7, ..., LT, some
representatives.

ﬁTz' C ¢(£T@) — CTZ'.

Now it suffices to prove that for only a finite number of
P € GL,(Z) one has P LT,P C CT;.

Take a Delaunay polytope D of £7; and find a basis
(e1,...,e,) Of R” made of edges of D

If P'LT;P C CT;then Pley,...,e,) is a family of edges
of CT,;. So, there is a finite number of possible P.
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Proofs

-

# (-type domains are polyhedral cone.
proof: We know that C'-type domains are finite union of
L-type domains. Since C-type domains are convex,
they are necessarily polyhedral.

#® (C-type domains realize a face-to-face tesselation of
o _ .
proof: S, Is an union of C-type domains. They are

defined by linear inequalities, so automatically, this
makes a face-to-face tiling.
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l1l. Algorithms



General algorithms

- N

# We want to enumerate primitive C'-type domains, the
strategy used Is

s Find a primitive C-type domain and insert it into the
list of primitive C-type domains.

s For every undone primitive C-type domain,
s Compute the non-redundant inequalities defining
it.
s For every facet, find the adjacent C-type domain.
s For every adjacent C-type domain, do an
Isomorphism test with the elements in the existing
list and insert them if they are new.

o |
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Obtaining primitive C'-type domain
B o -

# The algorithm is similar to the one for L-types.

# Iterate the following

» Find a random integral matrix, compute its Delaunay
decomposition.

s If one of the Delaunay has a centrally symmetric
face, which is not an edge, then we know that the

C-rigidity index is less than “*1) and we restart the
computation.

» Otherwise, return the corresponding C-type.

# This algorithm is of Las Vegas type, I.e. it always return
a correct answer but the running time is not known.

o |
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The geometrical picture

.n Geometrically the flipping consists in dim. 2 of:

Siak-

# |If one puts the three parity classes in dim. 2:

1



Finding non-redundant inequalities

& Find all doubles (v;, v2) such that [0, ;] and [0, 5] are
edges of the Delaunay decomposition.

Vo

o For any double (v, v2), define the linear inequality

(g — T M(vg — ¢) > (1 — ) M(vy — ¢) with ¢ = %(Ul)
Denote by f,, ,,(M) > 0 the corresponding inequality.

# This form a finite set S of inequalities. We extract a
~ non-redundant set from S by linear programming. o
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The C-flipping
-

# Take a primitive C-type domain C7 and a
non-redundant inequality f(M) > 0. We want to flip CT
along the facet defining equality f(M) = 0.

s Find all double (v, v2) such that there is o > 0 with
fbhv2(A[):=(lf(A4).

s For every such double replace the edge [0, v1] by the
edge [Ug, v — ’UQ].

V17Vo
V17V2

L » We then get the adjacent primitive C-type domain. J
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Testing equivalence

-

Associate to CT with edge vectors (v, ...,von_1) the
vector family

V(CT) — (vla —U1,...,02n_1, _U2”—1)
Two C-type domains C7 and C7' are equivalent if there

exist a matrix P € GL,(Z) such that CT' = P!CTP.

In other words C7 and C7' are equivalent if and only if
there exist a matrix P € GL,(Z) such that

PV(CT)=V(CT").

The automorphism group question is expressed
similarly.
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Lemma

-

If CT Is a C-type, then its edges Z-generates Z".

® proof: Take LT a L-types such that (L7 ) =CT. If v
and v" are two vertices of Z", then we can find a |
sequence of vertices v = oY, ... v =+’ such that v*

and v'*! belong to the same Delaunay polytope.

o For any two vertices w, w’ of a Delaunay polytope D one
can find a sequence of vertices w = w', ..., wM =’
such that w* and w**! form an edge of D.

o Every edge of D corresponds to an edge of the C-type.
Hence,

v’—v:Z)\ee with )\, € Z

-

|
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Algorithm
- | | —

# To the C-type with vector family V' (C7T) one associates

# Associates to CT the edge colored graph G(C7T) on
V(CT) with edge colors

o = v Mg forany v,o' € V(CT)

# There exist a matrix P € GL,(R) such that
PV (CT)=V(CT') if and only if the edge-colored graph
G(CT) and G(CT") are isomorphic.

L’ V(CT) and V(CT') are Z-generating, so P € GL,(Z). J
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V. Generalization



" -spaces

f.ﬂ A SZ,-space SP Is a vector space of 5", which interse(:tT
SZ-

# We want to study the centrally symmetric faces of
matrices M € SP N SZ,.

# Example of possible spaces are

SP(G)={XeS"|¢'Xg=Xforall g € G}

with G a finite subgroup of GL,(Z).
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GG-Invariant faces

- N

# Centrally symmetric faces are faces, which are invariant
by a transformation z — w — z with w € Z".

o If G is a finite subgroup of GL,,(Z), why not consider the
faces that are invariant under G?
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k-faces

-

L-types are the specification of all Delaunay, I.e. of
n-dimensional faces.

C'-types are the specification of centrally symmetric
faces but in primitive case, it is the specification of
1-dimensional faces.

Would it be possible to extend the theory to the case of
k-dimensional faces with 1 < k£ < n?

After that one would want a subspace version of it
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V. First

generalization



Settings

Take SP a SZ,-space.

We want to describe the centrally symmetric faces of
Delaunay decomposition of matrices in SP N SZ,.

A (SP, C)-type is defined as the assignation of centrally
symmetric faces of the Delaunay tesselation. A
(8P, C)-type domain is the corresponding convex cone.

A (SP, C)-type domain is obtained as intersection of a
C-type domain (in SZ,) with SP. They are thus
polyhedral domains.

Two (SP, C)-type domains C7; and C7T, are called
equivalent if there exist P € GL,(Z) such that

PLcT P =CT,.

-
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Equivariance and finiteness

-

If G Is a finite subgroup of GL,,(Z), then
SP(G)={M e 8" | ¢ Mg= M forall g G}
Thm.(Zassenhaus): One has the equality
{9 € GLL(Z) | gSP(G)'g = SP(G)} = Ngr,(2)(G)

Thm.(DSV): Take A a polyhedral face-to-face tiling of
Sy, which is invariant under GL,(Z) and has a finite

number of classes. If G Is a finite subgroup of GL,(Z)
then A NSP(G) has a finite number of classes under

action of Ngp, (7)(G).

Thm. For a given finite group G € GL,(Z), there are a
finite number of C-types under the action of NGLR(Z)(G).J
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Finiteness

f.ﬂ Suppose SP Is an 5%, define T

Stab(SP) = g €< GLn(Zt) such that
gSP'g = SP

# We know some examples where SP is irrational such
that
s Stab(SP) = 1,

s SP contains an infinite number of (SP, C)-type
domains.

And so contain an infinite number of C-types after
action of Stab(SP).

L’ But we know no example with SP rational and an infiniteJ
number of (SP, C)-types after action of Stab(SP).
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General algorithms
- -

® A (SP,C)-type domain is called primitive if it has
maximal dimension in SP.

» We fix a SZ,-space SP and we want to enumerate

primitive (SP, C)-type domains, the strategy used is

s Find a primitive (SP, C')-type domain and insert it
into the list of primitive (SP, C)-type domains

» For every undone primitive (SP, C)-type,
s Compute the non-redundant inequalities defining it
s For every facet, find the adjacent C-type domain.
s For every adjacent (SP, C)-type domain, Do an

Isomorphy test with elements in the existing list
and insert them if they are new.

# Finding primitive (SP, C)-type domain is easy: take
L element at random and finish when it is ok. J
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Linear inequalities

-

We have the family of N(¢) and we want to find the
corresponding inequality.

The first step consists in finding the facets of N(c). For
every such facet £, find all centers ¢/, such that N(¢)
and N (c) share F. Saying that vertices of N(¢') are
outside the sphere around N (c¢) makes one linear
iInequality. Denote this inequality by f.. (M) > 0.

There iIs a finite number of such inequalities.

We extract the set of non-redundant inequalities from
this finite set.
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Lifted Delaunay decomposition

- N

# The Delaunay polytopes of a lattice L correspond to the
facets of the convex cone C(L) with vertex-set:

{(z, ||z]|?) with z € L} c R4+

R
\'\

NS

L.p Faces of Delaunay polytopes « faces of C(L) J
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Oriented graph

- N

o Take a (SP,C)-type and suppose we know all the
non-redundant inequalities of the (SP, C)-type domain.
Take f(M) > 0 one such inequality.

# Construct an oriented graph G on PC by
¢ — ¢ ifand only if there is o > 0 with f. (M) = af (M)

# Take an oriented graph G, the directed component
DC(v) of a vertex v is the set of vertices v' of G such
that there exist a path

v=20 st 5o SN =
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(SP, C)-repartitionning polytope
B -

o For every directed component DC(c¢) of this graph, the
(SP, C)-repartitioning polytope RP(c) Is the polytope
with vertex-set

(v, 'vMv) with v a vertex of a Delaunay of DC(c)

# Every face of a Delaunay of the form N(¢’) with
¢ € DC(c) correspond to a face of RP(c).
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Faces ofRP(c)

If ¢ € DC(c), then define the affine line ¢ + R e, In
R™*t1 and create the intersection

RP(c)Nd +Riepniq = [ + Mepg1, ¢ + Aoepii]

N(c) is the smallest face containing ¢ + Aie,11.
N'(c) is the smallest face containing ¢ + Ase;, 1.

Consider X such that ¢ + A\e,,+1 € RP(c). Then there
exist z,, such that

C/ + )\en_|_1 = ZUEV(RP(C)) LyU Wlth Ly Z 0
1 = ZUEV(RP(c)) Ly

A1, Ao and N'(¢) are found by linear programming.

-

|
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The (SP, C)-flipping
B -

# Take a (SP,C)-type domain and f(M) > 0 a relevant
iInequality of CT.

® The (SP,C)-flipping of CT along f(M) = 0 Is realized In
the following way:
s Find all oriented directed component DC'(c¢)
s Forevery ¢ € DC(c), if \{ # Ag, do linear

programming and change N(¢) by N'(¢).

s We then get the new (SP, C)-type domain.
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VI. Second

generalization



(G-parity classes

-

We take G a finite subgroup of GL,(Z) and consider the
space SP(G). We do not assume that —1I,, € G.

The GG-parity classes are the vectors ¢ € R" such that
for all ¢ € G one has gc — c € Z".

We want a finite number of G-parity classes

This means that we want the system of equation gz = «
with g € G iImplies = = 0.

Forall z € R" one has gz =0.
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Nearest neighbors
B -

# We assume that the solution of the equation gx = z for
all g € G'is only 0.

® The set N(c) of nearest neighbors to a G-parity class is
G-Invariant.

# By above property one will have

1
N 2 U=

vEN(c)

# All the preceding theory generalizes by replacing parity
classes by G-parity classes. Also, one can take a linear
subspace SP of SP(G).

o |
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