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I. Delaunay polytopes

and

L-type theory
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Empty sphere and Delaunay polytopes

A sphere S(c, r) of radius r and center c in an n-dimensional
lattice L is said to be an empty sphere if:

(i) ‖v − c‖ ≥ r for all v ∈ L,

(ii) the set S(c, r) ∩ L contains n+ 1 affinely independent
points.

A Delaunay polytope P in a lattice L is a polytope, whose
vertex-set is L ∩ S(c, r).

c
r
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Gram matrix and lattices

Take u an isometry of Rn. D is a Delaunay polytope of a
lattice L if and only if u(D) is a Delaunay polytope of
u(L). We want to study isometry classes of lattices.

Denote by Sn the vector space of real symmetric n× n

matrices and by Sn
>0 the convex cone of positive definite

ones.

Lattice L generated by v1, . . . , vn corresponds to

Gv = (〈vi, vj〉)1≤i,j≤n ∈ Sn
>0 .

Gv depends only on the isometry class of L.

Given M ∈ Sn
>0, one can find vectors v1, . . . , vn such that

M = Gv.

– p. 4



Gram matrix and lattices

Two matrices M,M ′ are arithmetically equivalent if
there exist P ∈ GLn(Z) such that

M ′ = P TMP .

For any two basis v, v′ of a lattice L, Gv and Gv
′ are

arithmetically equivalent.

Lattices up to isometric equivalence correspond to Sn
>0

up to arithmetic equivalence.

In practice it is preferable to think and draw in terms of
lattices, but to compute in terms of matrices in Sn

>0.

In the following, the Delaunay decomposition of a matrix
M ∈ Sn

>0 is the Delaunay decomposition of Zn with
respect to the scalar product xTMy.
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L-type domains
A L-type domain is the set of matrices M ∈ Sn

>0 with the
same Delaunay decomposition.

Geometrically this means that the Gram matrices Gv,
Gv

′ of following lattices L and L′

1v

2
v

2v’
1v’

are part of the same L-type domain.

Specifying Delaunay polytopes, means putting some
linear equalities and inequalities on the Gram matrix Gv.

A priori, infinity of inequalities but a finite number
suffices.
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Equivalence and enumeration
If there is no equalities, i.e. if all Delaunays are
simplices, then the L-type is called primitive.

The group GLn(Z) acts on Sn
>0 by arithmetic

equivalence and preserve the primitive L-type domains.

Voronoi proved that there is a finite number of primitive
L-type domains up to arithmetic equivalence.

Bistellar flipping creates new triangulations. In dim. 2:

Enumerating them is done classically:
Find one primitive L-type domain.
Find the adjacent ones by bistellar flipping and
reduce by arithmetic equivalence.
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II. C-types

(by Ryshkov & Baranovskii)
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C-primitivity

If D is a Delaunay polytope, an edge e = [v1, v2] of D
between two vertices v1 and v2 of D is a face of D.

The edge e is encoded by its middle vector
m(e) = 1

2(v1 + v2). Up to translation, one can assume
that m(e) ∈ {0, 12}

n.

A parity class is a vector c ∈ {0, 12}
n − {0}; we denote by

PC the set of all parity classes.

The matrix M ∈ Sn
>0 is said to be C-primitive if for every

c ∈ PC, there exist an edge e = [v1, v2] of the Delaunay
decomposition of M such that m(e) = c.
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C-rigidity index

If c ∈ PC, denote by N(c) the vectors, which are closest
to c. N(c) is a centrally symmetric face of a Delaunay
polytope of Zn.

c is at equal distance from all points in N(c) so there is
λ > 0 such that

(v − c)TM(v − c) = λ for all v ∈ N(c) .

This makes linear equalities on M .

The C-rigidity index is defined as the dimension of the
space defined by those equalities.

– p. 9



C-type

Denote FS(Zn) the family of all finite subsets of Zn.

A C-type is
a function N : PC → FS(Zn) with
N(c) being a collection of vertices in Z

n, which is
invariant by the action x 7→ 2c− x.

A C-type is called primitive if for every c ∈ PC, one has
N(c) = {v1, v2}.

A primitive C-type can be encoded by the family

{v2 − v1 | c ∈ PC}

Primitive C-types can be reconstructed from this
information.
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C-type domain

A C-type is called realizable if there exists a matrix
M ∈ Sn

>0 having centrally symmetric faces of Delaunay
being in this C-type.

We will consider only realizable C-types. Associated to
a realizable C-type, there is its C-type domain, i.e. the
set of matrices M ∋ Sn

>0 whose centrally symmetric
faces are this C-type.

A C-type domain is primitive if and only if its centrally
symmetric faces are simply edges.
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Matrix expression

Take a C-type CT and M in the C-type domain. For any
c ∈ PC, one should have

Take v0 ∈ N(c); for any v ∈ N(c):

(v − c)TM(v − c) = (v0 − c)TM(v0 − c)

For any v ∈ Z
n −N(c):

(v − c)TM(v − c) > (v0 − c)TM(v0 − c)

The first part makes linear equalities, the second part
makes linear inequalities.

Hence C-type domains are convex cone in Sn
>0.
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Dimension2 example
Take a lattice L = Zv1 + Zv2:

v2

cv1

v  +v1 2

The condition that v1 + v2 is outside of the edge [v1, 2v1]

of center c = 3
2v1 yields

||v1 + v2 −
3
2v1|| > ||v1 −

3
2v1||

i.e. ||v2||2 − 〈v1, v2〉 ≥ 0

In fact in dimension 2, C-types coincide with L-types.
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General theorem

The group GLn(Z) acts on the set of C-type domains by
arithmetic action

GLn(Z)× Sn
>0 → Sn

>0

(P,M) 7→ P TMP

Thm.(Ryshkov & Baranovskii)
C-type domains are polyhedral cones.
C-type domains realize a face-to-face tesselation of
Sn
>0

The L-type domain tesselation of Sn
>0 is a finite

refinement of the C-type domain tesselation.
In a fixed dimension, there are a finite number of
C-type domains up to equivalence.
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Results

All results on C-type were obtained by Ryskov &
Baranovskii.

They used it as technical tool for enumerating the
L-types in dimension 5.

dim Primitive Authors Primitive

L-types C-types

2 1 Dirichlet (1860) 1

3 1 Fedorov (1885) 1

4 3 Voronoi (1908) 3

5 222 BaRy (1976), Engel & Gr (2002) 76
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Proofs

If M ∈ Sn satisfy all the condition of a C-type then
M ∈ Sn

≥0.
proof: for v ∈ Z

n and λ ∈ Z one has

(λv − c)TM(λv − c) ≥ (v0 − c)TM(v0 − c) with v0 ∈ N(c)

passing to the limit λ → ∞, one obtains vTMv ≥ 0.

Every L-type domain LT is contained in a unique
C-type domain CT denoted by φ(LT ).
proof: The L-type domain LT defines all the Delaunay
polytopes. Computing their centrally symmetric faces,
one obtains a C-type domain.

A C-type CT is the union of L-type domains.
proof: if M ∈ CT , then M ∈ LT with LT a L-type
domain. By the above LT ⊂ CT .

– p. 16



Proofs

A C-type CT contains a finite number of L-type domains.

proof: There are a finite number of primitive L-type
domains up to equivalence. Take LT 1, . . . , LT r some
representatives.

LT i ⊂ φ(LT i) = CT i.

Now it suffices to prove that for only a finite number of
P ∈ GLn(Z) one has P TLT iP ⊂ CT i.

Take a Delaunay polytope D of LT i and find a basis
(e1, . . . , en) of Rn made of edges of D

If P TLT iP ⊂ CT i then P (e1, . . . , en) is a family of edges
of CT i. So, there is a finite number of possible P .
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Proofs

C-type domains are polyhedral cone.
proof: We know that C-type domains are finite union of
L-type domains. Since C-type domains are convex,
they are necessarily polyhedral.

C-type domains realize a face-to-face tesselation of
Sn
>0.

proof: Sn
>0 is an union of C-type domains. They are

defined by linear inequalities, so automatically, this
makes a face-to-face tiling.
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III. Algorithms
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General algorithms

We want to enumerate primitive C-type domains, the
strategy used is

Find a primitive C-type domain and insert it into the
list of primitive C-type domains.
For every undone primitive C-type domain,

Compute the non-redundant inequalities defining
it.
For every facet, find the adjacent C-type domain.
For every adjacent C-type domain, do an
isomorphism test with the elements in the existing
list and insert them if they are new.
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Obtaining primitive C-type domain

The algorithm is similar to the one for L-types.

Iterate the following
Find a random integral matrix, compute its Delaunay
decomposition.
If one of the Delaunay has a centrally symmetric
face, which is not an edge, then we know that the

C-rigidity index is less than n(n+1)
2 and we restart the

computation.
Otherwise, return the corresponding C-type.

This algorithm is of Las Vegas type, i.e. it always return
a correct answer but the running time is not known.
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The geometrical picture

Geometrically the flipping consists in dim. 2 of:

c c c

If one puts the three parity classes in dim. 2:

ccc
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Finding non-redundant inequalities
Find all doubles (v1, v2) such that [0, v1] and [0, v2] are
edges of the Delaunay decomposition.

v

v2

1

0
c

For any double (v1, v2), define the linear inequality

(v2 − c)TM(v2 − c) ≥ (v1 − c)TM(v1 − c) with c =
1

2
(v1)

Denote by fv1,v2(M) ≥ 0 the corresponding inequality.

This form a finite set S of inequalities. We extract a
non-redundant set from S by linear programming.
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TheC-flipping

Take a primitive C-type domain CT and a
non-redundant inequality f(M) ≥ 0. We want to flip CT
along the facet defining equality f(M) = 0.

Find all double (v1, v2) such that there is α > 0 with
fv1,v2(M) = αf(M).
For every such double replace the edge [0, v1] by the
edge [v2, v1 − v2].

v

v2

1

0
c 0

v2

c

v  −v1 2

v  −v1 2

1v

We then get the adjacent primitive C-type domain.
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Testing equivalence

Associate to CT with edge vectors (v1, . . . , v2n−1) the
vector family

V (CT ) = (v1,−v1, . . . , v2n−1,−v2n−1)

Two C-type domains CT and CT ′ are equivalent if there
exist a matrix P ∈ GLn(Z) such that CT ′ = P TCT P .

In other words CT and CT ′ are equivalent if and only if
there exist a matrix P ∈ GLn(Z) such that
PV (CT ) = V (CT ′).

The automorphism group question is expressed
similarly.
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Lemma

If CT is a C-type, then its edges Z-generates Z
n.

proof: Take LT a L-types such that φ(LT ) = CT . If v
and v′ are two vertices of Zn, then we can find a
sequence of vertices v = v0, . . . , vN = v′ such that vi

and vi+1 belong to the same Delaunay polytope.

For any two vertices w, w′ of a Delaunay polytope D one
can find a sequence of vertices w = w0, . . . , wM = w′

such that wi and wi+1 form an edge of D.

Every edge of D corresponds to an edge of the C-type.
Hence,

v′ − v =
∑

e

λee with λe ∈ Z
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Algorithm

To the C-type with vector family V (CT ) one associates

MCT =
∑

v∈V (CT )

vvT

Associates to CT the edge colored graph G(CT ) on
V (CT ) with edge colors

pv,v′ = vTM−1
CT

v′ for any v, v′ ∈ V (CT )

There exist a matrix P ∈ GLn(R) such that
PV (CT ) = V (CT ′) if and only if the edge-colored graph
G(CT ) and G(CT ′) are isomorphic.

V (CT ) and V (CT ′) are Z-generating, so P ∈ GLn(Z).
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IV. Generalization
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Sn
>0-spaces

A Sn
>0-space SP is a vector space of Sn, which intersect

Sn
>0.

We want to study the centrally symmetric faces of
matrices M ∈ SP ∩ Sn

>0.

Example of possible spaces are

SP(G) = {X ∈ Sn | gTXg = X for all g ∈ G}

with G a finite subgroup of GLn(Z).
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G-invariant faces

Centrally symmetric faces are faces, which are invariant
by a transformation x 7→ w − x with w ∈ Z

n.

If G is a finite subgroup of GLn(Z), why not consider the
faces that are invariant under G?
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k-faces

L-types are the specification of all Delaunay, i.e. of
n-dimensional faces.

C-types are the specification of centrally symmetric
faces but in primitive case, it is the specification of
1-dimensional faces.

Would it be possible to extend the theory to the case of
k-dimensional faces with 1 < k < n?

After that one would want a subspace version of it
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V. First

generalization
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Settings

Take SP a Sn
>0-space.

We want to describe the centrally symmetric faces of
Delaunay decomposition of matrices in SP ∩ Sn

>0.

A (SP , C)-type is defined as the assignation of centrally
symmetric faces of the Delaunay tesselation. A
(SP , C)-type domain is the corresponding convex cone.

A (SP , C)-type domain is obtained as intersection of a
C-type domain (in Sn

>0) with SP. They are thus
polyhedral domains.

Two (SP , C)-type domains CT 1 and CT 2 are called
equivalent if there exist P ∈ GLn(Z) such that
P TCT 1P = CT 2.
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Equivariance and finiteness

If G is a finite subgroup of GLn(Z), then

SP(G) = {M ∈ Sn | gTMg = M for all g ∈ G}

Thm.(Zassenhaus): One has the equality

{g ∈ GLn(Z) | gSP(G)tg = SP(G)} = NGLn(Z)(G)

Thm.(DSV): Take ∆ a polyhedral face-to-face tiling of
Sn
>0, which is invariant under GLn(Z) and has a finite

number of classes. If G is a finite subgroup of GLn(Z)
then ∆ ∩ SP(G) has a finite number of classes under
action of NGLn(Z)(G).

Thm. For a given finite group G ∈ GLn(Z), there are a
finite number of C-types under the action of NGLn(Z)(G).
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Finiteness

Suppose SP is an Sn
>0, define

Stab(SP) =

{

g ∈ GLn(Z) such that
gSPtg = SP

}

We know some examples where SP is irrational such
that

Stab(SP) = ±In

SP contains an infinite number of (SP , C)-type
domains.

And so contain an infinite number of C-types after
action of Stab(SP).

But we know no example with SP rational and an infinite
number of (SP , C)-types after action of Stab(SP).
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General algorithms

A (SP , C)-type domain is called primitive if it has
maximal dimension in SP.

We fix a Sn
>0-space SP and we want to enumerate

primitive (SP , C)-type domains, the strategy used is
Find a primitive (SP , C)-type domain and insert it
into the list of primitive (SP , C)-type domains
For every undone primitive (SP , C)-type,

Compute the non-redundant inequalities defining it
For every facet, find the adjacent C-type domain.
For every adjacent (SP , C)-type domain, Do an
isomorphy test with elements in the existing list
and insert them if they are new.

Finding primitive (SP , C)-type domain is easy: take
element at random and finish when it is ok.
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Linear inequalities

We have the family of N(c) and we want to find the
corresponding inequality.

The first step consists in finding the facets of N(c). For
every such facet F , find all centers c′, such that N(c′)
and N(c) share F . Saying that vertices of N(c′) are
outside the sphere around N(c) makes one linear
inequality. Denote this inequality by fc,c′(M) ≥ 0.

There is a finite number of such inequalities.

We extract the set of non-redundant inequalities from
this finite set.
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Lifted Delaunay decomposition

The Delaunay polytopes of a lattice L correspond to the
facets of the convex cone C(L) with vertex-set:

{(x, ||x||2) with x ∈ L} ⊂ R
d+1 .

Faces of Delaunay polytopes ⇔ faces of C(L)
– p. 38



Oriented graph

Take a (SP , C)-type and suppose we know all the
non-redundant inequalities of the (SP , C)-type domain.
Take f(M) ≥ 0 one such inequality.

Construct an oriented graph G on PC by

c → c′ if and only if there is α > 0 with fc,c′(M) = αf(M)

Take an oriented graph G, the directed component
DC(v) of a vertex v is the set of vertices v′ of G such
that there exist a path

v = v0 → v1 → · · · → vN = v′
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(SP , C)-repartitionning polytope

For every directed component DC(c) of this graph, the
(SP , C)-repartitioning polytope RP (c) is the polytope
with vertex-set

(v, tvMv) with v a vertex of a Delaunay of DC(c)

Every face of a Delaunay of the form N(c′) with
c′ ∈ DC(c) correspond to a face of RP (c).

c

c
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Faces ofRP (c)

If c′ ∈ DC(c), then define the affine line c′ +R+en+1 in
R
n+1 and create the intersection

RP (c) ∩ c′ +R+en+1 = [c′ + λ1en+1, c
′ + λ2en+1]

N(c′) is the smallest face containing c′ + λ1en+1.

N ′(c′) is the smallest face containing c′ + λ2en+1.

Consider λ such that c′ + λen+1 ∈ RP (c). Then there
exist xv, such that

{

c′ + λen+1 =
∑

v∈V (RP (c)) xvv with xv ≥ 0

1 =
∑

v∈V (RP (c)) xv

λ1, λ2 and N ′(c′) are found by linear programming.
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The (SP , C)-flipping

Take a (SP , C)-type domain and f(M) ≥ 0 a relevant
inequality of CT .

The (SP , C)-flipping of CT along f(M) = 0 is realized in
the following way:

Find all oriented directed component DC(c)

For every c′ ∈ DC(c), if λ1 6= λ2, do linear
programming and change N(c′) by N ′(c′).
We then get the new (SP , C)-type domain.
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VI. Second

generalization
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G-parity classes

We take G a finite subgroup of GLn(Z) and consider the
space SP(G). We do not assume that −In ∈ G.

The G-parity classes are the vectors c ∈ R
n such that

for all g ∈ G one has gc− c ∈ Z
n.

We want a finite number of G-parity classes

This means that we want the system of equation gx = x

with g ∈ G implies x = 0.

For all x ∈ R
n one has

∑

g∈G gx = 0.
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Nearest neighbors

We assume that the solution of the equation gx = x for
all g ∈ G is only 0.

The set N(c) of nearest neighbors to a G-parity class is
G-invariant.

By above property one will have

1

|N(c)|

∑

v∈N(c)

v = c

All the preceding theory generalizes by replacing parity
classes by G-parity classes. Also, one can take a linear
subspace SP of SP(G).
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