
MANUAL OF THE GAP PACKAGE POLYHEDRAL

MATHIEU DUTOUR SIKIRIĆ

Contents

1. Installation 1
2. Introduction 2
3. Combinatorial functions 2
3.1. Graph functions 2
3.2. Invariant functions 3
3.3. Combinatorial functions 4
3.4. Group functions 4
4. Linear algebra functionalities 4
4.1. Basic functions 4
4.2. Smith Normal Form 5
5. Polytopes 6
5.1. Description of polytopes and polyhedral cones 6
5.2. Linear programming functions 7
5.3. Dual description functions 9
5.4. Direct applications of dual description computations 10
5.5. Groups and equivalence of polytopes 11
5.6. Face lattice and flag computation 11
6. Lattices functions 12
6.1. Basic lattices functions 12
6.2. Delaunay polytopes in lattices 14
6.3. Perfect form 15
6.4. Voronoi polytope for polyhedral norms 15
References 15

1. Installation

A priori the system works only on unix/linux systems. You need to
follow the following steps:

(1) The archive polyhedral.tar.gz can be downloaded from http:
//drobilica.irb.hr/∼mathieu/Polyhedral/index.html

1

2 MATHIEU DUTOUR SIKIRIĆ

(2) Previous to using polyhedral you need to install the GAP com-
puter package (from http://www.gap-system.org/).

(3) The archive polyhedral.tar.gz should be untarred in the pkg
directory of GAP.

(4) Your File .gap/gap.ini must contain the following line:

SetUserPreference("PackagesToLoad", ["polyhedral"]);

if you have no other needed packages. If the file is not existent
then you need to create it.

(5) Then one needs to run the configure perl script in the poly-
hedral directory in order to compile the external programs.

2. Introduction

The package polyhedral is designed to be used for doing all kinds
of computations related to polytopes and use their symmetry groups in
the course of the computation. There are very many different functions
but I will try here to explain them as good as I can.

In order to install it, you should

(1) Install GAP.
(2) Download polyhedral.tar.gz from http://www.liga.ens.fr/∼dutour/

Polyhedral
(3) Unpack it in the directory pkg/ of the gap distribution.
(4) Do ./configure in order to compile the external programs.

3. Combinatorial functions

3.1. Graph functions. The package contains a reimplementation of
the nauty [11] functionalities into GAP. The preceding GRAPE has
the defect of being rather slow due to its additional features and does
not contained the feature of vertex colored graph. Thus a graph is
either described as

• A graph in the GRAPE format
• A graph in the ListAdj Format, so that ListAdj[iVert] is the

list of vertices adjacent to iVert.

(1) The functions

CanonicalRepresentativeVertexColoredGraphAdjList:=function(ListAdjacency, ThePartition)

CanonicalRepresentativeVertexColoredGraph:=function(TheGraph, ThePartition)

returns the canonical representative of a vertex colored graph
by using the nauty program.

(2) The functions

EquivalenceVertexColoredGraphAdjList:=function(ListAdjacency1, ListAdjacency2, ThePartition)

EquivalenceVertexColoredGraph:=function(TheGraph1, TheGraph2, ThePartition)

MANUAL OF THE GAP PACKAGE POLYHEDRAL 3

tests the equivalence of vertex colored graphs. ThePartition is
for example

ThePartition:=[[1,2,3,4], [5,6]];

and has to be common for both graphs.
(3) The function

AutomorphismGroupEdgeColoredGraph:=function(DistMat)

returns the automorphism group of a graph with edge weigths.
DistMat is the matrix of weight (diagonal weights are not used).

(4) The function

CanonicalStringEdgeColoredGraph:=function(DistMat)

returns the canonical string of an edge colored graph.
(5) The function

IsIsomorphicEdgeColoredGraph:=function(DistMat1, DistMat2)

tests if two edge colored graphs are equivalent.
(6) The functions

AutomorphismGroupColoredGraph:=function(ScalarMat)

IsIsomorphicColoredGraph:=function(ScalarMat1, ScalarMat2)

are the equivalent of the above for vertex colored and edge
weighted graphs.

For a graph the returned group is a group expressed as a permuta-
tion group on the vertices. For equivalence tests, the program return
false if the two objects are not isomorphic and a list expressing the
isomorphism otherwise.

3.2. Invariant functions.

(1) The function

__GetMD5sum:=function(FileName)

returns the md5sum of a file. This is especially useful when one
has complex invariants of a mathematical object and wants a
smaller one to keep in memory.

(2) The function

__GetGraph6Expression:=function(ListAdj)

returns the nauty Graph6 expression of a graph. It is a compact
form useful for memory expression.

(3) The functions

SymmetryGroupVertexColoredGraphAdjList:=function(ListAdjacency, ThePartition)

SymmetryGroupVertexColoredGraph:=function(TheGraph, ThePartition)

return the symmetry group of a vertex colored graph.

4 MATHIEU DUTOUR SIKIRIĆ

3.3. Combinatorial functions. Sometimes, we need to enumerate
objects and special graph

(1) The function

GetBipartition:=function(GR)

returns the bipartition of a graph GR if it is bipartite and
(2) The function

GRAPH_EnumerateCycles:=function(TheGRA, GRP, TheLen)

enumerates the orbits for the group GRP of cycles of TheGRA of
length TheLen.

3.4. Group functions. A key point of all the work being done there
is to compute stabilizer and equivalence for some various action. We
have written some algorithm that realize this for some specific actions.

The functions

PermutedStabilizer:=function(TheGRP, eVect)

PermutedRepresentativeAction:=function(TheGRP, eVect1, eVect2)

are supposed to behave like

Stabilizer:=function(TheGRP, eVect, Permuted)

RepresentativeAction:=function(TheGRP, eVect1, eVect2, Permuted)

and hopefully be faster.
Similarly we have for the action OnSetsSets

OnSetsSetsStabilizer:=function(GRP, eSetSet)

OnSetsSetsRepresentativeAction:=function(GRP, eSetSet1, eSetSet2)

for the action OnTuples:

OnTuplesStabilizer:=function(GRP, eTuple)

OnTuplesRepresentativeAction:=function(SymGrp, Tuple1, Tuple2)

OnTuplesCanonicalization:=function(GroupEXT, ListPts)

for the action OnTuplesSets:

OnTuplesSetsStabilizer:=function(GRP, eTuple)

OnTuplesSetsRepresentativeAction:=function(GroupEXT, FlagEXT1, FlagEXT2)

OnTuplesSetsCanonicalization:=function(GroupEXT, ListSet)

4. Linear algebra functionalities

4.1. Basic functions.

(1) For a n×m matrix of rank p we need to remove some rows or
columns so that the resulting matrix has rank p. The functions
are

ColumnReduction:=function(EXT)

RowReduction:=function(EXT)

MANUAL OF THE GAP PACKAGE POLYHEDRAL 5

They return a record

rec(EXT:=EXTred, Select:=eSet)

with EXTred the reduced matrix and eSet the set of rows/columns
that has to be chosen.

(2) For an integral vector TheVector with

TheVector:=[x1, ..., xN]

the function

GcdVector:=function(TheVector)

returns a record rec(TheGcd:=TheGcd , ListCoef:=[a1, ...,

aN]) such that TheGcd is the greatest common divisor and

TheGcd =
N∑
i=1

aixi

(3) The functions

RemoveFraction:=function(TheList)

RemoveFractionMatrix:=function(OneMat)

multiply a vector or a matrix by the smallest integer such that
they are integral. If one needs further the coefficient, then use

RemoveFractionPlusCoef:=function(TheList)

RemoveFractionMatrixPlusCoef:=function(OneMat)

(4) Given an matrix eBasis in a space of dimension n, the function

SubspaceCompletion:=function(eBasis, n)

returns a completion basis B such that Concatenation(eBasis,
B) is an integral Z-basis of Zn.

4.2. Smith Normal Form. The Smith normal form is the right tool
for computing homology groups. What is needed is to compute the
smith normal form of the differential. Since those differentials are in
most cases sparse matrix and that there exist specific algorithms using
sparse matrices, we find it useful to have sparse matrix functionalities.

The format used for sparse matrix is rec(nbLine:=...., nbCol:=....,

ListEntries:=[....]). The list ListEntries is of length nbLine and
each entry is of the form rec(ListCol:=....., ListVal:=....).

We use the LINBOX library for those computations, which is one of
the most advanced in the world.

The following functionalities are provided via LINBOX:

(1) The function

GetRankLinboxSparse:=function(RecSparseMat, pVal)

6 MATHIEU DUTOUR SIKIRIĆ

returns the rank of the sparse matrix in input. if pVal is 0 then
this is the Z rank and if it is non-zero, then it is the rank over
Z/pZ.

(2) The function

GetFactorLinboxSparse:=function(RecSparseMat)

returns the Smith normal form of the sparse matrix in input.

5. Polytopes

5.1. Description of polytopes and polyhedral cones. A polyhe-
dral cone spanned by (v1, . . . , vm) in Rn can be expressed as

P = {x = λ1v
1 + · · ·+ λmv

m with λi ≥ 0}
To any vector vi = (x1, . . . , xn) we associate the list

[x_1, x_2, ..., x_n]

If the polyhedral cone is defined by inequalities of vector w1, . . . , wp:

P = {x such that 〈x,wi〉 ≥ 0}
with

〈x, y〉 = x1y1 + · · ·+ xnyn

then to wi = (y1, . . . , yn) we associate the list

[y_1, y_2, ..., y_n]

So a polyhedral cone P can be either described by a list of list generator
coordinates or by a list of list of inequalities coordinate. It is important
to note nowhere it is said or mentioned that a list of list express a
polytope in terms of its generators or in terms of its inequalities. This
meaning is something that the user is responsible for.

For polytopes, the situation is slightly more complex. A polytope P
can be defined as the convex hull of points (v1, . . . , vm) in Rn, i.e.

P =

{
x = λ1v

1 + · · ·+ λmv
m with λi ≥ 0∑

i λi = 1

}
To any convex generator vi = (x1, . . . , xn) we associate the list

[1 , x_1 , x_2 , ... , x_n]

If the polytope P is defined by inequalities of vector w1, . . . , wp:

P = {x such that 〈x,wi〉 ≥ bi}
with

〈x, y〉 = x1y1 + · · ·+ xnyn

then to wi = (y1, . . . , yn) and bi we associate the list

[-b_i , y_1 , y_2 , ... , y_n]

MANUAL OF THE GAP PACKAGE POLYHEDRAL 7

This is the convention that we recommend and are used by lrs, cdd,
etc. Their use gives consistent result. So, the polyhedral software does
not make any distinction between polyhedral cone and polytope, all
this is in the eye of the user.

In general, we do not require the polyhedral cone and polytope to be
full dimensional, any embedding is ok. But as a consequence, the faces
of cone are defined not by defining inequality but by the vertices or
facets in which they are contained. Thus, everything about polyhedral
cone is expressed in term of sets, and permutation groups and not
matrix groups.

A note on the arihmetic. The coordinates of the objects can be
integer, rational or belong to Q(

√
(N)). The reader should read a book

on polytope theory (first chapter suffices) in order to get acquainted
with the formalism explained here.

5.2. Linear programming functions. Linear programming is the
problem of mimnizing a linear function over a set P defined by linear
inequalities.

The function that realize that is

LinearProgramming:=function(InequalitySet, ToBeMinimized)

The cdd program is directly called. The output of cdd is directly trans-
lated and read. For interpretation of the result, we recommend that the
reader looks at a book on linear programming. Linear programming is
known to be solvable in polynomial time, which explain its attractivity
for many algorithms. The program cdd that we use uses the simplex
algorithm, which is known to be exponential in worst cases. But in
practice this is ok for the cases that we consider and the advantage of
it is that the solutions that it returns are rational for rational input.

Based on linear programming we can build many useful functions
that generally run very fast.

(1) The function

PolytopizationGeneralCone:=function(FAC)

does the following operation successively:
(a) It does a reduction to a space so that FAC is full dimen-

sional
(b) It applies a linear transformation so that the first coordi-

nate is always > 1.
(c) It multiplies each vector by the inverse of the first coeffi-

cient so that the first coefficient is = 1 (so the object is
now a polytope).

8 MATHIEU DUTOUR SIKIRIĆ

(d) It translate the coordinate so that origin belongs to the
interior of the polytope.

(2) The function

SearchPositiveRelation:=function(ListVect, TheConstraint)

is for searching positive relations among vector elements. I.e.
we have

ListVect:=[v1, v2, ..., vN]

and we search for relations∑
i

αivi = 0

with the signs of αi being specified in the following way:

TheConstraint:=rec(ListPositive:=[...],

ListStrictlyPositive:=[...],

ListSetStrictPositive:=[...]);

ListPositive is the list of indices of vectors that are ≥ 0, List-
StrictlyPositive the list of indices that are> 0, ListSetStrictPos-
itive the list of sets S for which

∑
i∈S αi > 0 with S expressed

as set of indices.
(3) The function

SearchPositiveRelationSimple:=function(ListVect)

is a simpler version of the above where all indices are non-
negative and only the sum should be non-negative

(4) The function

GetViolatedFacet:=function(EXT, eVect)

takes a polytope EXT and a vector eVect that is not in the
convex hull of EXT and returns a facet F of EXT that separates
eVect.

(5) The function

EliminationByRedundancyEquivariant:=function(EXT, BoundingSet, GRPperm)

gives the list of indices that corresponds to vertices. That is if
EXT is the list of generators, GRPperm a group of permutation
on the generators, BoundingSet a list of valid inequalities on
EXT (usually set to be empty []).

Linear programming is used to detect which generators cor-
respond to vertices and symmetry is used to reduce the number
of linear programming tests.

(6) The function

SkeletonGraph:=function(GroupExt, EXT, BoundingSet)

MANUAL OF THE GAP PACKAGE POLYHEDRAL 9

takes a list of vertices EXT, a permutation group GroupExt on
EXT, a set BoundingSet of valid inequalities (usually set to be
empty []). The result is the skeleton of the polytope.

(7) The function

GetInitialRays_LinProg:=function(EXT, nb)

takes a polytope or polyhedral cone EXT and returns nb subsets
of EXT corresponding to facets of EXT

(8) The function

LinearDeterminedByInequalities:=function(FAC)

returns a basis of the space spanned by the vectors realizing the
inequalities. For example

gap> LinearDeterminedByInequalities([[1,1,1],[-1,-1,-1],[1,0,0]]);

[[-1, 1, 0], [-1, 0, 1]]

It is useful in dealing with polytopes that are not full dimen-
sional.

(9) The function

GetContainingPrism:=function(EXT, eVect)

returns a set S defining a facet F of the polytope P such that
eVect is inside the prism conv(F, iso(P)).

(10) The function

GetContainingSimplex:=function(EXT, eVect)

returns a flag (F1, . . . , Fn) such that eVect is inside the simplex
defined by (Iso(F1), . . . , Iso(Fn)).

5.3. Dual description functions. We now consider functionalities
related to computing dual description of polyhedral cone, polytopes,
etc. That is we have a description by facets or vertices and we want a
description by facets or vertices.

Those functions generally return a list of subsets corresponding to or-
bit representatives of facets. The method generally uses the Recursive
Adjacency Decomposition Method for computing. The exact method
is fully described in papers and examples. We give mostly here readily
usable functions.

(1) The function

__FindFacetInequality:=function(EXT, ListIncidence)

for a set of vertices EXT and a list of incidence ListIncidence

returns the inequality corresponding to this set.
(2) The function

DualDescription:=function(EXT)

10 MATHIEU DUTOUR SIKIRIĆ

gives the dual description of EXT without using any group the-
oretical features.

(3) The function

DualDescriptionAdjacencies:=function(EXT)

gives the list of facets, the ridge graph and the skeleton graph
(again without using any group)

(4) The functions

DualDescriptionLRS:=function(EXT, GroupExt)

DualDescriptionCDD:=function(EXT, GroupExt)

DualDescriptionPD:=function(EXT, GroupExt)

computes some orbit representative (with respect to the group
GroupExt) of the facets of the cone defined by EXT. The program
used are lrs, cdd or pd. It is difficult to recommend a specific
algorithm in general. This is a matter of research.

(5) The function

DualDescriptionStandard:=function(EXT, PermGRP)

computes representatives of the orbits of facets of the cone de-
fined by EXT with respect to the group PermGRP. Some standard
heuristics are applied with the lrs programs. If the user wants
to use different heuristics, programs then he should look at the
examples.

(6) The function

PolytopeVolumeRecursive:=function(EXT, GroupEXT)

computes the volume of a polytope by using the above recursive
adjacency method iteratively.

See [1] for a discussion of the various methods for computing dual
descriptions of polytopes using symmetries.

5.4. Direct applications of dual description computations. Re-
mind that a linear programming is the problem of minimizing a linear
function over a set defined by some linear inequalities. One weakness
of the algorithm previous explained is that the point that they give
that realize the minimum may not be unique in some cases. This is
not a problem in 99% of cases but sometimes, one needs it to find a
point that is canonically defined. The solution is to use

FindGeometricallyUniqueSolutionToLinearProgramming:=function(ListInequalities, ToBeMinimized)

and it is usually much more expensive that simple linear programming
because more calls to linear programming are needed and also dual
description.

MANUAL OF THE GAP PACKAGE POLYHEDRAL 11

In many of the papers of [5] it is somehow important to get the
representation matrix of the cone, that is the adjacencies between facets

RepresentationMatrixAndFacetStandard:=function(EXT, PermGRP)

5.5. Groups and equivalence of polytopes. For a polyhedral cone
P spanned by N vectors (vi)1≤i≤N in Rn we denote by

(1) (Linear) Lin(P) the group of permutations σ ∈ Sym(N) such
that there exist A ∈ GLn(R) with Avi = vσ(i).

(2) (Projective) Proj(P) the group of permutations σ ∈ Sym(N)
such that there exist A ∈ GLn(R) and αi > 0 with Avi = αivσ(i).

(3) (Combinatorial) Comb(P) the group of permutations σ ∈ Sym(N)
such that σ permutes the faces of P (expressed as subsets of
{1, . . . , N}).

Of course, one can define the corresponding notions of equivalences.
See in [6] for more details on those questions.

This gives us the following functions for automorphism groups:

LinPolytope_Automorphism:=function(EXT)

ProjPolytope_Automorphism:=function(EXT)

CombPolytope_Automorphism:=function(EXT)

and for equivalences

LinPolytope_Isomorphism:=function(EXT1, EXT2)

ProjPolytope_Isomorphism:=function(EXT1, EXT2)

CombPolytope_Isomorphism:=function(EXT1, EXT2)

In general the method of choice is the linear group and linear equiv-
alence because it is much faster than other methods. If one wants
to use projective or combinatorial equivalence then the computational
expenses are much higher.

A function related to linear equivalence is

LinPolytope_Invariant:=function(EXT)

which returns a powerful linear invariant for a given polyhedral cone.
For obtaining integral stabilizers and equivalence, the commands are:

LinPolytopeIntegral_Automorphism:=function(EXT)

LinPolytopeIntegral_Isomorphism:=function(EXT1, EXT2)

5.6. Face lattice and flag computation. Face lattices computations
are fundamental to many computations.

For a n-dimensional polytope P , there are two kinds of face lattice
computations:

(1) Enumeration of all orbits of k-dimensional faces for 0 ≤ k ≤ n
assuming that we know the list of facets of P (This typically
applies to polytope of dimension say, 8 at most).

12 MATHIEU DUTOUR SIKIRIĆ

(2) Enumeration of all orbits of k-dimensional faces for 0 ≤ k ≤ k0
with k0 small without knowing the set of facets and instead
using linear programming (typically, k0 = 3, 4 and the polytope
is of dimension about 20)

The functions are thus

IncompleteSkeletonSearch:=function(GroupFac, FAC, BoundingSet, LevSearch)

FAC is the set of facets, GroupFac the permutation group acting on
the faces, BoundingSet a set of extreme rays (usually taken to be []),
LevSearch the level at which we go in the enumeration.

CreateK_skeletton:=function(GroupFac, FAC, EXT)

FAC is the set of facets, GroupFac the permutation group acting on the
faces and EXT the set of extreme rays.

Let us now see the related computations. If P is a n-dimensional
polyhedral cone with faces of dimension between 1 and n then a flag is
a set of faces fi:

f = (f1, f2, . . . , fn) with f1 ⊂ f2 ⊂ · · · ⊂ fn

Such flags are encoded by the set of extreme rays in which they are
contained. For j in {1, . . . , n} there exist a unique flag f ′ which differs
from f only in position j. This flag is obtained by the function

FlagDisplacement:=function(FlagEXT, EXT, FAC, iMov)

with EXT the set of extreme rays, FAC the set of facets, iMov the move-
ment index j, and FlagEXT the flag f with each face fi encoded by the
list of extreme rays contained in it.

Another use of face lattice computation is in topology for computing
boundary operator. The command is then

BoundaryOperatorsCellularDecompositionPolytope:=function(GroupEXT, EXT, BoundingSet, kSought)

with EXT the list of vertices, GroupEXT the group acting on the vertices,
BoundingSet a list of valid inequality (usually set to []) and kSought

the level at which one wants to compute the skeleton.

6. Lattices functions

6.1. Basic lattices functions. By a lattice, we mean a set Zv1 +
· · · + Zvn ⊂ Rn. The polyhedral package allows to make all sort of
computations with it, but the main computation tool is named Gram
matrix. It is the positive definite matrix G = (〈vi, vj〉)1≤i,j≤n formed by
all pairwise scalar products. For more on this point look for example
at [7, 2, 10].

(1) The functions

MANUAL OF THE GAP PACKAGE POLYHEDRAL 13

GetSuperlattices:=function(GramMat, GRP, TheMod)

GetSublattices:=function(GramMat, GRP, TheMod)

enumerates super and sub-lattices of a given lattice with quo-
tient Z/TheModZ.

(2) The functions

ShortVectorDutourVersion:=function(GramMat, eNorm)

ShortestVectorDutourVersion:=function(GramMat)

enumerate the short vector or shortest vectors of a given lattice.
(3) The functions

SphericalDesignLevel:=function(EXT, GramMat)

SphericalDesignLevelGroup:=function(EXT, GroupEXT, GramMat)

Determine the t-design level of a set of points on a sphere (pro-
gram originally written by F. Vallentin)

(4) The first function call

ClassicalSporadicLattices("E6");

ClassicalSporadicLattices(["ListNames"]);

return a Gram matrix of the lattice E6 while the second call
gives all available names.

(5) The function

ProcEnum:=ProcEnum_SublatticeEnumeration();

gives functionalities for enumerating sublattice of specific di-
mension and rank of a given lattice (see the examples for prac-
tice).

(6) The function

ArithmeticAutomorphismGroup:=function(ListGram)

determine the group of automorphism group of a list ListGram
of positive definite matrices. That is if ListGram=[A1, ...,

Ap] then it return the generators of the group

{P ∈ GLn(Z) s.t. PA1P
T = A1, . . . , PApP

T = Ap}

The corresponding function for arithmetic isomorphism is

ArithmeticIsomorphism:=function(ListGram1, ListGram2)

That is if ListGram=[A1, ..., Ap] and ListGram=[A’1, ...,

A’p] then it return one matrix P ∈ GLn(Z) such that

PA1P
T = A′1, . . . , PApP

T = A′p

The command uses AUTOM/ISOM by B. Souvignier and W. Plesken
to make those computations.

14 MATHIEU DUTOUR SIKIRIĆ

6.2. Delaunay polytopes in lattices. A Delaunay polytope P in a
lattice L is the convex hull of L ∩ S(c, r) with S(c, r) the sphere of
center c and radius r having no interior point.

Delaunay polytopes form a face-to-face tiling of Rn and are useful
for many applications. The main function call is

ListFunc:=DelaunayComputationStandardFunctions(TheGramMat);

it computed the Delaunay tesselation and returns a record that contains
several functions for mutiple usage:

(1) The function

DelCO:=ListFunc.GetDelaunayDescription();

It gives a list of record, each one of them corresponding to an
orbit of Delaunay polytopes. Each such record contains the list
of vertices(EXT), the stabilizer (TheStab) of the Delaunay pre-
sented as a permutation group with a group homomorphism to
the corresponding matrix group and the list of orbit of adjacent
Delaunay polytopes (Adjacencies). That is the dual descrip-
tion of the Delaunay polytope is computed and for each facet,
the adjacent Delaunay polytope is given. This information is
encoded by a record

rec(iDelaunay:=..., eBigMat:=..., eInc:=....)

where iDelaunay is the orbit number of the adjacent Delaunay,
eBigMat is the matrix that maps the canonical representative
to the Delaunay polytope actually adjacent and eInc is the list
of vertices incident to the facet defining the adjacency.

(2) The function

ListFunc.GetFreeVectors();

returns the list of free vectors of the lattice (see [9] for details).
(3) The function

ListFunc.GetVoronoiVertices();

return the vertices of the Delaunay polytope around 0.
(4) The functions

ListFunc.GetRigidityDegree();

ListFunc.GetLspace();

return the rigidity degree and the Lspace of the Delaunay tes-
selation (see [4] for details).

(5) The function

ListFunc.GetQuantization();

returns the quantization integral of the lattice (see [8] for de-
tails).

MANUAL OF THE GAP PACKAGE POLYHEDRAL 15

(6) The function

ListFunc.GetCoveringDensity();

returns the covering density of the lattice.
(7) The function

ListFunc.FlagFunctions();

computes the flag system of the Delaunay tesselation and in
particular the Delaney symbol (see [3] for details).

(8) The function

ListFunc.GetOrbitDefiningVoronoiFacetInequalities();

returns the Voronoi vectors of the lattice.
(9) The function

LFC:=ListFunc.GetNeighborhood(EXT);

returns the functionalities for finding the neighborhood of a
Delaunay polytope. (see Example)

For periodic point sets, there are similar functions.

ListFunc:=Periodic_DelaunayComputationStandardFunctions(U);

where U is a record that must contain GramMat and ListCosets.

6.3. Perfect form. A form is called perfect if it is uniquely defined by
its shortest vectors. There is a large litterature on perfect forms since
they have multiple uses in Mathematics.

(1) The function

MossContraction:=function(GramMat)

returns the Moss Contracted form from the positive definite
matrix GramMat. See Proposition 1.2 in [12] for details.

6.4. Voronoi polytope for polyhedral norms. In Examples/VoronoiL1
an example of a polytope with

References

[1] D. Bremner, M. Dutour Sikirić and A. Schürmann, Polyhedral representation
conversion up to symmetries, CRM proceedings & Lecture Notes 48 (2009)
45–72.

[2] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups third
edition, volume 290 of Grundlehren der mathematischen Wissenschaften,
Springer–Verlag, 1998.

[3] O. Delgado Friedrichs, A. Dress and D. Huson, Tilings and symbols: a report
on the uses of symbolic calculation in tiling theory, Sém. Lothar. Combin. 34
(1995), Art. B34a, approx. 16 pp.

[4] M. Deza and V.P. Grishukhin, Nonrigidity degree of root lattices and their
duals, Geom. Dedicata 104 (2004), 1524.

16 MATHIEU DUTOUR SIKIRIĆ

[5] M. Deza and M. Dutour, Cones of metrics, hemi-metrics and super-metrics,
Annals of the European Academy of Sciences (2003) 141–162.

[6] M. Dutour Sikirić, D. Bremner and D. Pasechnik, The symmetry groups of
polytopes, in preparation

[7] M. Dutour Sikirić, F. Vallentin and A. Schürmann, Classification of eight-
dimensional perfect forms, Electronic Research Annoucements of the AMS 13
(2007) 21–32.

[8] M. Dutour Sikirić, A. Schürmann and F. Vallentin, Complexity and algorithms
for computing Voronoi cells of lattices, Mathematics of computation 78 (2009)
1713–1731.

[9] V.P. Grishukhin, Free and nonfree Vorono polyhedra. (Russian. Russian sum-
mary) Mat. Zametki 80 (2006) 367–378; translation in Math. Notes 80 (2006)
355365

[10] J. Martinet, Perfect lattices in Euclidean spaces, Springer, 2003.
[11] B.D. McKay, The nauty program, http://cs.anu.edu.au/people/bdm/nauty/.
[12] K.N., Moss, Homology of SL(n,Z[1/p]), Duke Math. J. 47 (1980), no. 4, 803818
[13] W. Plesken and B. Souvignier, Computing isometries of lattices, J. Symbolic

Comput. 24 (1997) 327–334.

Mathieu Dutour Sikirić, Rudjer Bosković Institute, Bijenicka 54,
10000 Zagreb, Croatia

E-mail address: mdsikir@irb.hr

